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Fine-Grained Agent-Based Modeling to Predict
Covid-19 Spreading and Effect of Policies in

Large-Scale Scenarios
Gianfranco Lombardo, Mattia Pellegrino, Michele Tomaiuolo, Stefano Cagnoni , Senior Member,IEEE

Monica Mordonini, Mario Giacobini, Agostino Poggi

Abstract— Modeling and forecasting the spread of
COVID-19 remains an open problem for several reasons.
One of these concerns the difficulty to model a complex
system at a high resolution (fine-grained) level at which the
spread can be simulated by taking into account individual
features. Agent-based modeling usually needs to find an
optimal trade-off between the resolution of the simulation
and the population size. Indeed, modeling single individu-
als usually leads to simulations of smaller populations or
the use of meta-populations. In this article, we propose a
solution to efficiently model the Covid-19 spread in Lom-
bardy, the most populated Italian region with about ten
million people. In particular, the model described in this
paper is, to the best of our knowledge, the first attempt in lit-
erature to model a large population at the single-individual
level. To achieve this goal, we propose a framework that
implements: i. a scale-free model of the social contacts
combining a sociability rate, demographic information, and
geographical assumptions; ii. a multi-agent system relying
on the actor model and the High-Performance Computing
technology to efficiently implement ten million concurrent
agents. We simulated the epidemic scenario from January
to April 2020 and from August to December 2020, modeling
the government’s lockdown policies and people’s mask-
wearing habits. The social modeling approach we propose
could be rapidly adapted for modeling future epidemics at
their early stage in scenarios where little prior knowledge
is available.

Index Terms— Covid-19, Epidemic modeling, Large-scale
simulation, Multi-agent simulation, Social modeling, Artifi-
cial Intelligence, HPC, ABMS.

I. INTRODUCTION

S ince the end of 2019, the number of Covid-19 outbreaks
has grown rapidly in many countries. Most governments

all over the world have enacted severe measures in full
emergency to limit the impact of this new virus upon their
communities, in particular lockdown rules and social distanc-
ing, to reduce potential transmission events. However, we have
witnessed several outbreaks that were difficult to manage and
to accurately predict. Most difficulties are related to the nature

Submitted 20th February 2021
Gianfranco Lombardo, Mattia Pellegrino, Michele Tomaiuolo, Stefano

Cagnoni, Monica Mordonini and Agostino Poggi are with the Department
of Engineering and Architecture - University of Parma, Parma, Italy

Mario Giacobini is with the Data Analysis and Modeling Unit, Depart-
ment of Veterinary Sciences, University of Torino, Turin, Italy

of the virus itself, for example the existence of asymptomatic
infectious patients, several days of incubation before the
emergence of symptoms, and a lack of knowledge about many
details of SARS-Cov-2 transmission and its dynamics.

In light of this context, the possibility of modeling com-
plex and large scenarios to simulate the spread of Covid-19
becomes a key factor for the prevention and the sustainability
of public-health services and the governments’ policy-making.
Different approaches to this task can be considered, depending
on the desired granularity and the level of the available a
priori knowledge about the context. Covid-19 is an air-borne
disease whose transmission is facilitated by social contacts in
situations where physical distancing is difficult to avoid, for
example: work sites, transport means, schools, conviviality,
free-time activities, and family interactions.

In this research work, our goal is to simulate each person’s
social behaviors (fine-grained simulation) in a large commu-
nity of about ten million inhabitants (Lombardy’s population
in 2019), taking also into account their province of residence.
In order to model this system, we used Agent-Based Modeling
and Simulation techniques (ABMS). Each agent represents an
individual having a certain number of social interactions each
day depending on its age, work and sociability level, which
we introduced as an individual’s feature. We aim to model
Covid-19 transmission at a fine-grained resolution, to be able
to also simulate scenarios with and without social distancing
and lockdown policies.

However, executing millions of concurrent agents could
represent a bottleneck for ABMS. To overcome this issue, we
built an efficient framework that implements the agents as dis-
tributed and concurrent actors who share asynchronous mes-
sages to communicate and organize their behaviors. We im-
plemented this software architecture on the High-Performance
Computing facility of the University of Parma, which provided
the resources required to scale and distribute the computation
workload. Finally, we simulated the Covid-19 outbreaks in
Lombardy from January to April 2020 and from August to
December 2020, namely the first and second waves of Covid-
19 outbreak.

The main contribution of this paper are: (a) a simulation
framework for fine-grained and large scale scenarios; (b)
a model for social interactions based on sociability rates,
demographic-based according to a power-law degree distribu-



2 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

tion; (c) a model of the lockdown policies and mask-wearing
effects; and (d) an estimation of the actual impact of Covid-
19 in Lombardy during those waves, which is universally
considered to have been underestimated.

II. LITERATURE REVIEW

Different modeling techniques have been proposed to model
and solve real and complex epidemic scenarios. Two widely
used techniques are system dynamics (SD) and agent-based
modeling (ABM).

System dynamics permits to analyze the modeled system at
a high abstraction level where the population is divided into
compartments. A common case is the SEIR model (Susceptible
Exposed Infective Recovered) [1], where the population can
move from one compartment to another according to prede-
fined flow rates. However, the traditional SEIR model is not
fine-grained enough to model lockdown policies, as in the
case of Covid-19 management and control. This limit with
the Covid-19 world pandemic has motivated several research
works that aim to extend that model to increase heterogeneity
and flexibility [2]–[4].

However, the extensions do not address the main key-
issue related with the most relevant parameter, the basic
reproduction number (R0), that is not policy-invariant. Indeed,
it depends on the number of s each person’s contact and its
contact’s infection probability. Indeed, as reported in [5], it
is hard to translate a policy into the R0 it induces; the most
frequent solution is defining an exponentially decreasing R0

function or a piecewise function that tries to model the adopted
policies to reduce the virus spread. In Riccio et al. [6], Covid-
19’s spread in Lombardy is simulated by introducing three
novel parameters in the SEIR model, taking into account
the transmission rate of asymptomatic subjects, the number
of unascertained cases in the official data, and, finally, a
piecewise exponentially-decreasing R0 that reflects the effect
of the policies adopted in Italy. Another interesting approach
is described by Peng et al. [7] where the authors propose a
variant of SEIR relying on an exponentially-decreasing R0

function that depends on the adoption rate of mask-wearing
and the number of deaths. In this way the R0 function takes
into account more restrictive policies in the model when the
outbreaks become severe. Godio et al. [8] propose an extension
of the model proposed in [7] applied to Lombardy, optimizing
all the parameters using Computational Swarm Intelligence to
model the early stage of the pandemic in Italy. Finally, Chen
et al. [9] introduce a SEIAR model that takes into account
the asymptomatic patients along with a migration factor that
accounts for residents’ movements outside a region with an
outbreak.

A common approach with SEIR models is assuming that
the population distribution is uniformly mixed. However, in
a real population, the contacts distribution is mixed het-
erogeneously and shows some complex network characteris-
tics [10], [11], [12]. Li et al [13] propose a SEIAR model
on small-world networks generated using the Watts-Strogatz
algorithm [14] but it is computationally infeasible in large
scale contexts with millions of people while ignoring the dif-

ferent levels of sociability as a function of age and occupation
observed in a real population.

On the other hand, agent-based approaches model the
behavior of each agent as well as the interaction between
agents. ABMs can be used to study the system at different
abstractions levels. In [15] the authors demonstrated that
stochastic ABMs can show better performance when several
parameters are unknown and there is the need for capturing
heterogeneity across individuals and their network of recip-
rocal interactions. In [16] the authors compare ABMs and
meta-population strategies for modeling the epidemic in Italy,
concluding that a trade-off between the two methods depends
on data availability and suggesting the use of hybrid models.
For a further discussion about ABM and its advantages over
system dynamics models we refer the reader also to [17]
and [18]. However, the main limitation of ABM approaches
is the intrinsic trade-off between the desired resolution of
the simulation and the population size. Indeed, to model
single individuals’ characteristics and behaviors it is necessary
to reduce the number of individuals to avoid computational
issues. This is why system dynamics models or, at least, the
use of meta-population approaches are often preferred in large-
scale scenarios. This limit has had an impact also on Covid-19
modeling.

Covid-19 spread estimation is challenging and needs to
consider heterogeneous interaction rates among people. These
requirements can be easily modeled using ABMS. In [19]
and citecuevas2020agent, individuals are modeled as moving
particles. Covid-19 infections take place when two particles
come closer than a certain contact radius. Social distancing
for Covid-19 is modeled as changes in the contact radius or
introducing a momentum term. However, these parameters are
difficult to estimate in large scenarios. In [20], the authors
model Covid-19 spread by replacing the moving particles
with contact networks for households, work, and random
contacts. An extension of this approach is considered also
in [21] that simulates the effect of the German lockdown
in November 2020. Moreover, the structure of the contact
network significantly affects the disease, as demonstrated also
for Covid-19 in [22]. Contact networks are usually modeled
with a power-law distribution because the scale-free property
ensures that only few people interact with many others while
most people interact with a smaller consistent set [23]. In [24],
the authors modeled Covid-19 spread with single individuals
in Piedmont (Italy) using a genetic algorithm to estimate the
parameters. Moreover, they modeled the population in groups,
considering groups’ characteristics such as age, fragility and
work conditions to minimize the number of symptomatic
people. Another interesting attempt can be found in [25],
where the authors propose a high-resolution model using
single individuals’ features with real data about the Covid-19
outbreak in New Rochelle (NY), where thousands of citizens
live. However, to the best of our knowledge, there is a lack
of models simulating the outbreaks and the lockdown policies
with a fine-grained detail in large real scenarios. Most methods
in the literature are suitable for modeling a limited number
of individuals and to achieve statistics that are then extended
to a larger general case. For this reason, we believe that our
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approach can be the first that models and simulates a spreading
phenomenon with million of agents at a high resolution for
each single individual.

III. SOFTWARE ARCHITECTURE

About ten million people live in Lombardy, therefore a
distributed architecture is necessary to obtain a fine-grained
simulation of behaviors and details. To implement our simula-
tor we exploited ActoDemic, a Java framework we developed
to model general spreading phenomena [26]. It is based on
ActoDes [27], a software framework aimed at both simplifying
the development of concurrent and distributed complex sys-
tems and ensuring an efficient execution of applications [28],
[29]. In particular, an application is based on a set of ac-
tors [30] that perform tasks concurrently and interacting with
each other by exchanging asynchronous messages. Actors can
be passive or active depending on whether they share or not
a single thread. An Actor Space (AS) acts as a ”container”
for a set of actors providing services for their execution by
two other special actors: the Executor (EX) and the Service
provider (SP). EX manages the concurrent execution of the
actors in the actor space; SP enables an application’s actors
to perform new kinds of action (e.g., to broadcast a message
or move from an actor space to another one). Several actor
spaces can be defined in a distributed application to exploit
the resources of multiple nodes. Each actor has a system-wide
unique identifier, called reference, allowing it to be reached
in a location-transparent way, independently of the location of
the sender (i.e., their location can be the same or different).
The communication among the actors is buffered and an actor
can set a timeout to wait for a new message. After its creation,
an actor can change its behavior several times before it kills
itself. Each behavior has the main duty of processing a set
of specific messages through a set of message handlers called
“cases”. Therefore, if an unexpected message arrives, then the
actor mailbox maintains it until another behavior is able to
process it.

A. Simulator’s architecture
In our simulator’s architecture, every actor represents a

generic subject by with its age, province of residence, and own
sociability level. Furthermore, each subject has a stochastic
behavior depending on other parameters that will be discussed
later in Section VI. The simulation process is divided into
several “epochs”, where every epoch represents a different
day. Moreover, people can change their behavior depending
on the current epoch (e.g., normal period or lockdown period).
Individuals are created and divided according to two criteria:

a. Partitioning according to their province of residence;
b. Splitting in equal-size subsets, depending on the number

of actor spaces involved in the simulation.
The simulator involves a set of computational nodes whose
execution is driven by a set of schedulers and managers. We
exploited ActoDeS passive actors to model a large-scale con-
text. In particular, each manager has the duty of creating the
subset of actors for its computational node and synchronizing
the execution of its node’s simulation with the execution of

the other computational nodes. Moreover, one such manager
assumes the role of “master”, with the duty of partitioning the
agents involved in the simulation; it sends the other managers
the information they need for creating the agents under their
control.

The simulation process can be described as follows:
1) The master manager creates the agents and sends each

scheduler (including itself) information for creating a
subset of agents.

2) Each manager creates all the actors of its subset.
3) Repeat until the end of the simulation:

a. The managers send the other managers a synchro-
nization message and wait for the corresponding
messages in response from them.

b. The schedulers perform an execution step of all
their actors.

c. The scheduler sends an “end step” message to all
their actors and managers.

In this architecture, every actor space acts as a manager. The
last-generated actor space plays the master role.

ActoDeS provides the “CycleScheduler” that can be used in
a wide variety of applications, especially in ABMS applica-
tions. Furthermore, this scheduler manages the passive actors
within its actor space and cyclically repeats the same actions
until the simulation ends:

1) Send a “step” message to all agents and increment the
“step” value; this operation triggers the transition from
one epoch to the next one.

2) Perform an execution step of all agents.
Figure 1 shows a diagram that describes the simulator’s

architecture. In the diagram, the population is split to N
actor spaces; the last one acts as the master. However, every
actor space coordinates and manages a population subset.
Every subset includes, generically, the agents that go from
(n−k) ·p−1 to (n−k+1) ·p−1, where n is the number of
partitions, k identifies the actual partition and p = population

N
is a constant.

The agents need to exchange data and often such interac-
tions involve agents on remote nodes. Therefore, the partition
of agents on several computational nodes may add a significant
communication overhead. An important solution that limits the
communication cost is reducing the interaction frequency and
merging multiple interactions. For this reason, all information
is exchanged among the actors at the end of each epoch along
with the synchronization messages.

IV. DATA COLLECTION

We retrieved data about COVID-19 spread in Lombardy
from the official institutions [31], [32]. From these sources we
collected data about new daily cases and casualties registered
in Lombardy over time. We also used demographic informa-
tion about the population of Lombardy, including the number
of inhabitants and their age distribution [33]. As a starting
point for modeling social interactions we used data from the
Italian National Institute of Health [34] and [35]. These data,
reported in Table I, have been collected to better understand
how respiratory infections might spread. 7,290 people were
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recruited from eight European countries (Belgium, Germany,
Finland, Great Britain, Italy, Luxembourg, The Netherlands,
and Poland) to participate in the study. Participants were asked
to fill out a diary that documented their physical and non-
physical contacts in a single day. Physical contacts included
interactions such as a kiss or a handshake. Non-physical con-
tacts were situations such as a two-way conversation without
skin-to-skin contact. Participants detailed the location and
duration of each contact. To model Covid-19 compartments we
used preliminary data collected by [36] and [37] and the age
susceptibility to COVID-19 virus [34]. Modeling the Italian
lockdown required different pieces of information about the
set of “essential workers” [38]. Moreover, we collected data
indicating what percentage of the population used protective
devices. [39] and their effectiveness [40]. To evaluate our
model, we finally used the results of the seroprevalence survey
conducted in that same period in Lombardy.

Age Total Home School Work Transport Free time
0-4 16.54 4.49 5.27 0 0.98 5.81
5-9 20.49 4.61 8.87 0 1.12 5.9

10-14 27.38 4.43 11.98 0.2 1.35 9.42
15-19 29.28 4.59 13.22 0.05 1.74 9.7
20-24 22.15 3.51 1.17 4.49 0.96 12.03
25-29 21 3.47 2.23 5.21 1.13 8.96
30-34 18.03 3.55 0.85 3.92 0.76 8.962
35-39 21.25 4.38 0.68 7.78 1.05 7.37
40-44 22.35 3.88 2.53 7 0.67 8.27
45-49 19.27 2.99 2.61 8.24 0.88 4.57
50-54 22.3 2.75 5.54 8.05 0.52 5.43
55-59 18.27 2.88 1.41 4.6 0.68 8.68
60-64 18.43 3.28 1.07 6.05 0.87 7.16
65-69 12.74 3.1 0.55 0.48 0.95 7.66
70+ 10.55 3.24 0.06 1.04 0.22 5.99

TABLE I
AVERAGE NUMBER OF INTERACTIONS BY AGE (FROM [35])

V. SOCIAL INTERACTIONS MODELING

Modeling physical contacts among people is essential to
simulate an air-borne disease transmission like Covid-19.
However, this is still an open problem when fine-grained
details are necessary to the simulation. To tackle this kind of
problems, we propose a social interaction model based on the
actual daily contacts from [35], enriched with a sociability rate
that divides people with a high, medium, and low sociability
level. These have been introduced to increase or decrease the
average number of the subjects’ daily contacts with other
people, based on their age. To define these parameters, we
hypothesize, as is common in network science, that social
networks commonly have a power-law distribution with an
exponent between 2 and 3, also known as the scale-free
property [12] or power-law graph [41]. Moreover, the en-
tire population is partitioned into 12 groups, accounting for
Lombardy’s 12 provinces. This subdivision ensures that the
interactions are not purely casual. Indeed, a generic subject
meets most of his contacts in his own province. Only a
small fraction of interactions occur with people belonging
to another province. The Italian demographic structure and
the heterogeneity of social contacts, at different ages, is also
taken into account to estimate each subject’s average daily
number of interactions (See Table I). More specifically, every
agent is characterized by the following attributes: ID, province
of residence, age group, social interaction ratio, number of
contacts, current infection phase. A bit defines if the subject
uses a protective device during the lockdown, another bit if
the subject is an essential worker during the lockdown. Some
of these parameters will be further described in the following
sections.

A. Modeling regular contacts

In the first simulation week, a set of contacts is created for
each subject. This set will represent, for the entire simulation
period, its regular contacts set. More specifically, this set
includes all those people that a generic subject usually meets
during its typical day. For example: family members, friend,
co-workers, etc.

We assumed that an agent can meet a certain number of
people belonging to this set and a certain number who do not
belong to it. Moreover, Table I shows that 65% of a generic
agent’s daily contacts occur with its regular contacts set, while
the remaining 35% is with new contacts. We considered as
regular contacts the ones in the Home, School and Work fields
of Table I for each age group.

B. Sociability rate estimation

The social network generated by the interactions among
people can be theoretically mapped and measured using net-
work science techniques. We assume that a generic agent
represents a node in the social graph and its outgoing and
incoming edges represent the contacts had by the node and
the contacts of other nodes with it, respectively.

The social interactions distribution is a crucial factor for
studying the epidemic spread. For this reason, we evaluated
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various hypotheses, but, in the end, we decided to focus our
studies on a power-law distribution. A power-law model fits
very well many real-world use cases and can be used to model
social interactions.

In a typical modern society there are different aggregation
sites: offices, schools, parks. These contexts favor large gath-
erings of people and lead to the creation of particular nodes
in a contact network called hubs (or super-spreaders). A hub
is a node whose interaction degree is greater than the others’.
The degree of a node is the number of edges connected to
it. The distribution degree is a function pk : N → [0, 1], that
associates a degree k with the probability for a node to have
that degree:

pk =
Nk
N

(1)

where N is the number of total nodes and Nk is the number
of nodes having k as their degree.

In a typical power-law distribution, nodes with a relatively
high degree are more likely to form. This last assumption
makes the power law suitable for shaping our social network.
To estimate the sociability rate, the attention is focused on
the distribution degree of the graph generated by the social
interactions.

We aimed at achieving a power-law scale-free distribu-
tion [12], because it is characterized by the presence of many
hubs that create a ”long tail”, in their representation graph. A
”scale-free” distribution does not change its shape if scaled in
dimension. To analyze the distribution, we have referred to the
state of the art of curve fitting [42], using the Likelihood Ratio
test and the Kolmgorov-Smirnov distance to determine which
probability distribution is compatible with our data, looking for
a power law distribution. We have chosen the Complementary
Cumulative Density Function (CCDF), because CCDFs are
often preferable for visualizing a heavy-tailed distribution. A
CCDF measures the probability that a certain node’s degree is
greater than a reference variable x (see Equation 2).

pk =

∞∑
q=k+1

pq (2)

If pk follows a power-law trend, then the cumulative distribu-
tion scales according to the law:

pk ∼ K−γ+1 (3)

People are modeled according to their social interaction
degree, which can be different from the others’. They can
be identified by their Sociability Rate (SR), that admits four
different values: high, medium, low and quarantine. Further-
more, according to this ratio, an person can meet more or
fewer other people in a single simulation day. The interactions
occur randomly, generating an interaction graph. People with
a high degree meet a number of people above average, those
with medium degree meet exactly the average number, and
people with a low degree meet a number of people below
average. The population includes 20% of agents having a high
and a medium degree, as opposed to the remaining 80% of
agents that have a low degree. To achieve this distribution, we
have introduced three different social interaction multipliers

Multipliers LR test LR p-value KS test
0.1 1 1.9 1.99 ' 0 0.11
0.2 1 1.8 364 ' 0 0.21
0.3 1 1.7 -1.46 0.145 0.116
0.4 1 1.6 -150 ' 0 0.122
0.5 1 1.5 -403 ' 0 0.093
0.6 1 1.4 -465 ' 0 0.113
0.7 1 1.3 -205 ' 0 0.12
0.8 1 1.2 -301 ' 0 0.09
0.9 1 1.1 -803 ' 0 0.127

TABLE II
GRID-SEARCH RESULTS OF THE SOCIABILITY RATES CONSIDERING THE

MOST PROMISING DISTRIBUTION CANDIDATES. WHEN COMPUTING THE

LIKELIHOOD, THE FIRST CANDIDATE IS ALWAYS THE POWER-LAW AND

THE SECOND THE LOG-NORMAL DISTRIBUTION.

that scale the number of people met in a generic simulation
day. The multiplier for people having a medium degree is
equal to 1. To estimate the remaining multipliers we have
performed a grid search over the parameters looking for
the optimal combination, i.e., one that returns a power-law
distribution with a scale-free property II. The multiplier’s
range for SR=low is [0.1-0.9] while, for SR=high, it is [1.1-
1.9]. The particular case of quarantine will be detailed later.

We have analyzed the CCDFs obtained with each configu-
ration considered by the grid search. In Figure 2, we report
some of the results along with a comparison with a power-law
distribution. In order to choose the optimal configuration, we
have analyzed three different parameters:

– LR (Likelihood-Ratio) test: This test compares two can-
didate distributions. The result is positive if the data are
more similar to the first distribution and is negative if the
data are more similar to the second one. The significance
degree of the result (p-value) refers to the null hypothesis
that the two distributions are the same.

– KS (Kolmogorov-Smirnov) test. This tool measures the
distance between a candidate distribution and the em-
pirical data. In our case, it is used to compare a sample
with our reference distribution, that is a power law.

Table II shows the results obtained for the multipliers we
selected.

Hence, in light of the results in Table II, we have decided
to use the configuration 0.2 - 1 - 1.8. This set of multipliers is
suitable because it returns the highest likelihood ratio and, in
particular, a power-law exponent α equal to 2.64, with xmin
equal to 4. A distribution is called scale-free if α < 3.

VI. MODELING METHODOLOGY

In this section, we present the details of the epidemic
diffusion model used in the simulations, the main hypotheses
we made to model Covid-19, and the methodology we propose
to model the lockdown phase and the mask-wearing protective
effects on people.

A. Epidemic diffusion model
We have implemented a Covid-19 diffusion model starting

from the compartments of the SEIR mathematical model
(Susceptible-Exposed-Infective-Recovered) [1]. This model
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Fig. 2. Complementary cumulative density function according to interaction multipliers: power-law fit in red, empirical data in blue.

represents one of the most widely adopted mathematical
models for characterizing epidemic dynamics and predicting
possible contagion scenarios. It is based on a series of dynamic
ordinary differential equations that consider the amount of
the population subject to contagion, the trend over time of
the number of individuals who recover after infection and
of the casualties. A limit of the SEIR model is its coarse-
grain nature with respect to modeling individual behaviors. In
light of this, we have used the same compartments provided
by SEIR, extended by the addition of an intermediate one
between Infective and Recovered, specific of the Covid-19
context, named Positive. In the real-world data (actual data),
this compartment identifies people officially recognized as
positive to the virus after undergoing a throat-swab test.

This distinction has an impact on the definition of behaviors:
we suppose that generic positive will be quarantined to prevent
the infection spread, while an infected patient may be asymp-
tomatic and unaware of her/his condition and lead a normal
life with its typical number of social interactions. Finally,
the difference between Infected and Positive is fundamental
for analyzing the epidemic dynamics, especially during the
first wave, when the possibility of testing large amounts of
people was limited. This has probably introduced relevant
estimation errors in the actual number of infected people into
the official data. Since our work is agent-based, we have not
used a differential-equation model but we have defined the
individual behaviors of the actors. To describe the pathogen
spread dynamics, we have assumed that a subject can move
through various phases when he/she contracts the disease.
Such phases represent the virus’ life cycle inside the human
body. At the beginning, all subjects are in a susceptibility
stage. In this stage, every subject can be infected by another
one who is contagious. An individual who is infected moves
from a susceptibility phase to an incubation phase and remains
in this stage for a certain time period, then moves into an
infection stage. A subject in this condition can infect other
people. When this phase ends, the person becomes positive.
After a certain time, a positive subject will either heal or die.
There is no death probability, but deaths follow the real death
curve trend in Lombardy. When an individual heals, it cannot
be infected any more. In particular, the incubation phase lasts
from 7 to 14 days, the infectious phase from 3 to 7 days,
and the positive phase from 14 to 30 days [36] [37]. Figure 3
shows a diagram representing a generic infection cycle.

Moreover, people’s susceptibility is different according to
their age [34]: For the age range (0-14) it is 31%, for age

range (15-64) it is 47%, and for age range (65+) it is 100%.

B. Lockdown modeling
On 8 March 2020, the Italian government decided to apply

some containment measures to the whole national territory to
stop the COVID-19 spread. We will refer to this condition as
“Lockdown”. Additionally, these measures included:

– closing non-essential activities,
– forbidding crowding,
– forbidding travel, unless justified by proven needs.

In this phase, there was a significant decrease in the overall
social interactions. For most people, the reduction was ho-
mogeneous, because they could meet only family members
or cohabitants, except for the few times they needed to buy
essential goods, e.g., food. To model the lockdown condition,
we have relied upon the information shown in Table I. We
computed the average number of interactions allowed for each
age range, assuming the Home interactions to be the ones with
habitual contacts.

However, a subset of people in working age were still
allowed to go to their job site as a requirement of their job
(see Table III). Those essential workers experienced a different
decrease in interactions. Indeed, to model this different condi-
tion, we computed a different average number of interactions
for the essential workers that takes into account the probability
of meeting people at home, at work, and on public transports,
as reported in Table I.

Age Essential activities
20-29 14.6 %
30-39 25.4 %
40-49 28.7 %
50-59 22.7 %
60+ 8.5 %

TABLE III
PERCENTAGE OF THE ITALIAN POPULATION, BY AGE GROUPS, THAT

WAS ALLOWED TO WORK AT THEIR USUAL WORK SITE DURING THE

LOCKDOWN PHASE AS A REQUIREMENT OF THEIR JOB [38]

.

C. Protective devices
During Lockdown, people started to wear protective devices

(e.g., surgical masks). According to the study of [39], about
83.81% of the Italian population used a protective mask during
the Lockdown period, with a 2.23% approximation error.
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Fig. 3. Infection cycle

In our model, when the simulation starts, we define which
subjects will use a mask during the Lockdown and which
ones will not. The masks’ effectiveness data are based on the
study performed by [40]. Three different masks types were
considered: cloth, surgical, and N95 masks. A mask’s inward
efficiency could vary from 20% to 80% for cloth, 70%-90%
for surgical and above 95% for N95 masks. Moreover, outward
efficiency could range from 0 to 80% for cloth mask, while
surgical and N95 masks are 50-90% and 70-100% outwardly
protective, respectively. The effectiveness of a generic mask
is assumed to be equal to the average effectiveness of the
three previous types. The effectiveness reduces the virus
transmission probability by 62 to 90% inwardly and by 40%
to 90% outwardly.

D. Transmission probability and contagion modeling

The transmission probability, in this model, represents the
probability to be in a condition that supports the virus spread.
In theory, what has been asserted is that the spread is favored
when people are in a poorly ventilated closed place and less
than one meter away from an infected person for more than 15
minutes. Modeling this situation is not trivial, thus we decided
to model the contagion with a transmission probability that is
related and specific to the virus, named Covid-19 Transmission
Probability (CTV). This choice is common in several modeling
approaches. However, currently, in the literature there are
no references to this parameter. In light of this, we decided
to estimate this parameter empirically through a data-driven
approach that will be further described in Section VII-B. The
simulation of the contagion mechanism is stochastic and based
on all the probabilities mentioned in Section V. Each actor is
described by a transmission probability (TP) that represents
its ability of transmitting its state to another actor. Practically,
the only actors that can transfer their state are the ones that
are in the infectious or positive stages. The computation of
this probability is described in Figure 4 where the general
transmission probability of Covid-19 and the actor’s outward
mask protection probability (Poutward) are considered. The
Contagion probability (CP) computation for a susceptible actor
A who meets an infectious actor B is detailed also in Figure 4,
where: TPA is actor A’s transmission probability and Pinward
is actor A’s inward mask protection probability. Finally, the
contagion happens by randomly sampling from a uniform
distribution considering the Contagion probability and actor
A’s susceptibility.

Actor B - InfectiousActor A - Susceptible

CP = TPB
  (1 - Pinward A )

TPA
  = CTV  (1- Poutward A ) TPB

  = CTV  (1- Poutward B )

Fig. 4. Covid-19 transmission model among the agents

VII. EXPERIMENTATION FOR THE LOMBARDY REGION

In order to evaluate our simulator and the social interactions
model, we considered as a use-case the two Covid-19
outbreaks in Lombardy (Italy) during 2020. In particular,
we were mainly interested in modeling the first wave
from January to April 2020. Successively, the second wave
(August-December 2020) was taken in consideration to
validate the model and its parameters.

A. Initial conditions
When the simulation starts, all agents are in the suscepti-

bility status. However, this way no one can start transmitting
the contagion. Thus, at the beginning of the simulation, more
specifically when the population is created, some actors are
randomly chosen and start directly from the incubation phase.
Moreover, these people are selected such that they respect
the real positives’ number between 20 and 29 February in
Lombardy on a provincial basis.

B. Covid-19 Transmission Probability estimation
We estimated Covid-19 transmission probability with a

random search over the probability space with a data-driven
procedure. We estimated this value in two different scenarios.
The first one corresponds to the early stage of the pandemic
in the period before the national lockdown, when people were
not using protective devices. In particular, we considered a key
date, March 8th, 2020, that represents the last day before the
lockdown.

The transmission probability parameter is a positive real
number that ranges between 0 and 1. Our goal was to
find a value such that, in the simulation without lockdown
and without the usage of protective devices, the number of
positives would be close to the real data until March 8th, 2020.
The value satisfying these hypotheses in the first scenario was
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0.3. The simulation result is a random process, therefore an
average over five runs was computed for every value we tested.
Results are summarized in figure 5.
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Fig. 5. Positive people on March 8th, 2020 vs. transmission rates

The second scenario we took into account is the second
outbreak, occurred at the end of summer (second wave), that
is deeply analyzed in section VIII-B. This second estimation
was necessary because real-data in that period are more robust
and significant because of the higher number of Covid-19 tests
performed each day in Italy.

VIII. RESULTS AND DISCUSSION

In this section, we present the results we obtained simulating
different scenarios and considering, for each of them, results
averaged over ten different runs since the entire simulation
process is stochastic in most of its steps. For each case, we
assessed the simulation quality using the Pearson correlation
coefficient and the root mean square error (RMSE) between
simulated data and real data from the Italian government [32].
The Pearson correlation coefficient expresses a linear rela-
tionship between two statistical variables. This value ranges
from −1 to 1, where 1 corresponds to a strong positive linear
correlation and −1 corresponds to a strong negative linear
correlation. In our case, it explains how much the simulated
contagion curve trend is similar to the real one. The RMSE,
instead, is the average over all samples of the squared error
between the predicted values and those observed in the real
data. Figure 6 shows the results of the simulation in the early-
stage of the pandemic between January and April 2020 with
the Covid-10 Transmission probability (CTP) equal to 0.3.
The blue curve represents the real contagion data, while the
red curve represents the simulated ones. The values of the
Pearson correlation coefficient and RMSE referred to Figure 6
until April 30th are 0.992 for Pearson correlation and 38818
for the RMSE. The total number of positives obtained using
the simulator on that date, exceeds by about 53,000 units the
number of actual positives.

A. Comparison with national screening activities
The results previously obtained seem to support our thesis

and hypotheses. However, the comparison with the serolog-
ical investigations made by ISTAT [43] revealed a different
scenario. The study about the seroprevalence showed that, on
July 15th, the actual number of cases in Lombardy was about
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Fig. 6. Simulation results compared to real data with starting assump-
tions (CTP=0.3) - Positives’ incremental representation

eight time as large as the data from Covid-19 tests, more
specifically 7.92 times larger. This study, through the national
screening campaign, showed that about 7.5% of the Lombard
population had developed antibodies for the novel Corona
virus. Lombardy’s population amounts to about 10,060,000
people. 7.5% of the population amounts to about 754,500
people. On the other hand, the number of positive cases
identified by throat swab on July 15th was only 95,236. Hence,
the numerical ratio is 7.92. This means that, most likely, the
data gathered in the spring were underestimated. Assuming
that this ratio is constant over time, we can retro-project this
data and observe how many positives can be obtained. The
resulting value can be used as a comparison for the model.

B. Second wave: parameters fine tuning

We have already highlighted that, most likely, the data
gathered in the first epidemic wave were inaccurate, because
the country found itself in a situation that it was not able to
manage. Moreover, there was no contagion tracking system nor
was a number of throat swabs suitable for correctly tracking
infections available. Instead, when the second wave hit Italy,
there was a larger availability of tools needed to face and
analyze the epidemiological data more correctly.

In a first analysis, we used the model previously obtained
and validated it, to verify if the simulated data properly
followed the actual data. The time window used covered
a temporal period from September 15th, 2020 to October
30th2020. Obviously, the initial conditions were changed to
make the simulator compatible with the autumn data.

The values obtained greatly underestimated the actual data.
Figure 7 compares the simulated data (red curve) and the
actual data (blue curve). In this case, the Pearson correlation
coefficient was 0.988 and the RMSE 27415.

Due to the large estimation error, we decided to estimate
again the transmission probability parameter, using the autumn
data. We searched for a value that correctly followed the
contagion curve in the previously specified time period. The
best value that satisfied our hypothesis was 0.53 (Figure 8). In
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this final case, the Pearson correlation coefficient was 0.996
while the RMSE was 6405.
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C. Final Projections
In light of the considerations and the results reported in

the previous section, we decided to simulate the spring case
again using the new transmission probability value. We also
considered the data obtained from the comparison with the
national screening activity. The whole process is represented
graphically in Figure 9. The blue curve represents the actual
data, the green curve represents the serological data projection
on the real data, and the red curve represents the simulated
data with transmission probability equal to 0.53. The second
estimate of the Covid-19 Transmission Probability using the
autumn data was confirmed to be a better choice to validate our
model. Indeed, the results we obtained simulating the early-
stage are in line with the scientific observations based on the
seroprevalence study. The difference with the serological data
projection on April 30th, corresponding to the last simulation

day, is only 82,369 units. Seroprevalence analysis is much
more reliable than the data collected during the months of
March and April, because it also takes into account asymp-
tomatic people, which is a very crucial factor. We believe that
the matching data confirm the validity of our hypothesis and
of our simulation model. Considering the cumulative curves
in Figure 9, for the comparison between the simulated and
real data, the Pearson correlation coeffcient is 0.996 and the
RMSE is 249529. In the comparison between the simulated
and serological data the Pearson correlation coefficient is again
0.996, while the RMSE is 56009.
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D. Social interactions changes due to the Lockdown

As reported, modeling the lockdown phase involves a gen-
eral reduction of social interactions, although some people
were allowed to work as essential workers. We analyzed the
dynamic changes of social contacts during the Lockdown;
in particular, we analyzed the likelihood ratio of the degree
distribution in different time snapshots to understand what
kind of distribution could better describe this condition. In
particular, we considered two candidate distribution pairs:
power-law and log-normal, log-normal and exponential. Fig-
ure 10 shows the CCDF’s trends during the Lockdown. We
measured the likelihood ratio among the empirical data and the
candidate distributions. With a p-value always virtually equal
to 0, we found that, during the lockdown period, the social
interactions distribution follows mostly a log-normal trend.
This modification of the degree distribution clearly describes
the effects of lockdown measures on the social contact pattern,
where the reduction of the number of subjects’ interactions and
gathering drastically reduces the presence of super-spreader
actors in the populations. This modification has a clear impact
on the epidemic process.

IX. EVALUATION OF THE PROPOSED SOCIAL MODELING
APPROACH

Modeling social interactions according to a Power law
represents one of the key contributions of our approach.
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Fig. 10. Complementary cumulative density function during the lock-
down period - Power-law fit in red, empirical data in blue

As previously reported, we modeled the contact network
with a power-law distribution because of its property reflected
in the resulting heterogeneity of people interactions. In order
to assess the validity of our choice, we tested our simulator
using a random network instead of the power-law for social
modeling. In this way, we built a Null model that matches all
other features of our model except for the contact network,
replaced by the random one. With such a model, in the
simulation process the agents do not interact with a different
number of contacts according to their social habits, but all of
them always meet the average number of contacts obtained
as the weighted average of the data in Table I that is equal
to 19. We then simulated the spring case again with different
TP values: 0.1, 0.3, 0.53 (equal to our model) to ensure a
fair search of the TP parameter. Every outcome was averaged
over five tests. Considering the cumulative curves in Figure
11 and the data reported in Table IV, we can assert that
our power-law based approach to social modeling gives an
important contribution to model the Covid-19 spread since it is
more reliable both in terms of RMSE and Pearson correlation
coefficient considering the Serological real data.
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Fig. 11. Simulation results without power-law based social modeling
with different transmission probability (0.1-0.3- 0.53). Spring case -
Positives’ incremental representation

X. COMPARISON WITH OTHER STATE-OF-ART MODELS

In order to validate our Covid-19 model we compared with
different SEIR models we already presented in Section II. The
comparison is presented in Figure 12. For each SEIR model

we used the same starting days as for our model (February
20th − 29th, 2020). In particular, we used a traditional SEIR
Model which does not model the lockdown, mask-wearing
and restrictions measures in general. We also tested two more
complex SEIR models: a. the one from Riccio et al. [6] that has
been used for the Lombardy context taking into account the
transmission rate of asymptomatic subjects, a piece-wise R0
to model the lockdown in Lombardy, and another parameter
weighting the effect of the policies adopted in Italy; b. the
model from Godio et al. [8] that introduces a SEIR model
optimized using a Swarm Intelligence algorithm and based on
an exponentially decreasing R0 function that takes into account
the adoption-rate of masks, the lockdown, and the number of
deaths. The results for March-April 2021 show that all the
SEIR models we considered produce less accurate prediction
of Covid-19 spread in Lombardy (Serological Data) in terms
of RMSE and Pearson Correlation (Table V).
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Fig. 12. Comparison among our model, the Real data, the Serological
data and the SEIR models. Spring case - Incremental positives repre-
sentation

RMSE Pearson Correlation
Our model 56009 0.996

Null model with TP = 0.1 346040 0.956
Null model with TP = 0.3 139227 0.990

Null model with TP = 0.53 481493 0.994

TABLE IV
COMPARISON OF OUR MODEL TO THE NULL MODELS IN TERMS OF

ROOT MEAN SQUARED ERROR (RMSE) AND PEARSON CORRELATION

RMSE Pearson
Our model - Serological 56009 0.996
Riccio et al. - Serological 270060 0.859
Godio et al. - Serological 318034 0.713
SEIR - Serological 269197 0.769

TABLE V
COMPARISON AMONG OUR MODEL AND THE SEIR MODELS IN TERMS

OF ROOT MEAN SQUARED ERROR (RMSE) AND PEARSON

CORRELATION
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XI. CONCLUSION

We presented a framework that aims to combine a large-
scale epidemic scenario with a fine-grained simulation level
that considers millions of single individuals. This result is
achieved by an efficient multi-agent approach implemented on
the HPC facility at the University of Parma and a novel method
of individuals’ social modeling. Moreover, we analyzed the
outbreaks of Covid-19 in Lombardy (Italy) during 2020 as a
use case.

We also proposed a model of Covid-19 spread that involves
demographic data, lockdown policies, protective devices, and a
social interactions network model. We validated our simulation
architecture using real data, making a comparison with the
most recent results of the seroprevalence study in Italy. Finally,
we contributed to estimate a transmission probability for
Covid-19 that can be useful for future work in this field. The
results have highlighted the quality of our model that is able to
predict a number of infectious people that is close to the pro-
jection of the seroprevalence on the population of Lombardy.
Moreover, they confirm that our fine-grained simulation and
hypotheses could be used in a real context to simulate the
epidemic scenario and to support decisions about lockdown
policies. Finally, as expected, our results are in line with the
widespread opinion that, during the Spring 2020 outbreak,
the number of real cases in Northern Italy were probably
underestimated due to the problems with performing massive
tests and the presence of asymptomatic patients. Future work
will be aimed at improving this model, considering different
scenarios, scaling to larger scenarios, and fine-tuning it for
social modeling when more results are available.
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R. C. Silva, “Covid-abs: An agent-based model of covid-19 epidemic to
simulate health and economic effects of social distancing interventions,”
Chaos, Solitons & Fractals, vol. 139, p. 110088, 2020.

[20] R. Hinch, W. J. Probert, A. Nurtay, M. Kendall, C. Wymatt, M. Hall,
K. Lythgoe, A. B. Cruz, L. Zhao, A. Stewart et al., “Openabm-covid19-
an agent-based model for non-pharmaceutical interventions against
covid-19 including contact tracing,” medRxiv, 2020.
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