In chronic obstructive airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD), changes in bronchial microvasculature are present in response to inflammatory stimuli. Vascular changes may significantly contribute to airway wall remodelling. Angiogenesis and vascular leakage are prevalent in asthma, while vasodilation and vascular leakage dominate in COPD. An endothelial dysfunction may be present both in asthma and in COPD. Vascular changes may occur simultaneously with the thickening of the airway wall and the narrowing of the bronchial lumen. Consequently, pharmacological control of bronchial vascular remodelling may be crucial for symptom control in asthma and COPD. In asthmatic airways, inhaled steroids can downregulate vascular remodelling by acting on proangiogenic factors. Additionally, studies on combination therapy with long-acting β2-agonists and inhaled steroids have provided evidence of a possible synergistic action on components of vascular remodelling in asthma. In COPD, there is less experimental evidence on the effect of inhaled steroids on airway microvascular changes. Importantly, vascular endothelial growth factor (VEGF), the most specific growth factor for vascular endothelium, is crucially involved in the pathophysiology of airway vascular remodelling, both in asthma and COPD. The inhibition of VEGF and its receptor may be useful in the treatment of the vascular changes in the airway wall.

Role of Inhaled Steroids in Vascular Airway Remodelling in Asthma and COPD / Chetta, Alfredo Antonio; Olivieri, Dario. - In: INTERNATIONAL JOURNAL OF ENDOCRINOLOGY. - ISSN 1687-8337. - 2012:(2012), pp. 1-6. [10.1155/2012/397693]

Role of Inhaled Steroids in Vascular Airway Remodelling in Asthma and COPD

CHETTA, Alfredo Antonio;OLIVIERI, Dario
2012-01-01

Abstract

In chronic obstructive airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD), changes in bronchial microvasculature are present in response to inflammatory stimuli. Vascular changes may significantly contribute to airway wall remodelling. Angiogenesis and vascular leakage are prevalent in asthma, while vasodilation and vascular leakage dominate in COPD. An endothelial dysfunction may be present both in asthma and in COPD. Vascular changes may occur simultaneously with the thickening of the airway wall and the narrowing of the bronchial lumen. Consequently, pharmacological control of bronchial vascular remodelling may be crucial for symptom control in asthma and COPD. In asthmatic airways, inhaled steroids can downregulate vascular remodelling by acting on proangiogenic factors. Additionally, studies on combination therapy with long-acting β2-agonists and inhaled steroids have provided evidence of a possible synergistic action on components of vascular remodelling in asthma. In COPD, there is less experimental evidence on the effect of inhaled steroids on airway microvascular changes. Importantly, vascular endothelial growth factor (VEGF), the most specific growth factor for vascular endothelium, is crucially involved in the pathophysiology of airway vascular remodelling, both in asthma and COPD. The inhibition of VEGF and its receptor may be useful in the treatment of the vascular changes in the airway wall.
2012
Role of Inhaled Steroids in Vascular Airway Remodelling in Asthma and COPD / Chetta, Alfredo Antonio; Olivieri, Dario. - In: INTERNATIONAL JOURNAL OF ENDOCRINOLOGY. - ISSN 1687-8337. - 2012:(2012), pp. 1-6. [10.1155/2012/397693]
File in questo prodotto:
File Dimensione Formato  
Chetta&Olivieri_IJE_2012.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 508.29 kB
Formato Adobe PDF
508.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2663662
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact