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Abstract

A novel particle shifting technique (PST) for meshless numerical methods is presented. The proposed

methodology uses an implicit iterative particle shifting (IIPS) technique aiming to reduce the spatial

particle’ anisotropy, which is associated with the discretisation error in meshless numerical schemes based

on kernel basis functions. The algorithm controls the particle spatial distribution based on an implicit

minimization problem, related to the particle concentration gradient and therefore, to the particles

anisotropy. This results in accurate particle distributions, near to the theoretical convergence rates. To

demonstrate the effectiveness of the proposed method, the IIPS algorithm is tested within a smoothed

particle hydrodynamics (SPH) framework, with static and kinematic cases, by examining the particle

distributions and the corresponding spatial accuracy. Further, the computational cost of the proposed

methodology is reported and it is shown that it introduces minimal overhead. Moreover, the simulations

of the Taylor Green vortex (TGV), employing a weakly-compressible SPH Navier-Stokes solver, confirmed

the superior accuracy of the IIPS in comparison to existing explicit shifting approaches, in simulating

internal flows.

Keywords: meshless discretisation schemes; implicit iterative particle shifting; particle anisotropy;

error minimisation; convergence rates;

1. Introduction

In meshless numerical methods, the continuum is discretized by means of computational nodes (or

particles) without any topological interconnections. Numerous meshless numerical methods have been

introduced during the second half of the last century to simulate problems involving the solution of

partial differential equations (PDEs). The particle-in-cell (PIC) method [12] and its extension to the

so-called material point method (MPM), introduced by Sulsky [44] in 1994, is a Lagrangian method in

which the domain deformations follow a background Eulerian mesh to solve the governing equations (for

example [11]). Similarly, in 1996, a scattered distribution of points was adopted in the finite pointset

method (FPM) by Oñate [35], where the governing equations are solved in a fully Lagrangian framework.

This approach also requires a remeshing technique to be applied in order to solve issues related to large
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mesh distortion. In the same year, the moving particle semi-implicit (MPS) method was introduced to

simulate viscous incompressible flows by Koshizuka [22], with multiple developments in the following

20 years (e.g. [48]). The MPS scheme utilises inter-particle repulsive-attractive forces to stabilize the

Lagrangian discrete computational points. Later, a meshless model called finite volume particle method

(FVPM) was presented in the early 2000s [15], which includes the advantages of the Lagrangian descrip-

tion of motion, and the exact partition of unity in the discretization domain. In most of those numerical

schemes, kernel-based spatial interpolation is adopted to discretize the differential operators that appear

in the PDEs. This has been developed further for free-surface flow by Quinlan [38]. In addition to these

meshless interpolation schemes, the radial basis functions (RBFs) method was also introduced in 1990 by

Kansa [18] where radial functions are used to determine basis function weights for the numerical solution

for both steady-state and time-dependent PDEs.

Of all meshless schemes now available, the most widespread is the Lagrangian method smoothed

particle hydrodynamics. In SPH the interpolation points are called particles, which move with the field

velocity during the simulation [29] (see for example the review paper [24] for a general introduction of

the method). No background mesh is required and the particle interactions are computed as summations

using gradients of a weighting function (called the smoothing kernel) making it ideal for potentially scat-

tered data points or particles. As a truly meshless method, the SPH scheme is well suited to hardware

acceleration and has been successfully applied to a broad range of applications including e.g. astrophysi-

cal simulations [37], [57], compressible [45], [4] and incompressible fluids [7], structural analysis of elastic

and plastic solids [19], geotechnical problem and geophysics [5], [59], [60], thermal conduction [30], [16]

laser welding [41], [17] metal forming [8], wave simulations [1], [10], fluid-structure interactions [54], [40]

and multiphase flows [61], [13], [36].

In kernel-based Lagrangian methods such as SPH and MPS, particles follow the streamlines and

therefore, they cluster or create nonphysical voids in the computational domain. It is now well known

that the particle spatial distribution affects the accuracy of the spatial interpolation, e.g., [50], [9]. Since

SPH uses kernel-based operators, the spatial interpolation may exhibit numerical instability for disor-

dered particles distributions, e.g., [39], [2]. To regularize the particle distribution numerous approaches

have been proposed. In the framework of FVPM, the particle shifting technique (PST) was invented

by Nestor et al. [32], (a detailed description of the algorithm is reported in Section 2.1). A similar

approach, based on particles position, was initially applied in the incompressible SPH (ISPH) scheme

by Xu et al. [58] for interior flows, with the aim of reducing spurious oscillations in the pressure field.

Later this method was extended by Lind et al. [23] to free-surface problems, adopting the so-called

Fickian formulation, based on Fick’s diffusion law, which adjusts the particle distribution accordingly to

the gradient of the particle concentration. This PST was modified and applied to body-water slam sim-

ulation by Skillen et al. [43] . In the weakly-compressible SPH (WCSPH) schemes, an artificial particle

displacement method was initially introduced by Shadloo et al. [42] . Since then, Vacondio et al. [52],

[51] combined a Fickian-based shifting technique with δ -SPH [27] and an adaptive particle refinement
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(APR) method, later repeated in the δ+ SPH formulation [47]. A more general method for free-surface

or multiphase flows has been recently presented by Khayyer et al. [21] without tuning parameters, later

implemented and optimized with an iterative procedure [20]. In addition, Oger et al. [34] introduced

a shifting technique, with a limitation in the shifting displacement, remaining quasi-lagrangian, in the

context of Arbitrarily Lagrangian-Eulerian SPH (ALE-SPH) [55], ensuring mass and momentum conser-

vation, in the same framework a shifting procedure without limitation in the shifting distance has been

introduced in [33]. Recently, Antuono et al. [3] introduced the δ+ SPH formulation in an ALE-SPH

scheme benefiting both from the consistency in the shifting formulation and from the numerical diffusion

terms explicitly expressed.

The aforementioned shifting schemes assume that particle concentration is a good indicator for the

discretization error of the SPH interpolation due to particle disorder and thus, they aim to adjust the

particle distribution accordingly [9]. However, the explicit nature of these techniques implies that they

cannot guarantee a pre-defined and spatially homogeneous SPH discretization error. Nor do they guar-

antee that the discretization error is minimised, either locally or globally. The aim of the present work

is to introduce an algorithm capable of minimizing the discretization error by removing the effects of

particle disorder globally, overcoming the limitation of the existing shifting techniques and avoiding any

computationally expensive kernel correction algorithms. An implicit and iterative particle shifting algo-

rithm is introduced, capable of keeping the particle concentration below a pre-defined threshold in the

entire domain at each time step.

The paper is organized as follows, in Section 2 the fundamental of the SPH spatial interpolation with

PST are briefly explained and an ALE-SPH solver is introduced; in Section 3 an overview of particle

shifting techniques is presented, before deriving the proposed IIPS algorithm. Later in Section 4, the

IIPS algorithm is analyzed considering a static and kinematic numerical test, finally, a Taylor-Green flow

with Reynolds number 100 has been reproduced by means of an ALE-SPH numerical scheme in order to

check the effectiveness of the proposed algorithm in improving the accuracy of the results in simulating

a viscous flow. The conclusions and the future perspective of this work are finally reported in Section 5.

2. Numerical method

In meshless spatial interpolation techniques, in a generic point of the domain Ω , defined by the

position vector x, a generic scalar function f (x) : IRd → IR, with d the number of spatial components, is

usually approximated by means of convolution over the domain,

f(x) =

∫
Ω

f(x′)W (x− x′, h)dΩ , (1)

where W (x− x′, h) is a weighting function [56], [25] with the support proportional to the characteristic

length h. In numerical schemes, the integral of Equation (1) can be approximated by the following

3



discretization expression,

⟨f(xi)⟩ =
J∑

j=1

f(xj)W (xi − xj, h)ωj, (2)

where i represents the calculation point and j denotes a neighbouring interpolation point with the

associated discrete volume ωj and J is the total number of particles within the support of particle i.

If the weighting function has certain properties, such in [25], ∇f(x) can be also approximated at the

continuous level as follows,

∇f (x) =

∫
Ω

f (x′)∇W (x− x′, h)dΩ . (3)

The gradient approximation of Equation (3) is as accurate as the kernel at continuous level. A discrete

approximation of Equation (3) can be also constructed leading to

⟨∇f(xi)⟩ =
J∑

j=1

f(xj)∇W (xi − xj, h)ωj. (4)

Quinlan et al. [39] showed that Equation (4) can reach the theoretical convergence rate of 2 only if the

smoothing error is much larger than the discretisation error, conversely the second-order convergence

rate is no longer reached with significant particle disorder.

To demonstrate this property, a convergence analysis of ∂xf has been performed for the function f(x, y) =

sin(2πx/λ) + cos(2πy/λ) using Equation (4) and adopting the Wendland C6 Kernel function [56],

W (q) =

C
(
1− q

2

)8
(4q3 + 6.25q2 + 4q + 1) if q ≤ 2

0 if q > 2
(5)

where q = d/h is the ratio between the particles distance and the smoothing length and C = 78/(28πh)

is the renormalization constant in 2D.

The analysis has been conducted with different values of h/∆, where ∆ is the particle spacing, using

an initial perturbed particle distribution obtained applying σ/∆, where σ is the normalized standard

deviation of this perturbation from the original Cartesian grid. Figure 1 shows the L2 norm of the

∂xf(x, y) error against the particle spacing ∆. With the adopted particle distribution (which corresponds

to σ/∆ = 0.1), the error remains constant and does not decrease with ∆, whereas, by using a Cartesian

distribution the theoretical convergence rate of 2 is obtained. Since in meshless schemes such as SPH

[28] the particles move accordingly to the Lagrangian trajectories, the particle distribution cannot be

controlled during the simulation which leads to poor accuracy for the spatial interpolation.

2.1. Particle Shifting Technique

In order to reduce the disorder of the particle distribution, many authors have introduced a correction

to the pure Lagrangian motion of the particles. In particular, different particle shifting techniques (PSTs)

have been widely studied and introduced in different SPH numerical schemes ([58], [23], [52], [34], [49],

[46]). Generally, PSTs are formulated as
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Figure 1: Numerical test. L2 error norm in SPH estimates of the first partial derivative for a function f(x, y) = sin(2πx/λ)+
cos(2πy/λ), for a perturbed particle spacing σ/∆ = 0.1

x̄i = xi + δi, (6)

where xi is the particle position, x̄i is the adjusted particle position and δi is the shifting vector for the

ith particle. Different formulations have been proposed to compute δi, ([58], [23], [34]), currently, the

state-of-the-art of particle shifting technique is the so-called the Fickian approach [23] where the δi is

proportional to the gradient of the particle concentration ∇Ci,

δi ∝ ∇Ci =
J∑

j=1

∇Wijωj. (7)

∇Ci can be physically seen as a measure of the non-uniformity of particle distribution at particle i [9], it

is the gradient operator of SPH and it shows the accuracy of the SPH interpolation. Large variations of

the particle concentration, which can be due to particles not being homogeneously distributed and the

presence of clusters or voids, are numerically translated by high values of ∇Ci. Theoretically, the value

of ∇Ci should be ideally zero to minimise the error for a set of SPH particles with uniform resolution

and uniform mass. A PST adjusts the particle position using Equation (6) aiming to reduce the ∇Ci,

whihc corresponds to increase the accuracy of spatial interpolation. However, explicit shifting methods

such as the ones adopted in [58], [23], [34] do not guarantee that the correction, applied to the particle

pure Lagrangian motion, is able to keep the particle disorder below a pre-defined threshold and do not

guarantee the minimisation of the error by enforcing a specific particle distribution. Moreover, when

a classical Lagrangian SPH scheme is adopted, the magnitude of δ for all particles in the domain has

to be smaller than the particle displacement which is related to the Lagrangian velocity and prevents

non-physical effects generated by this correction.
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2.2. Arbitrary Lagrangian-Eulerian (ALE) SPH numerical solver

The Lagrangian form of the Navier-Stokes equations have the following expression:

dρ

dt
=− ρ∇v

dv

dt
=+ g − 1

ρ
∇p+ ν∇2v

(8)

where ρ is the fluid density, v is the fluid velocity, g is the gravity force, p is the pressure and ν is the

kinematic viscosity. Equations (8) represent the compressible form and a barotropic equation of state

needs to be introduced as follow,

p =
c20ρ0
γ

[(
ρ

ρ0

)γ

− 1

]
(9)

in which c0 is the reference speed of sound and ρ0 is the reference density, for the equation of state γ

is equal to 7. The classical SPH approximation for Equations (8) have been derived by [14]. For the

purpose of this work, an ALE-SPH numerical solver for Equations (8) is adopted [55], where Equations

(8) are approximated as follows:

dxi

dt
= v0i

dωi

dt
= ωi

J∑
j=1

(v0j − v0i)∇Wijωj

d(ωiρi)

dt
= −ωi

J∑
j=1

(ρi (vi − v0i) + ρj (vj − v0j))∇Wijωj

d(ωiρivi)

dt
= −ωi

J∑
j=1

(
ρivi ⊗ (vi − v0i) + ρjvj ⊗ (vj − v0j) + pi + pj

)
∇Wijωj + ωiρig

(10)

where v0 is the transport velocity, which is explicitly involved in the convective fluxes computation.

Differently from the original weakly-compressible formulation in the ALE-SPH schemes the computa-

tional points move with the transport velocity v0 which can be arbitrarily defined and therefore particles

do not have to follow the Lagrangian trajectories.

Specifically, in this work the TGV test case, presented in Section 4.3, is solved using the ASPHODEL

numerical scheme [26] with MUSCL reconstruction at the particle interface and third-order Runge-Kutta

time integration scheme.

3. Implicit iterative particle shifting technique

In this work a novel shifting method is presented aiming at solving the issues of the classical explicit

Fickian shifting techniques. The corrected particle positions are computed adopting an implicit iterative

scheme to obtain a constant and spatially homogeneous concentration in the particle distribution. In

the present section the novel shifting method is derived in 1D and 2D.
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3.1. 1D formulation

The problem can be described starting by defining a generic function in 1D f(X) : IRn → IR where

X = (x1, ..., xi, ..., xn) represents the vector of particles position and n the number of particles in the

domain. The objective is to identify the new particle’s position array X̄ = (x̄1, ..., x̄i, ..., x̄n) in which the

following conditions hold:

fi(X̄) = 0, i = 1, ..., n, (11)

where fi(X̄) is the value of the scalar function f at particle i.

To find the roots of Equation (11) a Newton-Raphson procedure is adopted, therefore the Taylor expan-

sion truncated at the first order of function f at position x̄i has been considered,

fi(X̄) = fi(X) +
J∑

j=1

∂fi(X)

∂xj

(x̄j − xj) +O(x̄i − xi)
2. (12)

Here it has been assumed that the function f corresponds to the derivative of the particle concentration,

f(X) =
∂C(X)

∂x
, (13)

therefore,

∂f(X)

∂xj

=
∂

∂xj

(
∂C(X)

∂x

)
, (14)

substituting Equations (13, 14) in Equation (12) leads to

∂Ci(X̄)

∂x
=

∂Ci(X)

∂x
+

J∑
j=1

∂

∂xj

(
∂Ci(X)

∂x

)
(x̄j − xj) +O(x̄i − xi)

2. (15)

If the SPH approximation of the derivative of particle concentration C is

∂Ci(X)

∂x
=

K∑
k=1

∂W (xi − xk)

∂xk

ωk, (16)

where K is the number of neighbouring particles inside the kernel support of particle i, is adopted then,

∂

∂xj

(
∂C(X)

∂x

)
=

K∑
k=1

∂

∂xj

(
∂W (xi − xk)

∂xk

)
ωk. (17)

The only term in Equation (17) which is non-null is the one in which j = k, therefore, it can be re-written

as,

∂

∂xj

(
∂Ci(X)

∂x

)
=

∂2W (xi − xj)

∂x2
j

ωj. (18)

Substituting Equation (18) in Equation (15) leads to
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∂Ci(X̄)

∂x
=

∂Ci(X)

∂x
+

J∑
j=1

∂2W (xi − xj )

∂x2
j

ωj(x̄j − xj) +O(x̄i − xi)
2. (19)

As explained before, in order to improve the accuracy of the SPH operator at the discrete level, the

particle concentration C has to be uniform and thus its derivative should be equal to zero. Imposing

this constraint in Equation (19), and neglecting non-linear terms, leads to the following equation for the

generic particle i,

J∑
j=1

∂2W (xi − xj)

∂x2
j

ωj (x̄j − xj) =
∂Ci(X)

∂x
. (20)

In Equation (20) the terms on the left-hand side (x̄j − xj) are the unknowns which correspond to the

particle shifting δj for j = 1, ...., n, which have to be applied to all particles respectively to obtain a

uniform particle concentration. This leads to a linear system of equations which can be expressed in

matrix form (where W (xi − xj) is replaced with Wij for brevity) as follows:

∂2W11

∂x2
1
ω1 . . . ∂2W1i

∂x2
i
ωi . . . ∂2W1n

∂x2
n
ωn

...
...

...
∂2Wi1

∂x2
1
ω1 . . . ∂2Wii

∂x2
i
ωi . . . ∂2Win

∂x2
n
ωn

...
...

...
∂2Wn1

∂x2
1
ω1 . . . ∂2Wni

∂x2
i
ωi . . . ∂2Wnn

∂x2
n

ωn


︸ ︷︷ ︸

A



(x̄1 − x1)
...

(x̄i − xi)
...

(x̄n − xn)


︸ ︷︷ ︸

X

≈



∂C(x1)
∂x
...

∂C(xi)
∂x
...

∂C(xn)
∂x


︸ ︷︷ ︸

B

(21)

By solving the linear system of Equation (21), the new particle positions X̄ = (x̄1, ..., x̄i, ..., x̄n) are found.

Note that in Equation (12) the problem has been linearised by neglecting high-order terms in the

Taylor series, this effectively corresponds to a Newton-Raphson algorithm to find the solution of Equation

(19) and thus, an iterative approach is necessary in order to obtain the particle distribution which fulfils

the condition ∂Ci/∂x=0 for i = 1, ..., n.

3.2. 2D formulation

Similarly, a generic function is defined in 2D f(X,Y) : IR2n → IR with X = (x1, ..., xi, ..., xn) and

Y = (y1, ..., yi, ..., yn). As previously explained for the 1D case, the objective is to obtain the updated

particle distribution represented by X̄ = (x̄1, ..., x̄i, ..., x̄n) and Ȳ = (ȳ1, ..., ȳi, ..., ȳn) in which

fi(X̄, Ȳ) = 0, i = 1, ..., n. (22)

Recalling Equation (12), in two dimensions, the Taylor series expansion truncated at the first-order of

function f at position x̄i, ȳi is

8



fi(X̄, Ȳ) = fi(X,Y) +
J∑

j=1

∂fi(X,Y)

∂xj

(x̄j − xj) +
J∑

j=1

∂fi(X,Y)

∂yj
(ȳj − yj) +O((x̄i − xi)(ȳi − yi))

2. (23)

For the two dimensional case, two different functions can express the gradient of particle concentration

components along the two axes ,

f (1)(X,Y) =
∂C(X,Y)

∂x
, (24)

f (2)(X,Y) =
∂C(X,Y)

∂y
. (25)

Therefore, Equation (24, 25) can be substituted separately in Equation (23), leading to two separate

equations for each spatial component,

∂Ci(X̄, Ȳ)

∂x
=

∂Ci(X,Y)

∂x
+

J∑
j=1

∂

∂xj

[
∂Ci(X,Y)

∂x

]
︸ ︷︷ ︸

second derivative

(x̄i − xi)

+
J∑

j=1

∂

∂yj

[
∂Ci(X,Y)

∂x

]
︸ ︷︷ ︸

cross derivative

(ȳi − yi) +O((x̄i − xi)(ȳi − yi))
2,

(26)

along the x axis, and

∂Ci(X̄, Ȳ)

∂y
=

∂Ci(X,Y)

∂y
+

J∑
j=1

∂

∂xj

[
∂Ci(X,Y)

∂y

]
︸ ︷︷ ︸

cross derivative

(x̄i − xi)

+
J∑

j=1

∂

∂yj

[
∂Ci(X,Y)

∂y

]
︸ ︷︷ ︸

second derivative

(ȳi − yi) +O((x̄i − xi)(ȳi − yi))
2,

(27)

along the y axis.

The SPH approximation for ∇C components in 2D are

∂Ci(X,Y)

∂x
=

K∑
k=1

∂W ((xi − xk) , (yi − yk))

∂xk

ωk, (28)

∂Ci(X,Y)

∂y
=

K∑
k=1

∂W ((xi − xk) , (yi − yk))

∂yk
ωk. (29)
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The second and the cross derivatives of Equations (26, 27) can be manipulated as previously illustrated

in Equation (17). For the x axis, introducing equation (28) in the first order term of Equation (26),

∂

∂xj

(
∂Ci(X,Y)

∂x

)
=

K∑
k=1

∂

∂xj

(
∂W ((xi − xk) , (yi − yk))

∂xk

)
ωk, (30)

∂

∂yj

(
∂Ci(X,Y)

∂x

)
=

K∑
k=1

∂

∂yj

(
∂W ((xi − xk) , (yi − yk))

∂xk

)
ωk, (31)

and for the y axis, introducing Equation (29) in the first order term of Equation (27),

∂

∂xj

(
∂Ci(X,Y)

∂y

)
=

K∑
k=1

∂

∂xj

(
∂W ((xi − xk) , (yi − yk))

∂yk

)
ωk, (32)

∂

∂yj

(
∂Ci(X,Y)

∂y

)
=

K∑
k=1

∂

∂yj

(
∂W ((xi − xk) , (yi − yk))

∂yk

)
ωk. (33)

On the RHS of Equations (30-33), the only non-null terms of the sums are the ones where j = k .

Therefore Equations (30-33) can be written as

∂

∂xj

(
∂Ci(X,Y)

∂x

)
=

∂2W ((xi − xk) , (yi − yk))

∂x2
j

ωj, (34)

∂

∂yj

(
∂Ci(X,Y)

∂x

)
=

∂2W ((xi − xk) , (yi − yk))

∂yj∂xj

ωj, (35)

along the x axis,
∂

∂xj

(
∂Ci(X,Y)

∂y

)
=

∂2W ((xi − xk) , (yi − yk))

∂xj∂yj
ωj, (36)

∂

∂yj

(
∂Ci(X,Y)

∂y

)
=

∂2W ((xi − xk) , (yi − yk))

∂y2j
ωj, (37)

along the y axis.

Substituting Equations (34-37) in Equations (26, 27) leads to

∂Ci(X̄, Ȳ)

∂x
=

∂Ci(X,Y)

∂x
+

J∑
j=1

∂2W ((xi − xk) , (yi − yk))

∂x2
j

ωj(x̄j − xj)

+
J∑

j=1

∂2W ((xi − xk) , (yi − yk))

∂xj∂yj
ωj(ȳj − yj) +O((x̄i − xi)(ȳi − yi))

2,

(38)
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for the x axis,

∂Ci(X̄, Ȳ)

∂y
=

∂Ci(X,Y)

∂y
+

J∑
j=1

∂2W ((xi − xk) , (yi − yk))

∂yj∂xj

ωj(x̄j − xj)

+
J∑

j=1

∂2W ((xi − xk) , (yi − yk))

∂y2j
ωj(ȳj − yj) +O((x̄i − xi)(ȳi − yi))

2,

(39)

for the y axis.

As explained previously, in order to improve the accuracy of the SPH operator at the discrete level,

the particle concentration C has to be uniform and therefore each component of its derivatives should

be equal to zero. In 2D in order to satisfy Equation (22) and by neglecting non-linear terms, two linear

equations have to be solved to for the generic particle i,

J∑
j=1

∂2W ((xi − xj) , (yi − yk))

∂x2
j

ωj (x̄j − xj) +
J∑

j=1

∂2W ((xi − xj) , (yi − yk))

∂xj∂yj
ωj (ȳj − yj) =

∂Ci(X,Y)

∂x
,

(40)

and

J∑
j=1

∂2W ((xi − xj) , (yi − yk))

∂yj∂xj

ωj (x̄j − xj) +
J∑

j=1

∂2W ((xi − xj) , (yi − yk))

∂y2j
ωj (ȳj − yj) =

∂Ci(X,Y)

∂y
.

(41)

The notation W ((xi − xj), (yi − yj)) is shortened to Wij, the 2D system of linear equations in a matrix

form is:

∂2W11

∂x2
1
ω1

∂2W11

∂x1∂y1
ω1 . . . ∂2W1i

∂x2
i
ωi

∂2W1i

∂xi∂yi
ωi . . . ∂2W1n

∂x2
n
ωn

∂2W1n

∂xn∂yn
ωn

∂2W11

∂y1∂x1
ω1

∂2W11

∂y21
ω1 . . . ∂2W1i

∂yi∂xi
ωi

∂2W1i

∂y2i
ωi . . . ∂2W1n

∂yn∂xn
ωn

∂2W1n

∂y2n
ωn

...
...

...
...

...
...

∂2Wi1

∂x2
1
ω1

∂2Wi1

∂x1∂y1
ω1 . . . ∂2Wii

∂x2
i
ωi

∂2Wii

∂xi∂yi
ωi . . . ∂2Win

∂x2
i
ωn

∂2Win

∂xn∂yn
ωn

∂2Wi1

∂y1∂x1
ω1

∂2Wi1

∂y21
ω1 . . . ∂2Wii

∂yi∂xi
ωi

∂2Wii

∂y2i
ωi . . . ∂2Win

∂yn∂xn
ωn

∂2Win

∂y2n
ωn

...
...

...
...

...
...

∂2Wn1

∂x2
1
ω1

∂2Wn1

∂x1∂y1
ω1 . . . ∂2Wni

∂x2
i
ωi

∂2Wni

∂xi∂yi
ωi . . . ∂2Wnn

∂x2
i
ωn

∂2Wnn

∂xn∂yn
ωn

∂2Wn1

∂y1∂x1
ω1

∂2Wn1

∂y21
ω1 . . . ∂2Wni

∂yi∂xi
ωi

∂2Wni

∂y2i
ωi . . . ∂2Wnn

∂yn∂xn
ωn

∂2Wnn

∂y2n
ωn


︸ ︷︷ ︸

A



(x̄1 − x1)

(ȳ1 − y1)
...

(x̄i − xi)

(ȳi − yi)
...

(x̄n − xn)

(ȳn − yn)


︸ ︷︷ ︸

X

≈



∂C (x1 ,y1 )
∂x

∂C (x1 ,y1 )
∂y
...

∂C (xi ,yi )
∂x

∂C (xi ,yi )
∂y
...

∂C (xn ,yn )
∂x

∂C (xn ,yn )
∂y


︸ ︷︷ ︸

B

(42)

The extension to 3D can be done in a similar way, simply adding a third equation for each particle

relative to the third dimension, and also considering the cross derivatives in the matrix A. Generally

the size of A is d · n× d · n, therefore, in 3D, it becomes 3n× 3n.
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3.3. Other properties

Due to the nature of the SPH interpolation, the matrix A defined in Equations (21, 42), is sparse

and it is convenient to adopt an iterative solver for the linear system, similar to the one used for the

Poisson equation of pressure in incompressible SPH schemes [58],[23] [6]. In the present work the Jacobi

preconditioner and the BiCGStab have been utilized and the Wendland C6 kernel has been used in all

SPH interpolations as it has been found empirically that with this kernel the adopted iterative solver

converges faster. In the present formulation two different levels of iterations are present, the external one

is related to the Newton-Raphson algorithm adopted to solve the non-linear Equations (12, 23), whereas

internal iterations are referred to the linear system solver, Equation (21, 42) in 1D and 2D.

4. Numerical tests

In order to validate the proposed method two different numerical experiments are initially presented

in this section. A static case is used to analyze the robustness of the IIPS algorithm for different SPH

properties (such as the smoothing length h, the interparticle distance ∆ and initial particle disorder).

Later, the algorithm behaviour has been evaluated in a second test that involves a continuous distortion

of the particle distribution (disorder is continuously injected) by imposing the kinematics that reproduce

counter-rotating vortexes in the domain, through the entire simulation. This flow (that resembles the

Taylor-Green vortices motion) has been chosen because it is known to be very demanding in maintaining

uniformity in the distribution: if particles follow the exact Lagrangian trajectories their distribution

becomes distorted [34], [58]. In both tests no physical quantities are attached to the particles and only

the accuracy of the SPH approximation is evaluated by means of a test function.

In this way, since the main area of interest is the accuracy of the discrete operators, the effectiveness

of the proposed iterative shifting formulation can be verified regardless of the properties of the specific

meshless solver adopted. The non-dimensional L2 and L∞ norms of the ∇C error have been employed

as a measure of particle disorder,

L2 (∇C) = h

√√√√ n∑
i=1

∥∇Ci∥2
n

, (43)

and

L∞ (∇C) = h(max
i

|∇Ci|). (44)

In both test cases a comparison (in term of efficiency and accuracy) with the explicit shifting formulation

[49] has also been conducted. The accuracy of the spatial SPH interpolation has been evaluated using

the test function

f(x, y) = sin
(πx
λ

)
+ cos

(πy
λ

)
, (45)

12



where λ can be changed to modify the steepness. For the test function, the error has been evaluated

with the reference norm

L2 (∂xf) =

√√√√ n∑
i=1

∥∂xfSPH
i − ∂xfan

i ∥2
n

, (46)

where ∂xf
an
i and ∂xf

SPH
i are respectively the analytical and the SPH-approximated value of function f

gradient component evaluated at particle i. Later, a simulation of a 2D Taylor-Green vortices test case

with Re=100 has been performed by means of the ALE-SPH scheme described in Section 2.2, where the

capability of the IIPS algorithm in controlling the particle distribution has been compared against the

explicit non-iterative Fickian shifting, [23].

4.1. Static test case

The aim of this numerical experiment is to assess how effective and efficient the IIPS formulation

is in restoring a uniform particle distribution starting form a pseudo-random one. For this purpose

a bi-periodic squared domain has been initialized with particles placed on a Cartesian grid, then a

pseudo-random normalized perturbation with standard deviation σ has been assigned to the particles

position and the IIPS algorithm has been activated. With the aim of investigating the performance of

the proposed formulation, the IIPS procedure has been run for 100 Newton-Raphson (NR) iterations

itMax, as described in the pseudo-code (Algorithm 1). At the end of each iteration, the particle positions

are updated using the results obtained solving the linear system.

Algorithm 1 Static case

1: procedure Implicit iterative shifting ▷
2: CartesianGridDistribution()
3: RandomPerturbation σ
4: Compute ∇Ci, L2(∇C), L2 (∂xf)
5: while it ≤ itMax do
6: AssembleMatrix(∇Ci)
7: LinearSystemSolver(AssembleMatrix)
8: UpdateParticlePosition(Implicit PST)
9: Compute L2(∇C), L2 (∂xf)
10: end while
11: end procedure

Figure 2 shows the particle distribution before (Fig. 2(a)) and after (Fig. 2(b)) the IIPS procedure

for a resolution ∆/L = 0.05 where L is 1 m, it can be immediately noted how the particle stencil changes,

particles arrange themselves into a triangular-staggered configuration. This distribution is reached for the

different resolutions (∆/L = 0.025, 0.0125) presented. It is notable that the final particle configuration

is very similar to a hexagonal-centred distribution which represents a minimum extreme for ∇C in the

particle system configuration as demonstrated in [9].

Figure 3 shows the maps of ∇C magnitude at the beginning (Fig. 3(a)) and at the end (Fig. 3(b))

of the simulation, it can be seen that the magnitude is reduced in the whole domain by more than two

orders of magnitude.
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Figure 2: Static test case. Particle distribution ∆/L = 0.05 and initial perturbation σ/∆ = 0.10. (a) it = 0 and (b)
it = 10.
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Figure 3: Static test case. ∆/L = 0.025 and initial perturbation σ/∆ = 0.10. ∇C magnitude (a) it = 0 and (b) it = 10.
Note that images have different colorbars.
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Figure 4: Static test case. ∆/L = 0.025 and initial perturbation σ/∆ = 0.10.
∥∥∂xfSPH − ∂xf

an
∥∥ (top) and ∂xf

SPH

(bottom). Note that images have different colorbars.

The error on the test function gradient and the test function itself are shown in Figure 4. It can be

noted that the error on the test function gradient is reduced (Fig. 4(a), Fig. 4(b)) and the quality of

the SPH approximation for the test function itself increases and distortions, due to the anisotropy of

particle distribution, are corrected (Fig. 4(c), Fig. 4(d)).

As previously mentioned, different resolutions have been analysed with an increasingly initial disorder,

and it has been verified that the IIPS algorithm is able to generate particle distributions that globally

minimizes the L2 (∇C). Herein, two different values of σ have been considered, as initial maximum

values of perturbation, and results are reported in Figure 5.

In Figure 5 (Fig. 5(b), Fig. 5(d)) the L2 (∇C) for three different levels of particle size (∆/L =

0.05, 0.025, 0.0125) are shown against the Newton-Raphson (NR) iterations of the IIPS. It can be observed

that the L2 (∇C) is reduced by almost three orders of magnitude and that the minimum value is reached

after approximately 5 Newton-Raphson iterations, regardless of the resolution adopted and the initial

level of particle disorder. This demonstrates that the IIPS algorithm is robust and can generate a uniform
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Figure 5: Static test case. Initial perturbation σ/∆ = 0.10 (top) and σ/∆ = 0.25 (bottom).
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Figure 6: Static test case. ∆/L = 0.0125 and initial perturbation σ/∆ = 0.10.

particle distribution also starting from a significant initial disorder with a small number of Newton-

Raphson iterations. In order to assess the quality of the particle distribution in terms of accuracy of the

SPH spatial operators, the L2 (∂xf) norm is shown in Figure 5 (Fig. 5(a), Fig. 5(c)). As a reference, in

the same figure, the same norms obtained adopting no initial disorder (which corresponds to an initial

Cartesian particle distribution) are plotted with dashed lines. It can be noticed that, with reference to

the two different initial values of σ/∆, an accuracy similar to the Cartesian one is achieved with less than

4 iterations, demonstrating that the IIPS algorithm is able to remove the effects of particle anisotropy

from the SPH operators in a few iterations. The initial tests described above have been conducted using

a tolerance ϵt value equal to 10−6 for the linear system iterative solver. However, since the value of ϵt

clearly affects the efficiency, additional investigations have been carried out to analyze its effect on the

overall accuracy of the IIPS algorithm. In particular, three different value of ϵt = 0.1, 0.01, 10−6 have

been adopted with a particle spacing equal to ∆/L = 0.0125 and an initial particle disorder corresponding

to σ/∆ = 0.10.

Figure 6 shows the norms L2 (∇C) and L2 (∂xf) (as defined in Equations 43 and 46) against the

number of Newton-Raphson iterations for the three different values of ϵt. While, with ϵt = 0.01, and

10−6 results are similar, for ϵt = 0.1 both norms are not monotonically decreasing, suggesting that

this value is not adequate to obtain a robust convergence of the IIPS algorithm. The number of the

linear solver iterations and the cumulative computational time for each Newton-Raphson iteration are

also shown in Figure 7. It is clear that the number of linear solver iterations required decreases using

ϵt = 0.01, and thus, as a good compromise between computational cost and accuracy, this value will be

used for the rest of the simulations.

A convergence analysis has been performed by running the IIPS with different particle sizes and

considering an initial particle distribution that corresponds to σ/∆ = 0.10. In Figure 8 the minimum

value of L2(∂xf) is shown for each simulation with h/∆ = 2.0, 1.6, 1.3. In Table 1 the numerical values

obtained are reported together with the order of convergence θ. The SPH spatial interpolation has two

17



0 1 2 3 4 5 6 7 8 9 10

NR Iteration

0

10

20

30

40

50

60

70

80

90

100

L
in

ea
r

S
ol

ve
r

It
er

at
io

ns

εt = 10−1

εt = 10−2

εt = 10−6

(a)

0 1 2 3 4 5 6 7 8 9 10

NR Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
P

U
T

im
e

/T
M

ax

εt = 10−1

εt = 10−2

εt = 10−6

(b)

Figure 7: Static test case. (a) iteration needed to reach the ϵ value by the linear system solver, (b) normalized CPU time,
scaled on ϵ = 10−6, using tolerance (normalized residual) value in the linear system solver.
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h
∆

= 2.0 h
∆

= 1.6 h
∆

= 1.3

∆/L L2(∂xf) θ L2(∂xf) θ L2(∂xf) θ

0.05 0.007532 0.005754 0.008354

0.025 0.001020 2.89 0.001327 2.12 0.004109 1.19

0.0125 0.000159 2.68 0.000452 1.55 0.001919 1.10

0.01 0.000094 2.35 0.000352 1.11 0.001557 0.92

0.00625 0.000038 1.93 0.000231 0.90 0.001022 0.89

0.003125 0.000018 1.11 0.000149 0.64 0.000628 0.70

0.0015625 0.000013 0.43 0.000127 0.22 0.000484 0.38

Table 1: Static test case. Convergence analysis results, L2(∂xf) and convergence ratio θ.

main different sources of error, called the smoothing and the discretization error, which are generated by

the approximation of Equation (3) and by the quadrature Equation (4). For each h/∆ adopted in the

convergence analysis, the L2(∂xf) reduces when the smoothing error is much larger than the discretization

error [39]. Smaller h/∆ corresponds to larger discretization error, which therefore becomes dominant for

a larger ∆ causing saturation for the overall convergence. Looking at the convergence rate θ in Table

1, for the largest value of h/∆ = 2.0, it can be noticed that values greater than the theoretical order

of convergence (equal to 2 for the adopted kernel) are obtained for ∆/L > 0.0125 m, this is due to

the fact that the IIPS scheme reduces also the discretization error when the resolution is increased. By

comparing the results of Figure 8 with the one shown in Figure 1 (where the SPH error did not reduce

while the resolution was increased), the capability of the IIPS procedure to increase the accuracy and

to restore the convergence of the SPH spatial interpolation becomes apparent and this implies that the

discretization error is removed or made much smaller by the IIPS operation without any kernel or kernel

gradient correction.

For the static test case, the iterative implicit method has been compared with the iterative Fickian

shifting explicit method [23], [49], with the purpose to assess the number of iterations and the computa-

tional time needed to reach a pre-defined level of the L2 (∂xf). The analysis has been conducted using

h/∆ = 2.0 and ∆/L = 0.0125, considering different λ/L = 1, 0.5, 0.25 which correspond respectively

to a 40, 20, 10 particles for each periodicity in the test function of Equation (45). Figure 9 shows the

L2 (∇f) for λ/L = 1, 0.5, 0.25 against the number of required iterations with the IIPS (Fig. 9(a)) and

explicit iterative shifting (Fig. 9(b)). As a reference, the L2 (∇f) values obtained by adopting a Carte-

sian particle distribution are plotted with dashed lines. In Table 2 the number of iterations needed to

reach the Cartesian grid accuracy, (with a 5% tolerance) are shown together with the computational

time required for each simulation. While the IIPS reaches the same level of spatial interpolation error

obtained with the Cartesian particle distribution in a maximum of 3 Newton-Raphson iterations, the

number of iterations necessary to achieve a similar accuracy with the explicit iterative Fickian shifting is

much larger on the order of 68, 380 and 2408. Moreover, for the explicit algorithm, the total number of

iterations strongly depends on λ. Therefore, despite the fact that each iteration of the IIPS has a larger

computational cost (due to the fact that a linear system with d × n unknowns has to be solved), it is
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Figure 9: Static test case. ∆/L = 0.0125 and initial perturbation σ/∆ = 0.10. (a) implicit iterative particle shifting
method, (b) explicit iterative shifting method.

Implicit Explicit

Iteration Time [ms ] Iteration Time [ms ]

λ/L = 0.25 1 66 68 2619

λ/L = 0.5 2 126 380 13964

λ/L = 1.0 3 207 2408 98302

Table 2: Static test case. Particle Shifting Techniques comparison

always more efficient, with speedups varying from 40 for λ/L = 0.25 to 475 for λ/L = 1. The estimated

extra memory required for the implicit procedure is proportional to d × n × nb, where the size of the

kernel support h/∆ determines the number of neighbour particles nb, that correspond to the number of

non-null elements on the matrix, and to d× n that is needed to allocate the unknowns vector.

4.2. Kinematic test case

The second validation test is a purely kinematic case, the aim is to test the capability of IIPS in

obtaining low discretization error for a generic test function f , while an external motion is maintained

to introduce disorder in the particle distribution. Particles move following the Lagrangian trajectories

defined by the integration in time of the analytical TGV velocity field:

∆xi =− Ucos(2πxi/L)sin(2πyi/L)∆t

∆yi =Usin(2πxi/L)cos(2πyi/L)∆t
(47)

where ∆xi and ∆yi are the particles’ displacements for the i-th particle on the x and y axis, respectively.

In Equation (47), U , the reference velocity, is equal to 1 m/s and L, the size of the squared domain, is

equal to 1 m. The reference speed of sound c0 =10U and the CFL number equal to 0.2 have been set to

computed an equivalent time step size, ∆t = 0.2(∆/c0), to obtain the particle displacement. The IIPS

procedure, illustrated in the previous section, can be applied during a physical simulation in a different
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way. In order to assess which one guarantees the lower error in the SPH interpolation and optimizes

the computational costs, two methodologies, Procedure A, and Procedure B have been investigated and

presented respectively in Algorithm 2 and Algorithm 3.

The initial particle distribution has been obtained introducing an iterative pre-procedure (line 2

of Algorithm 2 and 3), which corresponds to the test case described in Section (4.1), considering 100

Newton-Raphson iterations. Using the pre-procedure the minimal value of L∞(∇C)Init is obtained and

it is utilized to set the threshold used to trigger the IIPS, L∞(∇C)Thr, (line 3 of Algorithm 2 and 3),

which is set equal to:

L∞(∇C)Thr = βL∞(∇C)Init, (48)

where β is an arbitrary coefficient. At each physical time step the particle distribution has to fulfil the

condition, (line 5 of Algorithm 2 and 3):

L∞(∇C) ≤ L∞(∇C)Thr. (49)

Therefore, the maximum value of h|∇Ci| has to be always below the fixed threshold otherwise the

IIPS procedure is activated. This condition is valid in both procedures, the only difference is the extra

condition added in Algorithm 2, it requires to run at least one Newton-Raphson iteration at each physical

time step even if the condition, defined in Equation (49), is satisfied. The IIPS procedure runs for an

unlimited number of Newton-Raphson iterations until each particle has h|∇Ci| that meet the condition.

Algorithm 2 Kinematic case

1: procedure A Implicit iterative ▷
2: Static test case (Algorithm 1)
3: Set L∞(∇C)Thr =β L∞(∇C)Init
4: Start Simulation
5: while (L∞(∇C) ≤ L∞(∇C)Thr & NRit ≥ 1) do
6: AssembleMatrix(∇Ci)
7: LinearSystemSolver(AssembleMatrix)
8: UpdateParticlePosition(Implicit PST)
9: Compute L∞(∇C), L2(∂xf)
10: end while
11: ParticleDisplacement (Eq. (47))
12: end procedure

In Procedure A and in Procedure B two different factors have been tested, β=5 and β=10, but

because at least one Newton-Raphson iteration is required in Procedure A, L∞(∇C) never reaches the

imposed threshold and actually the results, as presented later, do not depend on β. This test case has

been studied with ∆/L = 0.025 (which corresponds to 20 particles across the vortex diameter) and

h/∆ = 2.0, the test function defined in Equation (45) has λ/L = 0.5. Results in Figure 10 and Figure

11 show the comparison between the different implicit procedures described previously and the explicit

method similar to the one described in [23], defined as Procedure C in Algorithm 4. The explicit shifting

technique is called in line 8 of Algorithm 4, at each time step the particle position is updated using
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Algorithm 3 Kinematic case

1: procedure B Implicit iterative ▷
2: Static test case (Algorithm 1)
3: Set L∞(∇C)Thr =β L∞(∇C)Init
4: Start Simulation
5: while (L∞(∇C) ≤ L∞(∇C)Thr) do
6: AssembleMatrix(∇Ci)
7: LinearSystemSolver(AssembleMatrix)
8: UpdateParticlePosition(Implicit PST)
9: Compute L∞(∇C), L2(∂xf)
10: end while
11: ParticleDisplacement (Eq. (47))
12: end procedure
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Figure 10: Kinematic test case. Procedure comparison, ∆/L = 0.025 and h/∆ = 2.0.
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Figure 11: Kinematic test case. Procedure comparison, ∆/L = 0.025 and h/∆ = 2.0.
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Figure 12: Kinematic test case. Method comparison, CPU time. Note different scales.

Equation (6) and similarly to Equation (7) the shifting vector δi for particle ith is,

δi = ∆t2c20

J∑
j=1

∇Wijωj. (50)

Algorithm 4 Kinematic case.

1: procedure C Explicit ▷
2: Static test case (Algorithm 1)
3: Start Simulation
4: UpdateParticlePosition(Explicit PST)
5: Compute L∞(∇C), L2(∂xf)
6: ParticleDisplacement (Eq. (47))
7: end procedure

The implicit procedures show different trends analysing L∞(∇C) (Figure 10) and similarities for

L2(∂xf) (Figure 11). In all the different implicit procedures, a gain of more than an order of magnitude

in accuracy in the test function and almost two orders of magnitude in the particle concentration is

obtained.

The analysis of computational cost (the total CPU time for Algorithm 2, Algorithm 3 and Algorithm

4) can be seen in Figure 12, results are re-scaled with explicit method computational time. These

implicit iterative procedures have been compared with a non-iterative explicit procedure because as

shown in the static test case (Figure 9) an iterative explicit methodology is not always sustainable in

terms of computational effort (see Table 2). The Procedure A, which calls the IIPS at each time step,

significantly increases the computational cost, the trend is not linear (Figure 12(a)) due to the significant

increase in the number of iterations required to the linear solver to converge. This can be explained by

the fact that the IIPS procedure is activated when the |∇Ci| is already close to the minimal value,

therefore the linear solver needs a large number of iterations to reduce the normalized residuals. The
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(a) Procedure B Implicit iterative, β = 5
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(b) Procedure B Implicit iterative, β = 10
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(c) Procedure A Implicit iterative
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(d) Procedure C Explicit not iterative

Figure 13: Kinematic test case. Particle distribution at t = 0.2 s.

Procedure B calls the IIPS whenever the L∞(∇C) value rises above the set threshold and it generates

an extra computational cost between 10 to 70 percent based on β, (Figure 12(b)). Figure 13 shows the

particle distributions, it can be immediately noted that the implicit procedures maintain the particles

uniformly distributed avoiding the creation of distinct streamlines in the domain.

Results presented in Figure 14 shows the convergence analysis for all the different procedures, using

∆/L = 0.05, 0.025, 0.0125 and h/∆ = 1.3, 1.6, 2.0., The Procedure A shows the same results regardless

of the value of β, as it was already seen for just a single resolution and kernel size in Figure 11.

The convergence rates for results presented in Figure 14 are reported in Table 3, where it can be

noted that these results are similar to the convergence rates obtained in the static test case Table 1,

meaning that even with a continuous source of perturbation the IIPS is able to prevent anisotropy in

particle distribution, differently to the explicit procedure which convergence rate is lower.
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Figure 14: Kinematic test case. Convergence analysis.

Implicit Implicit Implicit Explicit

iterative all iterative iterative not

β=5 β=10 iterative

θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2
h
∆

= 2.0 2.85 2.51 2.81 1.99 2.67 1.76 0.23 0.81
h
∆

= 1.6 2.04 1.30 1.12 0.51 0.51 0.56 0.53 0.89
h
∆

= 1.3 1.27 0.91 0.76 0.72 0.65 0.58 1.26 0.92

Table 3: Kinematic test case. Convergence ratio θ1 and θ2 respectively for ∆/L = 0.025 and ∆/L = 0.0125
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Figure 15: TGV with ALE-SPH solver. Convergence analysis, L2 norm of |vx−vxA|, particle shifting technique comparison.

4.3. Taylor Green vortex with ALE-SPH solver

Differently from the results presented in Section 4.2, here, a viscous Taylor-Green vortex is simulated

adopting the ALE-SPH solver described in Section 2.2, with the aim of evaluating the effects of the IIPS

algorithm, embedded in a numerical scheme for the Navier-Stokes equations. For this test case there is

an analytical solution for velocity and pressure which is the following:

vxA =Ue−8πt/Recos(2πxi/L)sin(2πyi/L)

vyA =Ue−8πt/Resin(2πxi/L)cos(2πyi/L)

pA =
ρ

4
e−16πt/Re [cos(4πxi/L) + cos(4πyi/L)]

(51)

where vxA and vyA are the analytical velocity components and pA the analytical pressure. For this specific

case it has been set U = 1 m/s, ρ = 1000 kg/m3, the size of the squared domain L equal to 1 m ×
1 m, and the kinematic viscosity ν = 0.01 m2/s, is used to compute the Reynolds number, Re = 100.

In the following simulations, the field quantities are reconstructed at the interface using the Monotonic

Upstream-Centred Scheme for Conservation Laws (MUSCL) [53], no artificial viscosity is used and the

laminar viscous forces in the momentum equation are discretized as reported in [31]. The solver updates

Equations (10) in time using a third-order Runge-Kutta scheme. In the above-mentioned solver, a

Fickian-based PST was already implemented, [33], with the correction term introduced in the transport

velocity v0 formulation, with the addition of a strong background pressure. This model has been used as

a reference point to assess the improvements that the novel IIPS algorithm can produce while solving the

full set of Navier-Stokes equations. The IIPS method has been implemented in the numerical SPH-ALE

solver, following the Proceduce B in Algorithm 3, described in Section 4.2 with L∞(∇C)thr = 0.001/h.

It is relevant to highlight that the IIPS procedure can be applied in others particle methods in a similar

way.

The convergence analysis has been performed using ∆/L = 0.05, 0.025, 0.0125, 0.00625, 0.003125 and

the value of h/∆ has been kept constant and equal to 2. The results of the L2 norm of the error of
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Fickian shifting Implicit iterative shifting

∆/L θ θ

0.05

0.025 2.36 2.44

0.0125 1.96 2.41

0.00625 0.69 2.42

0.003125 0.80 0.95

Table 4: TGV with ALE-SPH solver. Convergence ratio of L2 norm of ||vx − vxA||, (Figure 15).
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Figure 16: TGV with ALE-SPH solver. Error of the x component of the velocity. ∆/L = 0.00625, physical time t = 2 s.
Particle shifting comparison (a) Fickian shifting and (b) Implicit iterative shifting.

the x velocity component, |vx − vxA|, are shown in the Figure 15 and reported in Table 4. The higher-

than-second-order convergence is maintained, and it can be seen a gain of almost one order of magnitude

obtained while reaching saturation.

Figure 16 shows |vx−vxA|, with the resolution ∆/L = 0.00626. The comparison between the different

particle shifting methods shows that the IIPS is able to improve the accuracy of the ALE-SPH algorithm.

For the same resolution ∆/L = 0.00626 the L∞ norm of ∇C is shown in Figure 17, the trend is

similar to the ones presented in Figure 11: the IIPS algorithm is able to reduce the maximum L∞(∇C)

by two orders of magnitude, in comparison with the one obtained with the Fickian shifting.

5. Conclusions and Perspectives

A novel particle shifting technique, called IIPS, has been presented in this paper. The technique

has been developed to be embedded in meshless numerical methods based on kernel basis function.

In particular, it is thought to be well suited to the SPH schemes but it can be easily extended to

methods based on moving calculation points. The implicit iterative particle shifting has the capability

to directly tackle the formation of areas in the domain with non-uniform particle concentration. The

new IIPS technique removes the discretisation error obtaining second-order or higher-than-second-order
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convergence without kernel or kernel gradient correction techniques. The IIPS benefits and advantages

have been identified by the comparison with an explicit particle shifting technique which represents

the state-of-the-art of the shifting methods available in the literature. The methodology introduced an

intrinsic difference from explicit shifting being able to link and generate implicit connections between

the correction terms for the particle positions in the updated configuration. The particle distribution is

a key element for accuracy in an SPH operator, and it is strictly related to the theoretical fundamentals

of SPH itself. For this reason, a purely theoretical formulation has been developed trying to solve this

weakness, slightly changing the point of view regarding the shifting techniques.

Through static and kinematic numerical experiments, the IIPS algorithm increases the SPH accuracy

for the test function by more than one order of magnitude and reduces the gradient of particle concen-

tration by almost two orders of magnitude, without a drastic computational time overhead. Moreover,

the portion of the discretization error arising due to irregular particle distribution can be completely

eliminated from the SPH differential operators restoring the theoretical convergence rate.

The Taylor Green flow, has been simulated at Re=100, adopting an ALE-SPH algorithm, where the

IIPS has been activated when the particle disorder rises above a predefined level. The results for the

TGV are in agreement with the static and kinematic numerical experiments and confirms that superiority

of the proposed formulation, in comparison with the explicit, non-iterative shifting formulation.

The IIPS represents a completely novel formulation, it has been mainly proposed as a starting point

for future investigation, both theoretical and numerical, it is at the first stages of development. Future

works will be conducted aiming to introduce the IIPS procedure in a consistent way in a solver for

governing equations and extend its applicability for flows with bounded domains, free surfaces and

multi-phase applications.
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