The ability of hyperglycaemia to enhance glucose uptake was evaluated in 9 non-insulin-dependent (NIDDM), 7 insulin-dependent (IDDM) diabetic subjects, and in 6 young and 9 older normal volunteers. Following overnight insulin-induced euglycaemia, a sequential three-step hyperglycaemic clamp (+ 2.8 + 5.6, and + 11.2 mmol/l above baseline) was performed with somatostatin plus replacing doses of basal insulin and glucagon, 3-3H-glucose infusion and indirect calorimetry. In the control subjects as a whole, glucose disposal increased at each hyperglycaemic step (13.1 +/- 0.6, 15.7 +/- 0.7, and 26.3 +/- 1.1 mumol/kg.min). In NIDDM (10.5 +/- 0.2, 12.1 +/- 1.0, and 17.5 +/- 1.1 mumol/kg.min), and IDDM (11.2 +/- 0.8, 12.9 +/- 1.0, and 15.6 +/- 1.1 mumol/kg.min) glucose disposal was lower during all three steps (p < 0.05-0.005). Hepatic glucose production declined proportionally to plasma glucose concentration to a similar extent in all four groups of patients. In control subjects, hyperglycaemia stimulated glucose oxidation (+4.4 +/- 0.7 mumol/kg.min) only at +11.2 mmol/l (p < 0.05), while non-oxidative glucose metabolism increased at each hyperglycaemic step (+3.1 +/- 0.7; +3.5 +/- 0.9, and +10.8 +/- 1.7 mumol/kg.min; all p < 0.05). In diabetic patients, no increment in glucose oxidation was elicited even at the highest hyperglycaemic plateau (IDDM = +0.5 +/- 1.5; NIDDM = +0.2 +/- 0.6 mumol/kg.min) and non-oxidative glucose metabolism was hampered (IDDM = +1.8 +/- 1.5, +3.1 +/- 1.7, and +4.3 +/- 1.8; NIDDM = +0.7 +/- 0.6, 2.1 +/- 0.9, and +7.0 +/- 0.8 mumol/kg.min; p < 0.05-0.005). Blood lactate concentration increased and plasma non-esterified fatty acid (NEFA) fell in control (p < 0.05) but not in diabetic subjects. The increments in blood lactate were correlated with the increase in non-oxidative glucose disposal and with the decrease in plasma NEFA. In conclusion: 1) the ability of hyperglycaemia to promote glucose disposal is impaired in NIDDM and IDDM; 2) stimulation of glucose oxidation and non-oxidative glucose metabolism accounts for glucose disposal; 3) both pathways of glucose metabolism are impaired in diabetic patients; 4) impaired ability of hyperglycaemia to suppress plasma NEFA is present in these patients. These results suggest that glucose resistance, that is the ability of glucose itself to promote glucose utilization, is impaired in both IDDM and NIDDM patients.

Studies on the mass action effect of glucose in NIDDM and IDDM: evidence for glucose resistance / Del, Prato; M., Matsuda; D. C., Simonson; L. C., Groop; P., Sheehan; F., Leonetti; Bonadonna, Riccardo; R. A., Defronzo. - In: DIABETOLOGIA. - ISSN 0012-186X. - 40:(1997), pp. 687-697.

Studies on the mass action effect of glucose in NIDDM and IDDM: evidence for glucose resistance

BONADONNA, Riccardo;
1997-01-01

Abstract

The ability of hyperglycaemia to enhance glucose uptake was evaluated in 9 non-insulin-dependent (NIDDM), 7 insulin-dependent (IDDM) diabetic subjects, and in 6 young and 9 older normal volunteers. Following overnight insulin-induced euglycaemia, a sequential three-step hyperglycaemic clamp (+ 2.8 + 5.6, and + 11.2 mmol/l above baseline) was performed with somatostatin plus replacing doses of basal insulin and glucagon, 3-3H-glucose infusion and indirect calorimetry. In the control subjects as a whole, glucose disposal increased at each hyperglycaemic step (13.1 +/- 0.6, 15.7 +/- 0.7, and 26.3 +/- 1.1 mumol/kg.min). In NIDDM (10.5 +/- 0.2, 12.1 +/- 1.0, and 17.5 +/- 1.1 mumol/kg.min), and IDDM (11.2 +/- 0.8, 12.9 +/- 1.0, and 15.6 +/- 1.1 mumol/kg.min) glucose disposal was lower during all three steps (p < 0.05-0.005). Hepatic glucose production declined proportionally to plasma glucose concentration to a similar extent in all four groups of patients. In control subjects, hyperglycaemia stimulated glucose oxidation (+4.4 +/- 0.7 mumol/kg.min) only at +11.2 mmol/l (p < 0.05), while non-oxidative glucose metabolism increased at each hyperglycaemic step (+3.1 +/- 0.7; +3.5 +/- 0.9, and +10.8 +/- 1.7 mumol/kg.min; all p < 0.05). In diabetic patients, no increment in glucose oxidation was elicited even at the highest hyperglycaemic plateau (IDDM = +0.5 +/- 1.5; NIDDM = +0.2 +/- 0.6 mumol/kg.min) and non-oxidative glucose metabolism was hampered (IDDM = +1.8 +/- 1.5, +3.1 +/- 1.7, and +4.3 +/- 1.8; NIDDM = +0.7 +/- 0.6, 2.1 +/- 0.9, and +7.0 +/- 0.8 mumol/kg.min; p < 0.05-0.005). Blood lactate concentration increased and plasma non-esterified fatty acid (NEFA) fell in control (p < 0.05) but not in diabetic subjects. The increments in blood lactate were correlated with the increase in non-oxidative glucose disposal and with the decrease in plasma NEFA. In conclusion: 1) the ability of hyperglycaemia to promote glucose disposal is impaired in NIDDM and IDDM; 2) stimulation of glucose oxidation and non-oxidative glucose metabolism accounts for glucose disposal; 3) both pathways of glucose metabolism are impaired in diabetic patients; 4) impaired ability of hyperglycaemia to suppress plasma NEFA is present in these patients. These results suggest that glucose resistance, that is the ability of glucose itself to promote glucose utilization, is impaired in both IDDM and NIDDM patients.
1997
Studies on the mass action effect of glucose in NIDDM and IDDM: evidence for glucose resistance / Del, Prato; M., Matsuda; D. C., Simonson; L. C., Groop; P., Sheehan; F., Leonetti; Bonadonna, Riccardo; R. A., Defronzo. - In: DIABETOLOGIA. - ISSN 0012-186X. - 40:(1997), pp. 687-697.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2762606
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 85
  • ???jsp.display-item.citation.isi??? 75
social impact