Turmeric (Curcuma longa L.) is the only edible plant recognized as a dietary source of curcuminoids, among which curcumin, demethoxycurcumin (DMC) and bis-demethoxycurcumin (Bis-DMC) are the most representative ones. Curcumin shows a very low systemic bioavailability and for this reason, several technologies have been adopted to improve it. These technologies generally improve curcuminoid absorption in the small intestine, however, no data are available about the effect of curcuminoid formulation on colonic biotransformation. The present study aims at investigating the human colonic metabolism of curcuminoids, prepared with two different technologies, using an in vitro model. Unformulated curcuminoid and lecithin-curcuminoid botanical extracts were fermented using an in vitro fecal model and colonic catabolites were identified and quantified by uHPLC-MSn. Native compounds, mainly curcumin, DMC and bis-DMC, were metabolized by colonic microbiota within the 24-h incubation. The degradation of curcuminoids led to the formation of specific curcuminoid metabolites, among which higher concentrations of bis(demethyl)-tetrahydrocurcumin and bis(demethyl)-hexahydrocurcumin were found after lecithin-extract fermentation compared to the concentration detected after unformulated extract. In conclusion, both curcumin-based botanical extracts can be considered important sources of curcuminoids, although the lecithin-formulated extract led to a higher production of curcuminoid catabolites. Moreover, a new curcuminoid catabolite, namely bis(demethyl)-hexahydrocurcumin, has been putatively identified, opening new perspectives in the investigation of curcuminoid bioavailability and their potential metabolite bioactivity.

The effect of formulation of curcuminoids on their metabolism by human colonic microbiota / Bresciani, L.; Favari, C.; Calani, L.; Francinelli, V.; Riva, A.; Petrangolini, G.; Allegrini, P.; Mena, P.; Del Rio, D.. - In: MOLECULES. - ISSN 1420-3049. - 25:4(2020), p. 940. [10.3390/molecules25040940]

The effect of formulation of curcuminoids on their metabolism by human colonic microbiota

Bresciani L.;Favari C.;Calani L.;Francinelli V.;Mena P.;Del Rio D.
2020-01-01

Abstract

Turmeric (Curcuma longa L.) is the only edible plant recognized as a dietary source of curcuminoids, among which curcumin, demethoxycurcumin (DMC) and bis-demethoxycurcumin (Bis-DMC) are the most representative ones. Curcumin shows a very low systemic bioavailability and for this reason, several technologies have been adopted to improve it. These technologies generally improve curcuminoid absorption in the small intestine, however, no data are available about the effect of curcuminoid formulation on colonic biotransformation. The present study aims at investigating the human colonic metabolism of curcuminoids, prepared with two different technologies, using an in vitro model. Unformulated curcuminoid and lecithin-curcuminoid botanical extracts were fermented using an in vitro fecal model and colonic catabolites were identified and quantified by uHPLC-MSn. Native compounds, mainly curcumin, DMC and bis-DMC, were metabolized by colonic microbiota within the 24-h incubation. The degradation of curcuminoids led to the formation of specific curcuminoid metabolites, among which higher concentrations of bis(demethyl)-tetrahydrocurcumin and bis(demethyl)-hexahydrocurcumin were found after lecithin-extract fermentation compared to the concentration detected after unformulated extract. In conclusion, both curcumin-based botanical extracts can be considered important sources of curcuminoids, although the lecithin-formulated extract led to a higher production of curcuminoid catabolites. Moreover, a new curcuminoid catabolite, namely bis(demethyl)-hexahydrocurcumin, has been putatively identified, opening new perspectives in the investigation of curcuminoid bioavailability and their potential metabolite bioactivity.
2020
The effect of formulation of curcuminoids on their metabolism by human colonic microbiota / Bresciani, L.; Favari, C.; Calani, L.; Francinelli, V.; Riva, A.; Petrangolini, G.; Allegrini, P.; Mena, P.; Del Rio, D.. - In: MOLECULES. - ISSN 1420-3049. - 25:4(2020), p. 940. [10.3390/molecules25040940]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2873394
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 23
social impact