Hydrocarbon pollution threatens aquatic and terrestrial ecosystems globally, but soil fauna in oil-polluted soils has been insufficiently studied. In this research, soil hydrocarbon toxicity was investigated in two natural oil seepage soils in Val D'Agri (Italy) using two different approaches: (i) toxicological tests with Folsomia candida (Collembola) and Eisenia fetida (Oligochaeta) and (ii) analysis of abundance and composition of micro- and meso-fauna. Soil sampling was done along 20 m-transepts starting from the natural oil seepages. Toxicological testing revealed that no exemplars of F. candida survived, whereas specimens of E. fetida not only survived but also increased in weight in soils with higher PAH concentrations, although no reproduction was observed. Analysis on microfauna showed that Nematoda was the most abundant group, with distance from seepages not affecting its abundance. Arthropoda results showed that Acarina, Collembola and Diptera larvae represented the most abundant taxa. The highest divergence in community composition was found between soils situated near seepages and at 5 m and 10 m distance. Arthropoda taxa numbers, total abundance and Acarina were lower in soils with high PAH concentration, while Diptera larvae were not significantly affected. Earthworms, together with Nematoda and Diptera larvae, could therefore represent ideal candidates in PAH degradation studies.

Natural surface hydrocarbons and soil faunal biodiversity: A bioremediation perspective / Remelli, S.; Rizzo, P.; Celico, F.; Menta, C.. - In: WATER. - ISSN 2073-4441. - 12:9(2020), p. 2358. [10.3390/W12092358]

Natural surface hydrocarbons and soil faunal biodiversity: A bioremediation perspective

Remelli S.
;
Rizzo P.;Celico F.;Menta C.
2020-01-01

Abstract

Hydrocarbon pollution threatens aquatic and terrestrial ecosystems globally, but soil fauna in oil-polluted soils has been insufficiently studied. In this research, soil hydrocarbon toxicity was investigated in two natural oil seepage soils in Val D'Agri (Italy) using two different approaches: (i) toxicological tests with Folsomia candida (Collembola) and Eisenia fetida (Oligochaeta) and (ii) analysis of abundance and composition of micro- and meso-fauna. Soil sampling was done along 20 m-transepts starting from the natural oil seepages. Toxicological testing revealed that no exemplars of F. candida survived, whereas specimens of E. fetida not only survived but also increased in weight in soils with higher PAH concentrations, although no reproduction was observed. Analysis on microfauna showed that Nematoda was the most abundant group, with distance from seepages not affecting its abundance. Arthropoda results showed that Acarina, Collembola and Diptera larvae represented the most abundant taxa. The highest divergence in community composition was found between soils situated near seepages and at 5 m and 10 m distance. Arthropoda taxa numbers, total abundance and Acarina were lower in soils with high PAH concentration, while Diptera larvae were not significantly affected. Earthworms, together with Nematoda and Diptera larvae, could therefore represent ideal candidates in PAH degradation studies.
2020
Natural surface hydrocarbons and soil faunal biodiversity: A bioremediation perspective / Remelli, S.; Rizzo, P.; Celico, F.; Menta, C.. - In: WATER. - ISSN 2073-4441. - 12:9(2020), p. 2358. [10.3390/W12092358]
File in questo prodotto:
File Dimensione Formato  
Remelli et al., 2020 Water.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 3.09 MB
Formato Adobe PDF
3.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2880443
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact