
23 June 2024

University of Parma Research Repository

Timing Synchronization and Channel Estimation in Free-Space Optical OOK Communication Systems /
D'Amico, A. A.; Colavolpe, G.; Foggi, T.; Morelli, M.. - In: IEEE TRANSACTIONS ON COMMUNICATIONS. -
ISSN 0090-6778. - 70:(2022), pp. 1901-1912. [10.1109/TCOMM.2022.3142134]

Original

Timing Synchronization and Channel Estimation in Free-Space Optical OOK Communication Systems

Publisher:

Published
DOI:10.1109/TCOMM.2022.3142134

Terms of use:

Publisher copyright

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available

Availability:
This version is available at: 11381/2914953 since: 2022-03-18T08:32:08Z

Institute of Electrical and Electronics Engineers Inc.

This is the peer reviewd version of the followng article:

note finali coverpage



1

Timing Synchronization and Channel

Estimation in Free-Space Optical OOK

Communication Systems

Antonio A. D’Amico, Giulio Colavolpe, Tommaso Foggi, Michele Morelli

Abstract

Fast and reliable synchronization in free-space optical (FSO) communications is a crucial task

that has received little attention so far. Since in these applications the data rate is much higher than

in traditional radio-frequency (RF) systems, novel technological contraints may arise in the design of

the synchronization algorithms, as for example the need to operate at symbol rate instead with an

oversampled data stream.

In this work, we consider an FSO link and investigate the problem of channel estimation, symbol

timing recovery and frame detection using a known synch pattern. The modulation format is on-

off keying (OOK) and the received signal is plagued by a mixture of thermal and shot noise. By

applying the least-squares criterion, we derive a novel synchronization scheme that can jointly retrieve

all the unknown parameters using symbol-spaced samples. Although designed without taking the noise

statistics into account, the estimator performance is assessed in a realistic scenario where shot noise

is present. Comparisons are made with the relevant Cramér-Rao bound for the joint estimation of the

synchronization parameters and signal-dependent noise variances. This bound is not available in the

literature and represents a further contribution of our work.

Numerical simulations and complexity analysis indicate that the resulting scheme performs satis-

factorily with an affordable processing load. Hence, it represents a promising solution for fast synchro-

nization in high-speed FSO communications.
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I. INTRODUCTION

Free-space optical (FSO) communication is a promising technology to meet the increasing

demand for data services. Compared to conventional radio-frequency (RF) transmissions, it offers

the opportunity of license-free access, high security level, increased data rates and improved

resilience to interference and jamming [1], [2]. Thanks to the aforementioned advantages, FSO

has been suggested for both line-of-sight (LOS) wireless terrestrial links and satellite applications

[3]. More recently, the use of this technology has been investigated for downlink transmissions

from low-Earth-orbit (LEO) satellites to ground stations [4], [5].

One major challenge encountered in an FSO link is the susceptibility to atmospheric turbulence

caused by a non-uniform distribution of the temperature and pressure along the transmission path.

Such a phenomenon, known as scintillation, generates random fluctuations in the amplitude and

phase of the received light, similar to the channel fading experienced in RF transmissions, with

a coherence time ranging from 0.1 to 10 ms [6]. Furthermore, adverse wheather conditions like

rain, fog and smoke, may result into a remarkable attenuation of the received optical power

[7]. In these scenarios, interleaving and forward error correction coding become mandatory for

reliable data reception. Since successful data decoding requires a proper design of the detection

thresholds as well as the correct localization of the codewords within the received sample stream,

accurate channel state information and timing synchronization is needed at the receiver. In digital

communications, the timing synchronization process is typically split into two successive steps.

The first one, called bit synchronization, looks for the optimum sampling instants where the

output from the matched filter is maximum. The second one, called frame synchronization, is

implemented by inserting a known training pattern, called unique word (UW), into the transmitted

data sequence and searching for its position in the received waveform.

Most available schemes for bit synchronization in optical links are mainly conceived for

continuous transmissions and employ a classical non-data-aided (NDA) or decision directed (DD)

closed-loop (CL) structure. The timing error detector, which is the core device of any CL scheme,

is typically designed through some heuristic approach or by resorting to classical techniques,

including the early-late gate synchronizer [8], the Gardner algorithm [9] or the Mueller & Müller

method [10]. Prominent examples in this category are found in [11] for pulse-position modulation

(PPM), in [12]-[14] for on-off keying (OOK) signaling and in [15] for optical signals with a

large dynamic range. As an alternative to CL methods, NDA open-loop (OL) algorithms have
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been suggested in [16] in the context of 2-PPM modulation and in [17] for OOK signaling.

Joint bit synchronization and data detection for PPM and OOK systems is proposed in [18] by

resorting to the ML estimation principle. The resulting scheme is computationally demanding

as it applies the Viterbi algorithm to a specified trellis diagram.

Once bit synchronization has been acquired, frame alignment is typically achieved by corre-

lating the received symbol stream with a local copy of the UW. In [19], the authors derive the

optimum maximum likelihood (ML) rule for frame detection by extending the pioneering work

of Massey [20] to a Poisson optical channel. A high signal-to-noise ratio (SNR) approximation

of the ML rule can be found in [21]. More recently, the issue of UW recognition has been

investigated in [22] for an OOK system affected by shot noise, where the noise power is higher

for a received 1 than for a received 0. The main drawback of this scheme is that it requires

knowledge of the channel fading coefficient and signal dependent noise variances, which must be

recovered in some manner. One possible solution is presented in [23], where the joint estimation

of all the unknown parameters is embedded into the UW detection process.

In packet-based transmissions, data-aided (DA) OL algorithms are the favourite choice for fast

clock recovery. On one hand, they exhibit improved accuracy with respect to NDA methods. On

the other hand, they provide the timing estimate at the end of a specified observation window,

while CL schemes are characterized by a prolonged acquisition period which is hardly consistent

with this kind of applications. More importantly, DA-OL methods offer the opportunity to

combine bit and frame synchronization into a single-step operation, which make them particularly

attactive for applications where fast timing acquisition is required. In many packet radio systems,

joint bit and frame synchronization is achieved by oversampling the received signal at a frequency

multiple of the symbol rate and feeding the resulting stream to a sliding window correlator.

The timing estimate is eventually obtained by searching for the maximum from the correlator.

This approach was recently suggested in [24] for visible light communications and in [25] for

bandlimited optical channels. In high-speed FSO communications, however, the oversampling

operation may represent a critical issue, asking for expensive hardware equipments or some form

of parallel implementation [26]. In these applications, it is highly desirable to achieve fast timing

recovery through signal samples taken at symbol rate in order to relax the hardware constraints.

The presence of the preamble is also useful to acquire channel state information. Observing

that in satellite systems long codewords with length of tens or hundreds of milliseconds are

commonly used, the coherence time of the FSO channel can be in the order of a few data
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blocks. Accordingly, a new channel estimate is needed at every new received codeword in order

to optimally set the threshold levels for data decoding. Some methods for estimating the channel

attenuation in an FSO link are illustrated in [23] and [25].

In this paper, we investigate the synchonization problem in a packet-based FSO communication

link. We consider OOK signaling and assume that an avalanche photo-diode (APD) is employed

as a photodetector at the receiver side. In particular, we look for some feasible architecture

that exhibits the following two desirable properties: 1) bit synchronization, frame detection and

channel estimation is achieved in a joint fashion so as to speed-up the timing acquisition process;

2) symbol rate samples are used to complete the synchronization task so as to reduce the sampling

rate of the hardware as much as possible, which is especially desirable in high-speed commu-

nications. To the best of our knowledge, these features cannot be simultaneously found in any

timing recovery scheme available in the literature. In order to meet such stringent requirements,

we concentrate on the class of DA-OL schemes and assume that a UW is periodically embedded

in the bitstream. Since the APD introduces shot noise with signal-dependent power, the system

model is the same adopted in [22], except that no prior knowledge is assumed regarding the

mean signal level and noise power. A first contribution of our work is the evaluation of the

Cramér-Rao bound (CRB) for the joint estimation of the timing offset, channel attenuation and

noise variances. This result is not available in the literature and proves to be useful for the

analysis and design of synchronization schemes that are found to operate in the presence of shot

noise. Although a bound for joint timing and channel recovery has previously been presented

in [25], it only applies to signals plagued by thermal noise with signal independent power. The

second contribution is the derivation of a new synchronization algorithm which determines the

position of the UW and jointly provides estimates of the channel coefficient and timing offset in a

closed form. The proposed method is based on the least squares (LS) estimation principle, which

makes no assumption about the noise statistics. This approach has the advantage of leading to

a practical scheme that provides fast synchronization with symbol rate sampling, as requested

in high-speed communications. Compared to the optimum ML appoach, it results into some

performance loss as it ignores any useful information conveyed by the signal-dependent noise

power regarding the time instants at which a bit transition occurs. The loss is quantified by

comparing the accuracy of the proposed method with the relevant CRB. It is worth noting that

this is the first time that a timing recovery scheme is tested in the presence of signal-dependent

noise power.
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The rest of the paper is organized as follows. Next section introduces the system model and

some basic notation. In Sect. III, we present the proposed synchronization algorithm and assess

its processing requirement. The CRB analysis for the joint estimation of all unknown parameters,

including the noise variances, is conducted in Sect. IV. We discuss simulation results in Sect. V

and offer some conclusions in Sect. VI.

Notation: Matrices and vectors are denoted by boldface letters, A−1 is the inverse of a matrix

A and ‖v‖ the norm of a vector v. We use E{·} to indicate the statistical expectation, while

(·)T is the transposition operator. The symbol ⊗ is adopted for the continuous-time convolution

and, finally, we denote by λ̃ a trial value of an unknown parameter λ.

II. SYSTEM MODEL

In this section, we first introduce the mathematical model of the photocurrent signal produced

by the APD (continuous-time signal model). Next, we provide the analytical expression of the

sample stream at the output of the receive filter (discrete-time signal model).

A. Continuous-time signal model

We consider a packet-based FSO communication link employing a non-return-to-zero (NRZ)

OOK modulation format. The transmitted signal is expressed by

s(t) =
∑
i

aip(t− iT ) (1)

where T is the signaling period, ai ∈ {0, 1} denotes the ith binary data symbol and p(t) is a

normalized rectangular shaping pulse with unit energy

p(t) =

 1/
√
T

0

0 ≤ t ≤ T

otherwise.
(2)

Data transmission is organized in successive frames, each of which consists of NF symbol

periods. In order to mark the start of each frame, a UW of L pilot symbols is periodically

inserted in the transmitted data stream. Without loss of generality, we assume that the pilots in

(1) have indices i ∈ {0, 1, . . . , L− 1} and are collected into a vector aUW = [a0, a1, . . . , aL−1].

At the receiver side, an APD is used for direct detection of the transmitted data. The pho-

tocurrent signal provided by the APD is proportional to the intensity of the incoming field and

is given by

r(t) = hs(t− τ) + w0(t) + wsh(t) (3)



6

where h is the channel state, τ is an unknown delay specifying the UW position in the receiver

time scale, w0(t) accounts for thermal noise and, finally, wsh(t) represents the shot noise

introduced by the APD, which is statistically independent of w0(t). The channel coefficient

h is related to the average received optical power Pavg by the following relationship

h =
2RPavg

√
T

e
(4)

where R denotes the APD responsivity and e = 1.60217662 · 10−19 is the electron charge (in

coulombs). Due to the atmospheric turbulence encountered in both terrestrial and satellite FSO

links, the received optical power suffers from random fluctuations which may result into signif-

icant signal fading. Accordingly, the receiver has no prior knowledge of the channel realization

h, which must therefore be regarded as an unknown parameter. In practical applications, the

coherence time of the channel fluctuations varies from 0.1 to 10 ms, while the signalling rate

can be as large as hundreds or thousands of Mbps [3]. In such a case, we can confidently assume

that h remains constant over many symbol periods and, in particular, over a frame interval.

The thermal noise w0(t) is modeled as a white Gaussian process with one-sided power spectral

density N0 expressed by

N0 =
i2th

e2M2
(5)

where ith denotes the current thermal density and M is the APD multiplication factor. While

thermal noise is present in r(t) at any time instant, shot noise only appears when a unitary

symbol ai = 1 is received. Hence, we can express wsh(t) in (3) as

wsh(t) =
√
Tηsh(t)

∑
i

aip(t− τ − iT ) (6)

where ηsh(t) is a white Gaussian process with one-sided power spectral density Nsh. The latter

depends on the channel fading coefficient through

Nsh =
2Fh√
T

(7)

with F denoting the APD noise figure. Finally, denoting by w(t) = w0(t) + wsh(t) the overall

noise contribution, from (3) and (6) we have

w(t) =
√
T

[
w0(t)

∑
i

(1− ai)p(t− τ − iT ) + w1(t)
∑
i

aip(t− τ − iT )

]
(8)

where w1(t) = w0(t) + ηsh(t) has power spectral density N1/2, with N1 = N0 + Nsh, and we

have used the identity
√
T
∑
i

p(t− τ − iT ) ≡ 1. (9)
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B. Discrete-time signal model

In a typical OOK receiver for FSO communications, the photocurrent signal r(t) is integrated

over each bit period before further processing. This is achieved by passing r(t) through an

integrate-and-dump filter (IDF), where the dumping operation is performed once per symbol

interval. Although symbol rate operation is a highly desirable feature in high-speed communi-

cations, it is important to assess its impact on the performance of synchronization algorithms.

For this reason, in the subsequent analysis we consider a more flexible setting in which the

integrator output is dumped with period Tc = T/N , where N ≥ 1 is the oversampling factor.

By selecting different values of N , we can disclose how much information is possibly lost when

the symbol-spaced samples are employed as observation variables.

The mathematical model of the signal provided by the IDF is obtained through the following

procedure. Firstly, we call x(t) = r(t) ⊗ g(t) the waveform obtained by feeding r(t) to a

rectangular filter with impulse response

g(t) =

 1/
√
T

0

0 ≤ t ≤ Tc

otherwhise
(10)

and denote by x(k) the sample of x(t) taken at tk = (k + 1)Tc. Secondly, we observe that the

sequence {x(k)} is just the sample stream provided by the IDF. A simple expression for x(k)

can be found by rewriting s(t) in (1) and w(t) in (8) as

s(t) =
∑
i

cig(t− iTc) (11)

and

w(t) =
√
T

[
w0(t)

∑
i

(1− ci)g(t− τ − iTc) + w1(t)
∑
i

cig(t− τ − iTc)

]
(12)

where the quantities {ci} are obtained through the N -time repetition of each data symbol, i.e.,

ci = ai\N (13)

with i\N denoting the integer division of i by N . Using (13), the UW sequence aUW is thus

transformed into an NL−dimensional vector cUW = [c0, c1, . . . , cNL−1]. To proceed further, we

decompose the delay τ as

τ = k0Tc + εTc (14)
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where k0 is a non-negative integer called integer timing offset, while ε ∈ [0, 1) is the fractional

timing offset. Then, sample x(k) is expressed by

x(k) =
1√
T

∫ (k+1)Tc

kTc

[hs(α− k0Tc − εTc) + w(α)]dα (15)

which, after standard computations and bearing in mind (11) and (12), can be rewritten as

x(k) =
h

N
dk−k0(ε) + n(k). (16)

In the above expression, we have defined

dk(ε) = ck + εbk (17)

with

bk = ck−1 − ck (18)

while the noise terms {n(k)} are statistically independent random variables. When conditioned

to dk−k0(ε), they are Gaussian distributed with zero-mean and variance

σ2
n(k − k0, ε, N0, N1) =

N0

2N
[1− dk−k0(ε)] +

N1

2N
dk−k0(ε). (19)

III. ESTIMATION OF THE SYNCHRONIZATION PARAMETERS

A. Problem formulation

In order to establish the communication link, the receiver must preliminarily activate a syn-

chronization procedure so as to correctly align its time scale to the incoming signal. This is

achieved by recovering the timing offsets k0 and ε, which provide frame and bit synchronization,

respectively. Channel state information is also necessary for the design of the optimum thresholds

employed in the data detection process. In this section, we show how to complete such a

synchronization task. As mentioned previously, we look for a solution that can operate even

in the absence of any oversampling (N = 1) and is able to estimate the unknown parameters

{k0, ε, h} in a joint fashion in order to achieve fast timing acquisition. For this purpose, we

divide the sequence {x(k)} into overlapped segments of length NL equal to the dimension of

vector cUW . Each segment corresponds to a different hypothesized value k̃0 of the integer timing

offset and is denoted by x(k̃0) = [x(k̃0), x(k̃0 + 1), . . . , x(k̃0 + NL − 1)]T . The length NL is

chosen such that, when k̃0 = k0, the observation vector x(k0) contains the whole UW, while

minimizing the contamination from unknown information-bearing symbols. Assuming that the
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UW is present in each frame of length TF = NFT , the search for the UW position can be

restricted to the interval k̃0 ∈ I , with I = {0, 1, 2, . . . , NFN − 1}.

Intuitively speaking, the presence of shot noise may prove useful for the purpose of timing

recovery due to the abrupt variation of the noise power induced by a transition 1→ 0 or 0→ 1

in the entries of cUW . The ML estimation principle provides the optimal way for exploiting

information conveyed by such noise power fluctuations. Unfortunately, the exact ML solution

for the problem at hand leads to a computationally intractable multi-dimensional optimization

process, thereby motivating the search for some alternative suboptimal methods. For this reason,

in what follows the synchronization parameters are recovered by resorting to the LS concept,

which makes no assumption on the noise statistics. The impact of shot noise on the performance

of the resulting schemes will be assessed later by means of computer simulations.

From (16), the entries of x(k0) are given by

x(k + k0) = h(αk + εβk) + n(k + k0) 0 ≤ k ≤ NL− 1 (20)

with

αk =
1

N
ck (21)

and

βk =
1

N
(ck−1 − ck) = αk−1 − αk. (22)

Letting α = [α0, α1, . . . , αNL−1]
T and β = [β0, β1, . . . , βNL−1]

T , we can put (20) in matrix form

as

x(k0) = h(α+ εβ) + n(k0) (23)

where n(k0) = [n(k0), n(k0 + 1), . . . , n(k0 + NL − 1)]T is the noise vector. It is worth noting

that vector α is totally specified by the UW elements collected into aUW , while β depends

on the sequence {a−1, a0, . . . , aL−1}, which is known except possibly for a−1. To simplify the

discussion we set a−1 = 0, which amounts to assuming that a null pilot symbol is inserted in

front of the UW. This way, the entries of α and β can be considered as known quantities at the

receiver.

The LS estimation procedure is now applied to vectors x(k̃0) (with k̃0 ∈ Ik0) for jointly

retrieving the synchronization parameters {k0, ε, h}.
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B. Least-squares estimation

From the mathematical model of x(k0) given in (23), the LS estimate of {k0, ε, h} is obtained

by looking for the global minimum of the objective function

ΦLS(k̃0, ε̃, h̃) =
∥∥∥x(k̃0)− h̃(α+ ε̃β)

∥∥∥2 . (24)

The minimum is found through the following procedure. We begin by keeping k̃0 fixed and let ε̃

and h̃ vary. Hence, putting to zero the derivatives of ΦLS(k̃0, ε̃, h̃) with respect to ε̃ and h̃ yields

ε̂(k̃0) =
Av(k̃0)− Cu(k̃0)

Bu(k̃0)− Cv(k̃0)
(25)

ĥ(k̃0) =
Bu(k̃0)− Cv(k̃0)

AB − C2
(26)

where u(k̃0) and v(k̃0) are obtained from the observation vector x(k̃0) as

u(k̃0) = αTx(k̃0) (27)

v(k̃0) = βTx(k̃0) (28)

while the coefficients

A = ‖α‖2 (29)

B = ‖β‖2 (30)

C = αTβ (31)

can be precomputed and stored in the receiver. We proceed further by plugging the results (25)

and (26) back into (24). This yields the LS metric for the estimation of k0 in the form

ΨLS(k̃0) =
∥∥∥x(k̃0)

∥∥∥2 − Av2(k̃0) +Bu2(k̃0)− 2Cu(k̃0)v(k̃0)

AB − C2
. (32)

As a final step, we suggest to normalize ΨLS(k̃0) to the energy
∥∥∥x(k̃0)

∥∥∥2 of the sliding observation

window. Such an operation has a couple of advantages. On one hand, it allows one to control the

dynamic range of the metric, which otherwise increases with NL. On the other hand, extensive

simulations indicate that the normalization process leads to improved system performance. The

estimate of k0 is eventually obtained as

k̂0 = arg max
k̃0∈Ik0

{
ΓLS(k̃0)

}
. (33)
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with

ΓLS(k̃0) =
Av2(k̃0) +Bu2(k̃0)− 2Cu(k̃0)v(k̃0)

(AB − C2)
∥∥∥x(k̃0)

∥∥∥2 . (34)

Once k̂0 is available, it is used in (25) and (26) to get the estimates of ε and h. We refer to the

above procedure as the least-squares estimator (LSE) of the timing offset and signal amplitude.

C. Remarks

1) Although derived for a general oversampling factor N , LSE can provide joint bit and frame

synchronization from symbol-spaced samples (N = 1). This makes it particularly attractive for

fast timing recovery in high-speed FSO communications. After a careful review of the related

literature, we were not able to find any other scheme exhibiting such favourable advantages.

2) The aforementioned features of LSE are a consequence of the signal model shown in (23).

This means that this scheme is suitable for OOK transmissions, while it cannot be applied in

the presence of bandlimited pulse shaping and/or multilevel signaling formats.

3) An alternative approach for timing acquisition is to split the bit and frame synchronization

tasks into two successive stages. In particular, bit synchronization can be firstly accomplished by

resorting to any conventional NDA-OL scheme, as for example the celebrated Oerder and Meyr

estimator (OME) reported in [27]. This provides a timing estimate which is subsequently used to

adjust the phase of the sampling device. Frame acquisition is eventually acquired by correlating

the symbol rate samples with a local copy of the UW. Compared to LSE, this approach results

into a prolonged acquisition as a consequence of its two-stage structure. Furthermore, all the

available NDA-OL timing estimators require a large enough oversampling factor, which may be

a serious concern in FSO applications.

4) The joint estimation of the timing and channel parameters {k0, ε, h} was previously inves-

tigated in [25] for bandlimited optical intensity channels. The resulting scheme, denoted as the

Gappmair estimator (GE), is based on the ML estimation principle and can easily be adapted

to OOK transmissions as well. It basically employs a grid-search to locate the maximum of

the correlation between the UW and the received sample stream. A parabolic interpolation is

eventually used for a fine identification of the correlation peak A major drawback of this method

is that a sufficiently large oversampling factor must be selected to avoid aliasing problems.
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TABLE I

COMPUTATIONAL REQUIREMENTS OF THE DIFFERENT ESTIMATORS

Estimators Number of flops per symbol period

LSE N(NL0 + LT + 11)

GE N(NL0 − 1)

OME L0 + 4N − 1

D. Complexity analysis

In assessing the processing requirement of LSE, we observe that the entries of α and β belong

to the set {−1/N, 0, 1/N}, so that no multiplication is needed to compute u(k̃0) and v(k̃0) from

(27) and (28). In particular, denoting by L0 the number of unitary symbols in aUW , it turns out

that u(k̃0) is obtained with NL0−1 additions, while v(k̃0) is evaluated through LT −1 additions,

where LT is the overall number of transitions 1 → 0 and 0 → 1 in the entries of aUW . As for

the signal energy
∥∥∥x(k̃0)

∥∥∥2, it can be recursively updated by means of the following iterative

equation ∥∥∥x(k̃0)
∥∥∥2 =

∥∥∥x(k̃0 − 1)
∥∥∥2 + x2(k̃0 +NL− 1)− x2(k̃0 − 1) (35)

with only two multiplications and two additions. Assuming that the coefficients A,B,C are

available, the metric ΓLS(k̃0) is next obtained with 7 supplementary products and 2 additions.

The computation of ε̂(k̂0) and ĥ(k̂0) is not accounted for since these quantities are only evaluated

once at the end of the estimation procedure. Summarizing all the above results, it turns out that

the overall complexity of LSE amounts to N(NL0 +LT + 2) additions plus 9N multiplications

for each symbol period.

The timing metric employed by GE is the oversampled correlation between the APD photocur-

rent signal and a local copy of the UW, which is accomplished through N(NL0 − 1) additions

every symbol period. As for OME, it requires 2 real multiplications plus 2 real additions for

each received sample. Hence, performing timing synchronization through OME followed by the

symbol rate correlation with the UW requires 2N multiplications and L0 + 2N − 1 additions

for each symbol interval. The complexity of the investigated schemes is summarized in Tab. I

in terms of floating point operations (flops).
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IV. CRB ANALYSIS

It is interesting to compare the performance of LSE with the relevant CRB. While the

derivation of LSE has been previously conducted without taking the presence of shot noise

into account, we now consider a more realistic scenario where the noise power is modeled as

reported in (19). Inspection of (7) reveals that the power spectral density of the shot noise is

strictly related to the channel fading coefficient h and the APD noise figure F . Although such a

relationship can reduce the number of unknown parameters involved in the estimation procedure,

it is not considered in the subsequent analysis. The reason is that in practice only the nominal

value of F is known, while its exact value is not available due to long-term fluctuations arising

from possible modifications of the operating conditions. Random fluctuations are also expected

in the terms ith and M appearing in (5), which make N0 an unknown quantity. Putting these

facts together, we conclude that the terms {h,N0, N1} can reasonably be treated as independent

unknown parameters. Accordingly, in this section we evaluate the CRB for the joint estimation

of {ε, h,N0, N1}. Such a bound is not available in the literature and represents a major outcome

of our study. In the foregoing analysis, we assume that the integer-valued parameter k0 has been

successfully detected and, without any loss of generality, is fixed to zero. Furthermore, we let

x(k0) = x to simplify the notation.

Putting k0 = 0 into (16) and (19), yields

x(k) =
h

N
dk(ε) + n(k) (36)

where the noise terms {n(k)} are Gaussian distributed with zero-mean and variance

σ2
n(k, ε,N0, N1) =

N0

2N
[1− dk(ε)] +

N1

2N
dk(ε). (37)

Hence, the log-likelihood function (LLF) of x is given by

Λ(ε, h,N0, N1) = −1

2

NL−1∑
k=0

{
ln[σ2

n(k, ε,N0, N1)] +
[xk − hdk(ε)/N ]2

σ2
n(k, ε,N0, N1)

}
. (38)

The Fisher information matrix (FIM) stemming from Λ(ε, h,N0, N1) is computed in Appendix

A. Unfortunately, its expression is rather cumbersome and cannot be inverted in a closed-form.

The analysis becomes much easier when ε = 0. To see how this comes about, we observe that

such a specific situation leads to dk = ck and

σ2
n(k, ε,N0, N1) =

N0

2N
(1− ck) +

N1

2N
ck. (39)
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Furthermore, we define the two sets U0 = {k ∈ {0, 1, . . . , NL − 1} : ck = 0} and U1 = {k ∈

{0, 1, . . . , NL− 1} : ck = 1}, collecting the indices k for which the pilot symbol ck is either 0

or 1. Let NL1 and NL0 be the cardinality of U1 and U0, respectively, where L0 and L1 denote

the number of unitary and null symbols in aUW . Then, we can rewrite (72)-(75) as

[Fϕ]1,1 =
(N1 −N0)

2

2

(
K0

N2
0

+
K1

N2
1

)
+

2h2

N

(
K0

N0

+
K1

N1

)
(40)

[Fϕ]2,2 =
2L1

N1

(41)

[Fϕ]3,3 =
NL0

2N2
0

(42)

[Fϕ]4,4 =
NL1

2N2
1

(43)

where

K0 =
∑
k∈U0

c2k−1 =
∑
k∈U0

ck−1 (44)

and

K1 =
∑
k∈U1

(ck−1 − 1)2 =
∑
k∈U1

(1− ck−1) = NL1 −
∑
k∈U1

ck−1. (45)

Collecting (44) and (45), yields

K0 −K1 =
NL−1∑
k=0

ck−1 −NL1 = c−1 − cNL−1 (46)

which reduces to K0 = K1 when c−1 = cNL−1. We also observe that K0 represents the number

of transitions 1→ 0 in the UW sequence and its maximum value is thus L/2. In the following

derivations, we put K0 = K1 = ρL/2, with ρ ≤ 1. Hence, we can rewrite (40) as [Fϕ]1,1 = ρµε,

with

µε =
L

4

[
(N1 −N0)

2(N2
0 +N2

1 )

N2
0N

2
1

+
4h2(N0 +N1)

NN0N1

]
(47)

while the other entries of the FIM shown in (76)-(80) become

[Fϕ]1,2 = − ρhL
NN1

(48)

[Fϕ]1,3 =
ρL(N1 −N0)

4N2
0

(49)

[Fϕ]1,4 = −ρL(N1 −N0)

4N2
1

(50)

[Fϕ]2,3 = [Fϕ]2,4 = [Fϕ]3,4 = 0. (51)



15

Summarizing all the above results, we note that the FIM takes the form

Fϕ =

 ρµε ρuT

ρu A

 (52)

where A is a diagonal matrix

A =diag
{

2L1

N1

,
NL0

2N2
0

,
NL1

2N2
1

}
(53)

and u is a tridimensional vector

u =

[
− hL

NN1

,
L(N1 −N0)

4N2
0

, − L(N1 −N0)

4N2
1

]T
. (54)

From (52), the inverse of Fϕ is found to be

F−1ϕ =

 CRB(ε) −CRB(ε) · vT

−CRB(ε) · v B

 (55)

where the bound for the estimation of ε is

CRB(ε) =
1

ρµε − ρ2(uTA−1u)
(56)

with

uTA−1u =
L2

8N

[
4h2

NN1L1

+ (N1 −N0)
2

(
1

L0N2
0

+
1

L1N2
1

)]
. (57)

Furthermore, we have v = ρ · (A−1u) and

B =

(
A− ρ

µε

· uuT

)−1
= A−1 + [CRB(ε)]vvT . (58)

The diagonal elements of B provide the bounds for the estimation of (h,N0, N1) in the form

CRB(h) =
N1

2L1

+

(
ρLh

2NL1

)2

CRB(ε) (59)

CRB(N0) =
2N2

0

NL0

+

[
ρL(N1 −N0)

2NL0

]2
CRB(ε) (60)

CRB(N1) =
2N2

1

NL1

+

[
ρL(N1 −N0)

2NL1

]2
CRB(ε) (61)

which generalize the corresponding results obtained in [23] in the presence of ideal bit synchro-

nization.
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TABLE II

APD PARAMETERS

Parameter Value

ith 10−12 [ A/
√
Hz]

F 5

R 0.9 [ A/W]

M 20

V. SIMULATION RESULTS

A. Simulation set-up

Computer simulations have been run to assess the performance of the proposed synchronization

scheme in a typical FSO scenario with a signalling rate of 10 Gbps. Direct detection of OOK

symbols is achieved through an APD characterized by the parameters listed in Tab. II. The

photocurrent signal is affected by both thermal and shot noise, with one-sided power spectral

densities N0 and Nsh as specified in (5) and (7), respectively. In particular, we observe that N0

only depends on ith and M , which are kept fixed throughout simulations. On the other hand,

combining (4) and (7) yields

Nsh =
4FR

e
Pavg (62)

where Pavg is varied in the subsequent analysis so as to assess its impact on the system per-

formance. Each data frame is composed by a payload section of 9L = 1143 OOK symbols

preceded by the UW. The latter is a maximum-length sequence with L1 = 64 and L0 = 63.

B. Performance assessment

A failure event is declared to occur whenever the timing estimation error is greater than

T/2 in magnitude, which corresponds to an incorrect detection of the UW position within the

observation window. The failure probability is thus defined as

Pf = Pr {|τ̂ − τ | > T/2} (63)

where τ is given in (14) and

τ̂ = (k̂0 + ε̂)Tc. (64)
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Fig. 1. Probability of failure as a function of Pavg for N = 1 and ε = 0, 0.25 and 0.5.

Fig. 1 illustrates Pf as a function of Pavg, expressed in decibel milliwatts (dBm), for N = 1 and

ε = 0, 0.25 and 0.5. The curve labeled IBS (Ideal Bit Synchronization) is obtained under genie-

aided FFO estimation (i.e., ε̂ = ε = 0) and looking for the maximum of the objective function

(24) with respect to (k̃0, h̃) after a normalization by
∥∥∥x(k̃0)

∥∥∥2. As is seen, LSE achieves the best

performance with ε = 0. In such a case, the loss with respect to the IBS curve is less than 1

dB, but increases to 3 dB when ε = 0.5. Intuitively speaking, the dependence of Pf on ε could

be ascribed to the significant amount of intersymbol interference (ISI) that affects the entries of

x(k0) as ε approaches ±0.5.

Although the main advantage of LSE is the possibility of operating with symbol-spaced

samples, it is interesting to assess the impact of the oversampling factor N on the system

performance. In Fig. 2 we show Pf versus Pavg when ε is uniformly distributed over [0, 1) and

N = 1, 2 and 4. These results indicate that a gain of nearly 1 dB is obtained in passing from

N = 1 to N = 2, while no significant improvement can be attained by further increasing the

oversampling factor. Observing that the use of symbol-spaced samples as observation variables

results into a tolerable loss of the LSE performance, a good trade-off between system complexity

and detection capability is achieved by choosing N = 1.

In Fig. 3 we compare LSE, GE and OME in terms of Pf vs. Pavg. The FFO is still uniformly

distributed over [0, 1) and each estimator operates with a specific value of N . In particular, the
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Fig. 2. Probability of failure as a function of ε, for three different values of Pavg and N = 1 or 2.

LSE curve is obtained with N = 1, while N = 2 is chosen for GE because this scheme

cannot work in the absence of any signal oversampling. As for OME, it first retrieves bit

synchronization by applying the algorithm in [27] to an observation window of length LT .

In this stage N = 4 is used, which is the minimum oversampling factor leading to satisfactory

performance. Frame detection is next accomplished using symbol-spaced samples taken at the

adjusted time instants. We see that LSE outperforms the other schemes, while dispensing from

any oversampling operation. At Pf values in the order of 10−3, the gain with respect to OME

is nearly 1.5 dB and increases to 3 dB when considering GE.

The accuracy of the channel estimates provided by LSE is measured in terms of their nor-

malized mean square estimation error (NMSEE), which is defined as

NMSEE(h) = E


(
ĥ− h
h

)2
 . (65)

In Fig. 4 we report NMSEE(h) for LSE, GE and OME as a function of Pavg. For each

considered scheme, the oversampling factor is the same as in Fig. 3 and ε is still uniformly

distributed over the range [0, 1). The relevant CRB, computed from numerical inversion of the

FIM, is also shown as a benchmark. It is worth pointing out that these results have been obtained

by assuming ideal detection of the UW position, i.e., letting k̂0 = k0. The reason is that measuring

the channel estimation accuracy in the presence of a failure event is totally useless, as in such
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Fig. 3. Probability of failure for LSE, GE and OME as a function of Pavg, with ε uniformly distributed in [0, 1).
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Fig. 4. Normalized MSE for channel gain estimation as a function of Pavg, with ε uniformly distributed in [0, 1). Comparisons

between LSE, GE and OME.
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Fig. 5. Normalized MSE for the estimation of τ as a function of Pavg, with ε = 0 and N = 1 or 2.

a case the data payload is lost anyway due to the incorrect frame acquisition. As is seen, the

accuracy of LSE is close to the CRB at any value of Pavg (conditioned on k̂0 = k0), which is

quite surprising since the bound has been evaluated by considering the presence of shot noise

in the signal model, while the noise statistics are totally overlooked by LSE. This fact suggests

that no useful information about the channel coefficient can be extracted from the shot noise

statistics. The OME performs similarly to LSE, except for an irreducible floor that appears in the

NMSEE curve at large values of Pavg. Such a floor is more evident with GE as a consequence of

the parabolic interpolation employed by this scheme, which results into some estimation error

even in the absence of noise. Extensive computer simulations (not shown for space limitations)

reveal that the accuracy of LSE in terms of NMSEE(h) is virtually independent of N . This fact

can easily be explained for ε = 0 and in the absence of shot noise, since in these hypotheses the

output from an IDF that operates at symbol rate is a sufficient statistic for the ML estimation of

h. Our measurements suggest that a similar conclusion also applies in a more general setting,

where ε 6= 0 and the received samples are plagued by shot noise.

We now present a last set of experiments illustrating the accuracy of the timing estimates pro-

vided by LSE. As a performance indicator, we use the mean square estimation error normalized
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to the symbol period T , which is defined as

NMSEE(τ) = E

{(
τ̂ − τ
T

)2
}

(66)

with τ̂ given in (64). Fig. 5 shows NMSEE(τ) as a function of Pavg for ε = 0 and N = 1 or

2. These results are still obtained under the assumption of ideal UW detection (k̂0 = k0), with

the CRB curves taken from (56). In contrast to what was observed for the channel estimates,

parameter N has a significant impact on the timing estimation accuracy. Indeed, a gain of

approximately 3 dB arises when passing from N = 1 to N = 2 for both the experimental

curves and the relevant bounds. When compared to the CRB, LSE exhibits a remarkable loss

of performance, which increases with Pavg. To see how this comes about, consider the special

case ε = 0, with a bit transition 1 → 0 or 0 → 1 occurring at t = kTc. In such a situation,

two consecutive IDF outputs x(kTc) and x(kTc + Tc) placed across the transition are not only

characterized by a different mean value, but also exhibit different power noise levels. Such

an abrupt variation of the noise power provides useful information for the timing recovery

process which is accounted for in the CRB, while it is not exploited by LSE, which operates

without taking the noise statistics into account. In our simulation set-up, the amount of shot

noise introduced by the APD increases with the average received optical power as specified in

(62). This justifies why, for ε = 0, LSE performs poorly with respect to the bound as Pavg grows

large.

In Fig. 6 we report NMSEE(τ) versus the fractional timing error for N = 1 and three different

values of Pavg. It is worth observing how the performance of LSE is virtually independent of

ε, while the relevant CRB steadily increases with ε and comes close to the corresponding LSE

curve when ε = 0.5. We can justify such a strong dependence of the CRB on ε by recalling

that, in general, two IDF outputs placed around a bit transition exhibit a difference in their

average noise power that may prove useful for the purpose of timing recovery. Such a difference

achieves a maximum value of (N1 − N0)/(2N) when ε = 0 and progressively reduces as ε

approaches 0.5. This fact is easily seen if we consider the extreme situation in which N = 1,

ε = 0.5 and the UW is composed of alternating zeroes and ones. In this scenario, each entry of

the noise vector n(k0) has the same average power σ2
n = (N0 +N1)/(2N), so that any possible

information provided by the shot noise regarding the bit transition is totally lost. This means

that in the proximity of ε = 0.5 there is little to gain from exploiting the statistics of n(k0) and,

consequently, LSE performs close to the CRB.
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Fig. 6. Normalized MSE for the estimation of τ as a function of ε, for three different values of Pavg and N = 1.
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Fig. 7. Normalized MSE for the estimation of τ as a function of Pavg with ε uniformly distributed in [0, 1). Comparisons

between LSE, GE and OME.
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In Fig. 7, LSE is compared with GE and OME in terms of NMSEE(τ) vs. Pavg. The over-

sampling factor is N = 2 for GE and N = 4 for OME, while LSE operates at symbol rate

(N = 1). Since the fractional frequency offset ε is uniformly distributed over [0, 1), the CRB is

obtained by averaging the expression (56) with respect to ε. At sufficiently large SNR values,

we see that the accuracy of LSE is less than 2 dB far from the bound. This seems in contrast to

what was observed in Fig. 5, where the LSE and the CRB lines are characterized by different

slopes. Such an apparent disagreement can be explained by recalling that the results of Fig. 5

are obtained with ε = 0, which corresponds to a situation where the loss of LSE with respect to

the bound is maximum. Hence, when ε varies in the interval [0, 1), we logically expect a certain

reduction of this loss, thereby justifying the results of Fig. 7. It is worth noting that both the

OME and GE curves exhibit an irreducible floor at large values of Pavg. In the medium SNR

regime, OME and LSE perform similarly, while GE is marginally better for Pavg < −50 dB. In

the latter case, however, the accuracy of all investigated schemes is unsatisfactory and the only

possible option to achieve acceptable performance is an increase of the UW length.

C. Complexity comparison

We complete our study by comparing the investigated schemes in terms of their computational

complexity. In our simulation set-up we have L0 = LT = 63, while the overampling factor is

N = 1 for LSE, N = 2 for GE and N = 4 for OME. Combining these figures with the results

shown in Tab. I, it turns out that LSE requires 137 flops per symbol period, while GE and OME

needs 250 and 78 flops, respectively. Although OME is less demanding than the other schemes

in terms of number of required flops, it operates with an oversampling factor N = 4, which

represents a strong disadvantage in high-rate FSO communications. A similar drawback emerges

with GE, whose application requires the highest number of flops in conjunction with N = 2. In

contrast, LSE can provide fast synchronization with reasonable complexity and without requiring

any signal oversampling.

VI. CONCLUSIONS

We have addressed the problem of channel estimation, timing recovery and frame acquisition

in a packet-based FSO communication system employing an OOK modulation format. Since

an APD is employed at the receiver as a photodetector, the noise variance is signal-dependent

due to the presence of shot noise. By applying the LS estimation principle, we have derived
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a scheme, named LSE, which can provide estimates of all the unknown parameters in a joint

fashion, so as to speed-up the synchronization process as much as possible. A significant part of

this work has been devoted to the evaluation of the CRB for the joint estimation of the unknown

parameters, including the signal dependent noise variances. Observing that LSE operates by

ignoring the noise statistics, the CRB has proved to be useful for assessing the loss incurred

by LSE with respect to an optimum ML synchronization scheme that can effectively exploit the

abrupt variations of the noise power as a consequence of a bit transition.

Computer simulations conducted in the presence of thermal and shot noise indicate that the

proposed method performs well and, in many situations, its accuracy is close to the relevant

CRB. Compared to alternative timing recovery schemes that need signal oversampling, a major

advantage of LSE is the possibility of operating with symbol-spaced samples, while requiring

an affordable complexity in terms of number of flops. This makes LSE particularly attactive for

FSO transmissions, where the symbol rate is extremely high and the cost for signal oversampling

may be relevant in terms of hardware equipment.

VII. APPENDIX A

In this Appendix we highlight the major steps leading to the FIM for the estimation of the

unknown parameters ϕ = {ε, h,N0, N1}. This matrix has entries

[Fϕ]k1,k2 = −E
{

∂2Λ(ϕ)

∂ϕ(k1)∂ϕ(k2)

}
1 ≤ k1, k2 ≤ 4 (67)

where Λ(ϕ) is the LLF in (38), while ϕ(k) denotes the kth element of ϕ. Bearing in mind (17)

and (37), we get

∂dk(ε)

∂ε
= bk (68)

∂σ2
n(k, ε,N0, N1)

∂ε
=

(N1 −N0)bk
2N

(69)

∂σ2
n(k, ε,N0, N1)

∂N0

=
1− dk(ε)

2N
(70)

∂σ2
n(k, ε,N0, N1)

∂N1

=
dk(ε)

2N
. (71)

Then, substituting (38) into (67) and using (68)-(71), after lengthy computations the entries of

the FIM are found to be
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[Fϕ]1,1 =
(N1 −N0)

2

8N2

NL−1∑
k=0

b2k
σ4
n(k, ε,N0, N1)

+
h2

N2

NL−1∑
k=0

b2k
σ2
n(k, ε,N0, N1)

(72)

[Fϕ]2,2 =
1

N2

NL−1∑
k=0

d2k(ε)

σ2
n(k, ε,N0, N1)

(73)

[Fϕ]3,3 =
1

8N2

NL−1∑
k=0

[1− dk(ε)]2

σ4
n(k, ε,N0, N1)

(74)

[Fϕ]4,4 =
1

8N2

NL−1∑
k=0

d2k(ε)

σ4
n(k, ε,N0, N1)

(75)

[Fϕ]1,2 =
h

N2

NL−1∑
k=0

dk(ε)bk
σ2
n(k, ε,N0, N1)

(76)

[Fϕ]1,3 =
(N1 −N0)

8N2

NL−1∑
k=0

[1− dk(ε)]bk
σ4
n(k, ε,N0, N1)

(77)

[Fϕ]1,4 =
(N1 −N0)

8N2

NL−1∑
k=0

dk(ε)bk
σ4
n(k, ε,N0, N1)

(78)

[Fϕ]2,3 = [Fϕ]2,4 = 0 (79)

[Fϕ]3,4 =
1

8N2

NL−1∑
k=0

dk(ε)[1− dk(ε)]

σ4
n(k, ε,N0, N1)

. (80)
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