Zirconia nanoparticles were synthesized by a sol–gel route and dispersed into an epoxy base for struc- tural adhesives. Nanoparticles were used as-synthesized or after calcination. Moreover, the effect of silane functionalization was also investigated. According to preliminary tensile mechanical tests on bulk nanocom- posite samples, calcined and untreated zirconia nanoparticles were selected for the preparation of adhesives with various filler contents.The glass transition temperature increased up to a filler content of 1 vol% and then decreased, probably due to the concurrent and contrasting effects of chain blocking and reduction of the crosslinking degree. Also tensile modulus, stress at break and fracture toughness of bulk adhesives samples were positively affected by the presence of an optimal amount of zirconia nanoparticles.Mechanical tests on single lap aluminium bonded joints indicated that zirconia nanoparticles led to rele- vant enhancements of the shear strength of the joints. In particular, the shear strength increased by about 60% for an optimal filler content of 1 vol%, and an adhesive failure mechanism was evidenced for all the tested specimens. Concurrently, a significant decrease of the equilibrium contact angle with water was observed for adhesives containing zirconia nanoparticles. It can therefore be concluded that the addition of zirconia nanoparticles can effectively improve epoxy adhesives, both by increasing their mechanical properties and by enhancing the interfacial wettability with an aluminium substrate.

Improving Epoxy Adhesives with Zirconia Nanoparticles / A., Dorigato; A., Pegoretti; Bondioli, Federica; M., Messori. - In: COMPOSITE INTERFACES. - ISSN 0927-6440. - 17:(2010), pp. 873-892.

Improving Epoxy Adhesives with Zirconia Nanoparticles

BONDIOLI, Federica;
2010-01-01

Abstract

Zirconia nanoparticles were synthesized by a sol–gel route and dispersed into an epoxy base for struc- tural adhesives. Nanoparticles were used as-synthesized or after calcination. Moreover, the effect of silane functionalization was also investigated. According to preliminary tensile mechanical tests on bulk nanocom- posite samples, calcined and untreated zirconia nanoparticles were selected for the preparation of adhesives with various filler contents.The glass transition temperature increased up to a filler content of 1 vol% and then decreased, probably due to the concurrent and contrasting effects of chain blocking and reduction of the crosslinking degree. Also tensile modulus, stress at break and fracture toughness of bulk adhesives samples were positively affected by the presence of an optimal amount of zirconia nanoparticles.Mechanical tests on single lap aluminium bonded joints indicated that zirconia nanoparticles led to rele- vant enhancements of the shear strength of the joints. In particular, the shear strength increased by about 60% for an optimal filler content of 1 vol%, and an adhesive failure mechanism was evidenced for all the tested specimens. Concurrently, a significant decrease of the equilibrium contact angle with water was observed for adhesives containing zirconia nanoparticles. It can therefore be concluded that the addition of zirconia nanoparticles can effectively improve epoxy adhesives, both by increasing their mechanical properties and by enhancing the interfacial wettability with an aluminium substrate.
2010
Improving Epoxy Adhesives with Zirconia Nanoparticles / A., Dorigato; A., Pegoretti; Bondioli, Federica; M., Messori. - In: COMPOSITE INTERFACES. - ISSN 0927-6440. - 17:(2010), pp. 873-892.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2673142
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 47
social impact