Quantum-resonance ratchets have been realized over the last ten years for the production of directed currents of atoms. These non-dissipative systems are based on the interaction of a Bose-Einstein condensate with an optical standing wave potential to produce a current of atoms in momentum space. In this paper we provide a review of the important features of these ratchets with a particular emphasis on their optimization using more complex initial states. We also examine their stability close to resonance conditions of the kicking. Finally we discuss the way in which these ratchets may pave the way for applications in quantum (random) walks and matter-wave interferometry.

Hamiltonian Ratchets with Ultra-Cold Atoms / Ni, Jiating; Dadras, Siamak; Lam, Wa Kun; Shrestha, Rajendra K.; Sadgrove, Mark; Wimberger, Sandro Marcel; Summy, Gil S.. - In: ANNALEN DER PHYSIK. - ISSN 0003-3804. - 529/8:8(2017), p. 1600335. [10.1002/andp.201600335]

Hamiltonian Ratchets with Ultra-Cold Atoms

WIMBERGER, Sandro Marcel;
2017-01-01

Abstract

Quantum-resonance ratchets have been realized over the last ten years for the production of directed currents of atoms. These non-dissipative systems are based on the interaction of a Bose-Einstein condensate with an optical standing wave potential to produce a current of atoms in momentum space. In this paper we provide a review of the important features of these ratchets with a particular emphasis on their optimization using more complex initial states. We also examine their stability close to resonance conditions of the kicking. Finally we discuss the way in which these ratchets may pave the way for applications in quantum (random) walks and matter-wave interferometry.
2017
Hamiltonian Ratchets with Ultra-Cold Atoms / Ni, Jiating; Dadras, Siamak; Lam, Wa Kun; Shrestha, Rajendra K.; Sadgrove, Mark; Wimberger, Sandro Marcel; Summy, Gil S.. - In: ANNALEN DER PHYSIK. - ISSN 0003-3804. - 529/8:8(2017), p. 1600335. [10.1002/andp.201600335]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2830107
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 15
social impact