During thrombopoiesis, megakaroycytes undergo extensive cytoskeletal remodeling to form proplatelet extensions that eventually produce mature platelets. Proplatelet formation is a tightly orchestrated process that depends on dynamic regulation of both tubulin reorganization and Rho-associated, coiled-coil containing protein kinase/RhoA activity. A disruption in tubulin dynamics or RhoA activity impairs proplatelet formation and alters platelet morphology. We previously observed that protein kinase Cepsilon (PKCε), a member of the protein kinase C family of serine/threonine-kinases, expression varies during human megakaryocyte differentiation and modulates megakaryocyte maturation and platelet release. Here we used an in vitro model of murine platelet production to investigate a potential role for PKCε in proplatelet formation. By immunofluorescence we observed that PKCε colocalizes with α/β-tubulin in specific areas of the marginal tubular-coil in proplatelets. Moreover, we found that PKCε expression escalates during megakarocyte differentiation and remains elevated in proplatelets, whereas the active form of RhoA is substantially downregulated in proplatelets. PKCε inhibition resulted in lower proplatelet numbers and larger diameter platelets in culture as well as persistent RhoA activation. Finally, we demonstrate that pharmacological inhibition of RhoA is capable of reversing the proplatelet defects mediated by PKCε inhibition. Collectively, these data indicate that by regulating RhoA activity, PKCε is a critical mediator of mouse proplatelet formation in vitro.

Proplatelet generation in the mouse requires PKC{varepsilon}-dependent RhoA inhibition / Gobbi, Giuliana; Mirandola, Prisco; Carubbi, Cecilia; Masselli, Elena; Sykes, Sm; Ferraro, F; Nouvenne, Antonio; Thon, Jn; ITALIANO JE, Jr; Vitale, Marco. - In: BLOOD. - ISSN 0006-4971. - 122:7(2013), pp. 1305-1311. [10.1182/blood-2013-04-490599]

Proplatelet generation in the mouse requires PKC{varepsilon}-dependent RhoA inhibition.

GOBBI, Giuliana;MIRANDOLA, Prisco;CARUBBI, Cecilia;MASSELLI, Elena;NOUVENNE, ANTONIO;VITALE, Marco
2013-01-01

Abstract

During thrombopoiesis, megakaroycytes undergo extensive cytoskeletal remodeling to form proplatelet extensions that eventually produce mature platelets. Proplatelet formation is a tightly orchestrated process that depends on dynamic regulation of both tubulin reorganization and Rho-associated, coiled-coil containing protein kinase/RhoA activity. A disruption in tubulin dynamics or RhoA activity impairs proplatelet formation and alters platelet morphology. We previously observed that protein kinase Cepsilon (PKCε), a member of the protein kinase C family of serine/threonine-kinases, expression varies during human megakaryocyte differentiation and modulates megakaryocyte maturation and platelet release. Here we used an in vitro model of murine platelet production to investigate a potential role for PKCε in proplatelet formation. By immunofluorescence we observed that PKCε colocalizes with α/β-tubulin in specific areas of the marginal tubular-coil in proplatelets. Moreover, we found that PKCε expression escalates during megakarocyte differentiation and remains elevated in proplatelets, whereas the active form of RhoA is substantially downregulated in proplatelets. PKCε inhibition resulted in lower proplatelet numbers and larger diameter platelets in culture as well as persistent RhoA activation. Finally, we demonstrate that pharmacological inhibition of RhoA is capable of reversing the proplatelet defects mediated by PKCε inhibition. Collectively, these data indicate that by regulating RhoA activity, PKCε is a critical mediator of mouse proplatelet formation in vitro.
2013
Proplatelet generation in the mouse requires PKC{varepsilon}-dependent RhoA inhibition / Gobbi, Giuliana; Mirandola, Prisco; Carubbi, Cecilia; Masselli, Elena; Sykes, Sm; Ferraro, F; Nouvenne, Antonio; Thon, Jn; ITALIANO JE, Jr; Vitale, Marco. - In: BLOOD. - ISSN 0006-4971. - 122:7(2013), pp. 1305-1311. [10.1182/blood-2013-04-490599]
File in questo prodotto:
File Dimensione Formato  
BLOOD 2013.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2635259
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 21
social impact