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Abstract 

Energy efficiency in buildings is a key issue in the current energy transition. In order to reduce building energy 
consumption, users’ behaviour and the perception of indoor environmental comfort must be taken into account; these 
aspects are inextricably linked to energy demand, consumption and related costs. In this paper, we present the 
methodological framework, technological solutions and outcomes of the ComfortSense project. ComfortSense aimed at 
decoupling energy demand from indoor comfort. We focused on Heating, Ventilating and Air Conditioning (HVAC) 
systems in buildings, on users’ behaviour and on comfort perception by treating buildings as socio-technical systems. Our 
approach which was multidisciplinary and included the contribution of sociologists, physicists and computer scientists 
was based on Internet of Things technologies, on a Living Lab design and testing process and on a Crowdsensing approach. 
Physical parameters (objective variables), such as temperature, CO2 concentration and relative humidity, were measured 
by a Wireless Sensor Network and by wearable devices, while the users’ perception of comfort (subjective variables) were 
recorded as real-time feedback through a Mobile App in three pilot buildings of the University of Turin, engaging about 
a thousand buildings’ users (professors, researchers, students and employees). Objective and subjective variables were 
correlated through an adhoc Direct Virtual Sensor. Thanks to the Direct Virtual Sensor forecasting we demonstrated that, 
adopting an adaptive indoor comfort management, users’ comfort can be remarkably improved while reducing the 
energy consumption of HVAC systems. 

 
 1. Introduction  
In the last decades, the European Union has begun a long path to reduce greenhouse gas (GHG) emissions. The building 
sector, despite the huge global effort from both the governance and the international academic community, still remains 
one of the most impactful; in fact, 40% of the total energy consumption of the entire European Union derives from the 
building sector and half of this consumption is used for heating, ventilation and air conditioning (HVAC) systems [1–3]. 
While the reduction of GHG emissions in new buildings has already been regulated by the European Union [3] i.e. all new 
buildings must be nearly zero-energy (NZEB) by the end of 2020 and all new public buildings must be NZEB by the end of 
2018 energy saving and GHG emission reduction in existing buildings is still an open research challenge. In fact, within 
the EU Energy Efficiency Plan 2011 [4], the European Union planned to refurbish only around 3% (by floor area) of the 
existing buildings per year, implying a renovation of the whole building stock in over 30 years. This regulation, as well as 
the high economic cost that would have to be faced to renovate existing buildings, opened research opportunities. 
Indeed, in last decades, researchers and practitioners primarily focused on the improvement of the Building Energy 
Management Systems (BEMS). For instance, the widespread use of efficient BEMS has been estimated that may save only 
up to the 8% of the total energy consumption in the entire EU [1]. In particular, all around the world researchers started 
to investigate ways to automatize the HVAC systems in buildings, exploiting various types of algorithms and approaches 
such as the Model Predictive Control (MPC). MPC was widely used since the 1980s in the industrial sector, in chemical 
plants and oil refineries. The state-of-the-art for BEMS is based on predictive models able to forecast the energy 
consumption and to optimize it taking into account a few constraints (e.g. energy consumption, indoor comfort) starting 
from several input variables such as the outdoor temperature, the occupancy, the electricity prices and so on. A typical 
constraint is the comfort of occupants [5] . Various methods and algorithms have been studied: Stochastic Model 
Predictive Control (SMPC) [6], Artificial Neural Network (ANN) [7] or Multiagent System [8]. Generally, predictive 
algorithms were based on weather prediction [9] or occupancy data [10], considering the energy saving challenge only 



from a technical point of view. Despite the great effort in reducing energy consumption in existing buildings, in literature, 
there is still a lack of investigations which tackle the energy challenge from a different point of view, i.e. considering 
buildings as socio-technical systems, and which focus on users’ engagement, on user behavioural change for energy 
saving [11] and on predictive adaptive comfort in real-time. The majority of researches focused on office buildings or on 
ad-hoc surveys [12] or on simulations [13] . For instance, Kimetal. [12] tested a Personal Comfort Model to predict indoor 
comfort of 38 occupants in an office building, while Carreira et al. [13] prototyped a mobile device solution and tested 
and evaluated it through simulation. In this paper we present the results of the ComfortSense research project based on 
an innovative methodology which exploited the potentiality of the Mobile CrowdSensing and the Living Lab approach to 
predict users’ behaviour and indoor comfort through a predictive algorithm. The focus of Comfortsense (crowdSENSing 
for a sustainable COMFORT) was the decoupling of building energy consumption from the indoor thermal comfort of 
their occupants. In other words, the aim of the project was, first, to create a fruitful dialogue and interaction among 
people, the buildings and the energy management in order to increase the level of users’ comfort while reducing the 
energy consumption and, second, to test and validate a robust predictive algorithm, i.e. the Direct Virtual Sensor, able to 
predict users’ indoor comfort from the measurement of the indoor temperature, the relative humidity and the 
concentration of CO2. By adopting a multidisciplinary approach and leveraging Internet of Data and Internet of Things 
technologies, as well as exploiting a Living Lab approach, with the ComfortSense project we developed and tested an 
innovative approach, taking into account both technical components (i.e. the buildings itself, the HVAC system, as well 
as sensors and the IT infrastructure) and the social components (i.e. the users, the energy management and the technical 
staffs) to engage users’ for the energy management of large public buildings. We approached to the energy saving 
challenge, for existing buildings, considering it not only from a technical point of view but we considered that people and 
“places” interact constantly, affecting each others and consequently the energy consumption. For this reasons, we 
developed an IT infrastructure composed by (i) a Mobile App for Smartphones, (ii) a Wireless Sensor Network (WSN) 
(fixed and wearable sensors), (iii) an online dashboard and (iv) a few predictive algorithms, i.e. the Direct Virtual Sensors 
(DVSs) in order to exploit the huge potential of the Mobile Crowd Sensing (MCS) approach [14] ; subsequently, we tested 
it during a Living Lab of several months in order to engage buildings’ users in the most natural way into an “aware” energy 
management. Finally, we exploited a robust predictive algorithm, the Direct Virtual Sensor, trained during the Living Lab 
from users’ indoor comfort feedback in order to automatically manage the HVAC system of a building exploiting a 
collective intelligence. Exploiting the smartness of the collective intelligence, as defined by Surowiecki [15], i.e. the crowd 
is smarter than any single member of a group, we improved and generalized the existing adaptive comfort approaches. 
During the project, a thousand occupants (students, researchers, academic and technical staffs) in three buildings of the 
University of Turin were engaged to participate in a Living Lab [16] to co-design the IT solution and to test it for six months, 
in order to stimulate a behavioural change process towards a reduction in energy consumption. In particular, our 
contributions are the following: (1) we describe a technological solution for the management of a sociotechnical system 
by allowing interactions among users, the buildings itself and the energy management (2) we show that our Direct Virtual 
Sensor can achieve a satisfactory performance in predicting users’ feedback, especially for extreme values, and it can 
help in simulating users avoiding time-consuming users’ engagement campaigns (3) we show how user comfort can be 
improved, at the same time reducing energy consumption, (4) we discuss our experience with the living lab methodology 
and user engagement, providing suggestions for future researchers. This paper is structured as follows. In Section 2 we 
describe the current academic literature framework, introducing the concept of Indoor Adaptive Comfort, the research 
challenge on the decoupling of energy consumption from indoor thermal comfort, the Mobile Crowd Sensing approach 
and the Living Lab methodology. In Section 3 we describe in detail how we exploited the Living Lab methodology to co-
design and assess our solution, the Mobile App interface as well as the crowdsensing surveys we adopted. In Section 4 
we present the project results in terms of IT infrastructure (WSN and wearable device, MCS and Mobile App, DVS and 
forecasting), users engaged and surveys on thermal comfort. Moreover, we discuss key takeaways, opportunities and 
difficulties encountered as well as some best practices to adopt. Finally, in Section 5 , we frame the results of the project 
in terms of users engagement and adaptive indoor comfort, giving some suggestions on further improvements. 

2. Background  
 



2.1. Indoor comfort  
In the literature, indoor environmental comfort of occupants has been widely studied for decades. In the ’70s, the so-
called rational approach focused on developing thermal comfort indices such as the Fanger’s Predictive Mean Vote (PMV) 
[17] which summarizes the occupants comfort on a scale from −3 to +3 where −3 is cold, 0 is neutral and +3 is hot and 
the range from -1 to +1 represents the optimal thermal comfort. The PMV revealed several complexities and difficulties 
in measuring a few specific variables (e.g. metabolic rate, clothing insulation) in real daily life conditions. In fact, in later 
years, several studies like those by Nicol and Humpreys [18] , demonstrated that occupants declared a wider thermal 
comfort range than Fanger’s results. For decades, re-searchers investigated correlations, interdependencies and relation-
ships among indoor occupant thermal comfort and outdoor temperature [19] , indoor temperature and humidity [20] , 
the impact of different seasons and climate zones [21] . Moreover, various re-search studies and field surveys 
demonstrated how the spreading of HVAC systems decoupled user thermal comfort from outdoor temperature [22]. In 
fact, the occupant thermal comfort tempera-ture range is almost constant with respect to outdoor temperature within 
buildings with HVAC systems while, in naturally ventilated buildings, occupant thermal comfort increases as outdoor 
temperature raises and the opportunity to reduce cooling energy demands by designing natural or hybrid ventilated 
buildings was highlighted [23] . In fact, Humphreys and Nicol [22] showed how within natu-rally ventilated buildings 
indoor comfort and the comfort temperature ( T c ) is directly proportional to the outdoor temperature ( T o ) and follows 
approximately the relation T c = 13 . 5 + 0 . 54 T o . Consequently, during the ’90s and the first decade of the new century 
the new concept of Adaptive Thermal Comfort emerged [24] . The fundamental principle of Adaptive Thermal Comfort 
states “If a change occurs such as to produce discomfort, people react in ways which tend to restore their comfort” [25] 
. By assuming this principle, the relationship between user thermal comfort and the surrounding environment was 
investigated demonstrating that thermal comfort depends on the context and on the interactions between occupants 
and buildings [26]. For instance, Leaman and Bordass have revealed that occupants tend to “forgive” more if they have 
more control on the building itself [27]. 

2.2. Crowdsensing  
In recent years, a new approach has emerged, based on participatory sensing [28] and on Wireless Sensor Networks. 
Crowdsensing is an emergent applied research field which exploits human and machine intelligence in order to collect 
data from a “crowd” of target citizens. Surowiecki [15] argued that a crowd may often take better decisions than any 
single group member. Suriowiecki, as well as Malone et al. [29] with their definition of collective intelligence, identified 
four key qualities for crowd smartness: diversity in opinion, independence of thinking, decentralization and opinion 
aggregation. More recently a variant of Crowdsensing, the MCS approach, has been adopted in many research projects, 
mixing data gathered from mobile apps and data from mobile social networks. Bin Guo et al. [14] defined four key 
features for a well-designed MCS approach: (i) Citizen Participation (Explicit or Implicit), (ii) User Motivation, (iii) cleaning 
low quality data (e.g. fake profiles, wrong feedbacks, . . . ) and (iv) data mining. In the field of behavioural change for 
energy efficiency, the first two aspects be-come crucial. Crowdsensing, indeed, can gather data both engaging users 
(explicit) and without an action from the users (implicit), and an MCS approach has to be designed taking into account 
the degree of user involvement in the sensing process. With respect to User Motivation, instead, in order to engage a 
large number of users, a gamification process has to be exploited promising financial monetary gain, interest or 
entertainment, as well as promoting social and ethical reasons. Finally, with respect to the last two features, a human-
machine, human-building interaction has to be structured around a tradeoff between user control and system 
automation [30] , as in the work of Kamar et al. where probabilistic models were used to predict the behavior of workers 
during an online crowdsourcing process [31] .  
 
2.3. Behavioural change  
In recent years, crowdsensing for behavioural change has be-come a growing research field, which is however still largely 
un-explored. Morganti et al. [32] categorized behavioural change re-searches related to energy into three main areas: (i) 
environmental education; (ii) consumption awareness and (iii) pro-environmental behaviour (PEB). Different strategies 
have been applied for energy efficiency in buildings, from structural interventions [33] , such as the upgrade of 
technological infrastructure, to monitoring feed-back and psychological strategies [34] . A best practice consists in 
combining technological and psychological approaches [35] . Steg and Vlek’s [36] behavioural theory, for instance, 



identified four best practices to develop a PEB strategy: specific behaviour, analysis of involved factors, type of 
intervention and evaluation of its efficacy. Osbaldiston and Schott [34] , instead, defined four types of interventions to 
engage occupants for energy efficiency: structural interventions to upgrade technological infrastructures, informational 
strategies to increase user awareness, feedback to gather real-time users’ perception and social approaches to show 
“what others do” [37] . As explained in the previous paragraph, the best practice is to mix different strategies taking into 
account that, for user behavioural change, “knowing what to do” is not as effective as “knowing how to do” [38] . On top 
of that, according to Chatterton [39] , behavioural change can be studied through different perspectives: (i) economical, 
where cost-benefit calculation and rationality play a crucial role; (ii) psychological, where individual factors are 
prominent; (iii) sociological, where other variables, such as social, environmental and structural ones, can be taken into 
account; (iv) educational, where the focus is towards the learning experience. It is useful to consider different key aspects, 
mixing both individual and structural features. Since effort s towards behavioural change should take into account not 
only in-dividual characteristics but also structural features, it is fruitful to focus on the Triandis model [40] , where a 
crucial role is played by intention, which includes individual and social aspects, as well as habits which are strictly 
connected to daily routine and routinized behaviour. Finally, Triandis put facilitating condition in his model, highlighting 
that other features, such as organizational constraints, may affect users’ behaviour. Over the years, the behavior change 
issue in energy domain has been tackled also from a technological perspective, designing systems explicitly aimed at 
affecting the individual energy consumption [41–44]. 

2.4. Living Lab  
In the late ’90s, Living Labs (LLs) emerged as a new approach to engage citizens and stakeholders within research projects 
and innovation processes in order to design and test innovative technologies [45] . The main aim of Living Labs was to 
validate new technologies in real situations and environments, avoiding tests in a controlled environment such as a 
laboratory. In recent years, the Living Lab approach quickly spread within Higher Education Institutions and it is currently 
widely exploited worldwide for research projects. LL is a very general approach and it may be adopted and applied to any 
research field [46] ; the original idea emerged from the concept of “Every-day Computing” [47] and the “House of the 
Future”, a high-tech house where users, in an immersive environment, could test new technologies in an innovative way 
[45] . Since the early 20 0 0s, various applied research projects explored the op-opportunities for the LL approach. For 
instance, the University of Colorado built an “Adaptative House”, i.e. an innovative house able to forecast water usage, 
the user lighting preferences as well as user occupancy [48] ; an interactive office was developed at the Massachusetts 
Institute of Technology in order to analyze the natural interaction of users during their everyday life thanks to sensors, 
cameras and microphones [49] . Orr and Abowd, instead, created an Aware House at the Georgia Tech Living Labs, to 
analyze the human-machine interactions [47] . In the past 20 years, LL was defined as a methodology [50] , an 
environment [51] as well as a system [52] . Depending on the point of view the focus changes: from the environment 
point of view, the focus should be on user communities and IT infrastructure, from the methodology side, LL should 
highlight user engagement, while, from the system perspective, the aim should be analyzing, at the same time, the 
environment-users-objects interaction. From the definition “house of the future”, LL definition evolved and, nowadays, 
it is rather associated with the co-design process of new technologies. For instance, within the Corelabs Report, Living 
Labs Roadmap 2007–2010, 5 key principles were identified [52] : (1) “continuity”, to plan a long-term LL; (2) “openness”, 
to focus on the open engagement process; (3) “realism”, to reproduce real-world environment; (4) “empowerment of 
users”, to actively engage users; and (5) “spontaneity”, to reproduce everyday life situations in a way that does not affect 
user perception. On top of previous studies, in recent years, the European Commission defined the Living Lab as a “user-
driven open innovation ecosystem based on a business citizens government partnership which enables users to take an 
active part in the research and in the innovation process”[16] , highlighting the three fundamental aspects: (1) “the users” 
are involved in the design process to better discover emerging user behaviours; (2) “the partnerships” all relevant players 
and stakeholders are engaged thanks to partnerships among businesses, citizens, and local authorities, bridging the 
innovation gap between technology development and the user adoption of new products and services; and (3) “the 
research, development and innovation” for early assessment of the socio-economic implications of new technological 
solutions by demonstrating the validity of innovative services and business models. 



3. Methodology  
ComfortSense exploits the Living Lab approach (see Section 3.2 ) to involve all actors and stakeholders in an 
experimentation phase where the IT tools, technologies and comfort variables are codesigned and tested. The following 
tools and technologies are used to collect comfort-related data and foster behavioural change (see Section 3.1 ): (a) a 
Mobile App, to communicate the comfort perception and to engage occupants; (b) a Wireless Sensor Network composed 
of fixed sensors (temperature, humidity and CO2 concentration), iBeacons, an occupancy sensor and wearable devices, 
and (c) a Direct Virtual Sensor, namely an algorithm able to predict the level of comfort of the occupants based on the 
real-time values of temperature, humidity and CO2 , even in the absence of real-time feedback. The IT infrastructure and 
the flow of gathered data is described in Fig. 1 . The core of the infrastructure, the data gathering layer, was based on 
the WSN, used to collect the “objective” variables, and the Mobile App, exploited to gather the “subjective” data from 
users. All data were stored into a central repository (data storage level) and then used to feed the Direct Virtual Sensors 
(simulation layer). Afterward, the forecasting of the Direct Virtual Sensors (see Section 3.3 ) as well as the energy cost 
prediction from dynamic energy simulation (see Section 3.4 , optimization layer), together with user feedback and real 
time objective variables were exploited to develop an online Dashboard for the Energy Management of the University of 
Turin and the Mobile App interface for behavioural change (data visualization layer). Finally, energy and comfort 
forecasting were used to develop strategic decision support tool for energy management (decision support layer). The 
design process, as well as the selection of suitable rooms for sensor installation in the pilot buildings (see Section 3.6 ), 
were guided by use-case scenarios that involve users, spaces and the energy management (see Section 3.5 ). 

3.1. Behavioural change  
Following Chatterton [39] , we assumed that users’ beliefs and attitudes, added to external input such as communication 
campaigns or educational programs, were not enough to improve users’ behaviour related to energy consumption 
reduction in public buildings. In fact, buildings need to be redesigned in order to put users in condition to save energy by 
adopting more sustainable practices [53] . This is one of the reasons why ComfortSense aimed to act on both users’ 
awareness and technical aspects. In our approach, behavioural change was expected to occur due to the fostering of 
users’ actions within the socio-technical system. In other words, enhancing users’ capability to interact with the building 
should be the key to let them behave in more sustainable ways, during the project and after its end. People and places 
interact in everyday life, influencing the amount of energy required and consumed. Consumption takes place inside a 
socio-technical system, which implicates that in order to enable an energy efficiency process through behavioural change 
all the components of the system need to be taken into account. There are two macro components in the system, one 
technical and one social. The first one gathers the whole HVAC system (which involves infrastructure, energy flows, 
existing sensors...), the architectural features of the buildings, the existing technology (e.g. computers, coffee 
machines...). The social component, instead, refers to people with their behaviours, competences, comfort perception, 
environmental and energy awareness, habits, their relations with places and spaces and so on. Working exclusively on 
one component or one aspect of the macro component means excluding other relevant factors that could highly influence 
the whole process. In this sense, ComfortSense aimed to improve the socio-technical system as a whole, enhancing the 
information and communication flows among the ecosystem and enabling a behavioural change of the system toward a 
more sustainable management. As Fig. 2 points out, behavioural change is a complex process. Not only it consists in 
acquiring more information, but it also makes the information comprehensible, acceptable and adaptable in modified 
behaviours and perceptions. Currently, people acting in and using public buildings are far from being aware of the energy 
flows and consumption of the buildings in which they are working or temporarily living. They are even less aware of the 
impact that the required comfort levels have on the energy system and, secondarily, on the environment. Our idea was 
to leverage precisely the comfort dimension in order to make the energy consumption more comprehensible and to 
enable a comfort request that is adaptive on the specific context instead of standardized on global levels. Obviously, 
behaviours carried out by people in collective buildings are substantially different from those that take place in the 
domestic environment, but nevertheless highly significant. Our challenge was to work on this peculiar set of behaviours, 
in order to develop solutions that can be useful to solve the energy consumption problem in those environments both 
public or private where a large number of occupants is involved. 



3.2. Living lab & codesign process  
The LL phase was planned in order to involve the users of the buildings (students) in the innovation process which took 
place in two different stages. In practice, in the first stage, nearly 40 students from the Communication, ICT and Media 
master’s degree course were asked to participate in a laboratory whose aim was to let them work on pilot ideas to 
manage indoor comfort in a sustainable way. The participants were asked to provide solutions working in groups with 
very strict timing and rules. Such an activity was conducted using the design studio methodology from user experience 
and user interface design fields. Participants were divided in small groups (5–6 each) and each group had to address at 
least one design challenge. A design challenge is formulated as a sentence beginning with “How might we... ”and was 
intended as a main problem to be solved with reference to energy sustainability. Then, each participant, in each group, 
had to suggest individually new solutions for addressing the design challenge individuated. Finally, the group, once 
selected the most promising solution, had to present it to all the other participants. Although some of the proposed ideas 
were not strictly related to HVAC energy consumption (since their assignment just mentioned some general concepts of 
comfort and consumption), part of the output laid the foundations for the development of the smartphone app’s 
interface and main functions. During the Living Lab design phase, participants designed six comfort variables on a 1–5 
point scale and on a binary scale (0–1): (i) global (1–5); (ii) thermal (1–5); (iii) humidity (1–5); (iv) brightness (1–5); (v) 
noise (1–5) and (vi) air quality (0–1). More precisely, for global and noise comfort, discomfort was expressed with a vote 
of 1, normal condition with a value of 3 and the optimal comfort with 5. On the contrary, for thermal, humidity and 
brightness comfort, due to the symmetry of discomfort condition, the optimal condition was expressed with a value of 
3, while the discomfort both with a value of 1 (e.g. too dark/too cold) and of 5 (too bright/too hot). Finally for the air 
quality index, a value of 0 represented a good air quality while 1 an high CO2 concentration. In the second stage, in the 
months following the design phase, students were asked to contribute to data collection providing feedback on their 
perception of comfort using the same app they contributed to design. During this phase, students were involved and 
asked for their feedback during their daily routine in order to collect as many comfort data as possible. 

 

 



 

3.3. Crowdsensing & direct virtual sensing  
The crowdsensing approach aimed to collect a large amount of users’ comfort feedback during a brief period from few 
weeks up to a few months in order to feed and train the predictive algorithms for the Direct Virtual Sensors. The 
difference from few weeks up to few months was due to the lectures schedule and to the constraints on the project 
timeline. In fact, the crowdsensing approach was used to test an innovative approach, named Direct Virtual Sensing 
[54,55] , and to develop a few Direct Virtual Sensors able to predict and simulate users’ comfort feedback starting from 
environmental absolute variables (e.g. temperature, relative humidity, CO2 concentration). For this purpose, users’ 
feedback were intensively collected during a short period for each equipped space and the collected data were used to 
initially train the predictive algorithm of the three developed Direct Virtual Sensors. In particular, the three developed 
DVSs were used to predict: (1) the global, (2) the thermo-hygrometric and (3) the air quality comfort. Each DVS was 
designed to predict future users’ feedback from a few environmental objective measurements as described by the 
following equation, y ( t + 1 ) = f  _u ( t )  _where y ( t + 1 ) is the output (i.e. the comfort feedback) at time t+1, f is a non-
linear function and u ( t ) is the array of the average values of the environmental variables (input) at time t. More precisely, 
each DVS needs the following variables as input: (1) temperature, relative humidity and CO2 (global comfort), (2) 
temperature and relative humidity (thermo-hygrometric comfort), and (3) temperature, humidity and CO2 (air quality 
comfort). Thus, for instance, the general comfort DVS equation is described by y ( t + 1 ) = f ( u 1 ( t ) , u 2 ( t ) , u 3 ( t ) ) 
where u i represents the average value of temperature ( u 1 ), relative humidity ( u 2 ) and CO2 concentration ( u 3 ) at 
time t. 

3.4. Dynamic energy and comfort simulation  
We used the simulation software IDA Indoor Climate and Energy (EQUA Simulation AB) 2 , which allows to dynamically 
simulate the user thermal comfort, the indoor air quality as well as the energy consumption of the pilot buildings, to 
simulate various user behaviour scenarios and their related impact on energy consumption in comparison to a reference 
scenario (scenario 0). The scenario 0 was tuned according to the actual energy consumption of one of the pilot buildings, 
i.e. the Campus Luigi Einaudi. The aim of simulating user behaviour scenarios was to quantify the change of the energy 
consumption for various occupant behaviours. Three types of user were analysed: 1) the “Standard”user, 2) the 
“Aware”user and, 3) the “Unaware”user. In order to model the buildings and the user behaviour as close to the reality as 
possible, gathered data from the Living Lab were used to calibrate the three scenarios. In particular, we designed the 
“Standard”user scenario according to the American Society of Heating, Refrigerating and Air Conditioning Engineers 
(ASHRAE) Standard, as well as the Italian and European regulations i.e. UNI EN ISO 7726 (1995–2002) [56] , UNI EN ISO 
7730 (2005) [57] , ASHRAE Standard 55 [58] . The “Aware”and “Unaware”user scenarios, instead, were modeled by 
varying, starting from the “Standard”scenario, five environmental parameters which affect the user perception related 
to indoor comfort. As defined by the Italian regulation and by the ASHRAE Standard 55, the reference for the thermo-
hygrometric comfort are the PMV (Predicted Mean Vote) and the PPD (Predicted Percentage Insatisfied) indices. We 



adopted the Italian regulation UNI-EN 7730 limit for a comfortable indoor space which means a PMV ±0.5 and a PPD < 
10%. It is noteworthy that the Italian limit is much stricter than the ASHRAE Standard 55 recommendations ( PMV ±0.85 
and PPD < 20%). In terms of indoor air quality, instead, we adopted the ASHRAE Standard 62 [59] where an 
“acceptable”indoor air quality is defined when at least 80% of occupants doesn’t express dissatisfaction, and according 
to the EN 15251 [60] where the limit of CO2 concentration for indoor space is defined. Finally, in terms of visual comfort 
we referred to the Italian regulation (UNI EN 15251). The comparison between scenarios was made with respect to the 
Hourly Performance Index [61] (PI) which measures the hourly cumulative distribution of satisfaction (e.g. a PI = 1 implies 
that all occupants are always satisfied). Finally, weather conditions and related outdoor environmental variables are 
based on the ASHRAE dataset for the City of Turin. 

3.5. Description of the scenarios  
In a socio-technical system, such as a university building, users are related to the spaces through the activities occurring 
inside it. Space may be a classroom, a library, an office, a laboratory, the great hall. Activities depend on the calendar of 
lessons, weather forecasts, historical data on participation in the courses, historical data on attendance at lessons in 
current courses, special planned events. Thus, content, environmental information and data derive from space 
characteristic, from users and from their daily interactions. For an optimal management of a socio-technical system, in 
each context and situation the Energy Manager should have access to all available data historical and real time data as 
well as forecasts in order to take the best decision to optimize users’ comfort, energy consumption and HVAC system 
maintenance. For each type of space within a university and for each type of possible users’ activity, we create proper 
scenarios in order to envision possible interactions between users, spaces and the energy management and to forecast 
conceivable users’ reactions. We present here various scenarios within three different spaces: a classroom, an office, a 
library. The “Classroom”scenario is based on the typical activity of a student going to lesson. Let’s assume that a student, 
Gina, is still at home. Thanks to the app, she can check detailed information about the temperature within the classroom, 
the number of expected people and she can get tips on the proper clothes to wear in order to balance comfort and energy 
saving. Meanwhile, the Energy Manager sets the optimal light and temperature based on classroom occupancy forecast. 
The student Gina, during the path from home to the university, brings with her a wearable device which measures 
outdoor temperature and Gina’s activity (e.g. an accelerometer registers the rapidity of movements). The ComfortSense 
sensors network starts to measure the situation within the classroom (like the number of people, temperature and 
humidity) and asks present students to provide feedback on their comfort perception, sending all gathered information, 
in aggregated form, to the Energy Manager. Meanwhile, unfortunately, Gina is running, due to a bus driver strike, to 
arrive on time at the lecture. When she arrives in the classroom, she feels hot and decides to send a negative feedback. 
The ComfortSense App recorded a very cold outdoor temperature and the recent strenuous activity of Gina and, 
consequently, the ComfortSense system decides to refuse Gina’s feedback. After a while, Gina sends another feedback, 
better than the first one but still complaining about thermal discomfort. In this second case, the system accepts Gina’s 
feedback. Thus, the Energy Manager receives the negative feedback and, due to other negative feedback previously 
received, plans to reduce the temperature by 1 °C , increasing the comfort and reducing the energy consumption. Finally, 
Gina, after the lecture, consults her Mobile App, where an explanation about the refused feedback is provided, together 
with a comparison between her comfort level and those of the other users. Thanks to this information Gina learns to wait 
10–15 min and cool down before expressing a comfort feedback in the classroom. The “Office”scenario simulates a 
worker going to his office. Luca is going to work in his office, where two of his colleagues are working since the morning. 
All three office workers send information about their state of comfort through ComfortSense App. Since Luca has been 
the last to arrive at the office, his perception of comfort can be different from the others. The system will use Luca’s 
feedback both to send information to the Energy Manager and to understand Luca’s preferences. The system adjusts 
according to Luca’s and his colleagues’ preferences. The “Library”scenario involves an employee who works there every 
day, and a few students, who are going to study in the library. Luisa perceives a higher temperature than the previous 
week, probably because a lot of students reported a discomfort feedback in the past weeks. The system knows that Luisa 
is working in the library all day long and every day; thus, her feedback is weighted slightly more than students’ feedback. 

 



 

3.6. Description of the spaces  
Starting from these scenarios, we carried out the pilot test for ComfortSense within three buildings of the University of 
Turin: Campus Luigi Einaudi, the Physics Department and the School of Management and Economics. We implemented 
the Wireless Sensor Network in classrooms, libraries, offices as well as IT laboratories. Classrooms and offices, involved 
in the pilot test, were equipped with fixed sensors and were located in different parts and floors of the pilot buildings. 
The fixed sensors were fixed directly to the wall of the equipped spaces; in particular, each sensor was installed at an 
height of more or less 1,5 m and not exposed to direct sunlight. The wearable devices, moreover, allowed users to interact 
in all common spaces (e.g. corridors, halls, stairs, ...) and other classrooms without fixed sensors. Campus Luigi Einaudi is 
the largest structure of the University of Turin, with more than 45, 0 0 0 m 2 and 14, 0 0 0 m 2 of green, 5 libraries (10, 0 
0 0 m 2 ) and 70 classrooms. The total number of users, including both students and employees, counts more than 10,0 
0 0 people. We set up sensors in various spaces: the main library, which is distributed on four floors for a total of 10, 0 0 
0 m 2 , a computer lab with 120 seats, a study room with 60 seats, a normal classroom of about 100 seats and 3 
administrative staffoffices. The Physics Department is a historical building from the early 1900, although partially rebuilt 
in the early 1950s, with a newer part built in the ’70s. The Physics Department covers about 170 0 0 m 2 for a total volume 
of 65411 m 3 . Representative spaces analyzed in Physics Department were: the Aula Magna with 150 seats, a computer 
room with 57 seats, an average classroom, with 60–70 seats, the library study room with 30–40 seats and a small 
classroom with 20–30 places. The School of Management and Economics is divided between an older part, built in 1889, 
and a new one, inaugurated in 2009. This complex architectural structure uses 22, 600 m 2 , provides about 50 0 0 seats 
in the 38 classrooms for about 10,0 0 0 students. Representative spaces selected from this structure were: 3 classrooms, 
respectively containing 20, 10 0, 40 0 seats, a computer room, an office with five workers and a study room with a 
maximum capacity of forty students. 

4. Results and discussion  
4.1. IT infrastructure  
A CE certified plug and play fixed environmental sensor (shown in Fig. 3 a) was developed during the ComfortSense 
project. The designed sensor was based on the Intel Edison computer-onmodule developed by the Intel. The Intel Edison 
was a computeron-module with high performance i.e. Atom 2-Core (Silvermont) @ 500 MHz, LPDDR3 1 GB, 4 GB EMMC 
and various signals as Bluetooth low energy 4.0, 2.4 and 5.0 GHz Wifi, USB, GPIOs, SPI, I 2 C, PWM, etc. and small 
dimension −25 mm ×35.5 mm. The sensor was developed to measure CO2 concentration, thanks to the COZIR sensor (Gas 
Sensing Solution), and temperature and relative humidity, thanks to the SHT21 (Sensirion). Moreover, the fixed sensor 
was developed with a web server onboard to setup and to easily visualize the gathered measures on temperature, 
humidity and CO2; finally, the gathered environmental data were sent, through 5.0 GHz Wifi, in near-real time i.e. every 
5 min to the central repository. In the Study Room, a Libelium Meshlium Xtreme (shown in Fig. 3 b) was installed; the 
Meshlium Xtreme is an IOT gateway to connect any sensor to any cloud platform (more than 45 cloud platforms) through 
various types of communication (RF, 4G, Wifi, Ethernet). In particular within our project, the Meshlium Xtreme was used 



to monitor the occupancy i.e. number of people within the Study Room; in fact, the Meshlium Xtreme allows to detect 
iPhone and Android devices, and, in general, any device with Wifior Bluetooth interfaces. Devices, in order to be detected, 
do not need to install any mobile app, as well as they do not need to be connected to a specific access point. In fact, every 
device, automatically, sends a “hello!”message communicating its presence. In this way, the Meshlium Xtreme is able to 
monitor very precise information about the number of people, type of device e.g. MAC address, the Class of Device (CoD), 
such as smartphone, laptop, LAN/network access point the strenght of the signal (RSSI) which allows to identify the 
average distance and other parameters. Moreover, an indoor geolocalization system was developed based on the 
iBeacon technology (shown in Fig. 4 a). Therefore, users could be geolocalized, thanks to the bluetooth LE 4.0 through 
the ComfortSense Mobile App on their smartphone, to the nearest indoor space (classrooms, offices, halls, ...). Offices, 
and tiny indoor spaces, were equipped only with one iBeacon, while large spaces, such as classrooms, halls and corridors, 
were equipped with two, or more, iBeacons, allowing a more precise geolocalization of users (e.g. on left-right side of 
the classroom, near the entrance door/close to the windows). Users’ engagement was improved thanks to the Wearable 
SensorTag device (shown in Fig. 4 b). The SensorTag is a wearable device, small enough to be used as a keychain or as 
necklace, able to measure in real-time indoor temperature, relative humidity as well as movement, thanks to an 
accelerometer. Within ComfortSense, Wearable SensorTags were given to all Living Lab participants to allow them to 
constantly measure and visualize the temperature and humidity in any indoor space of the pilot buildings directly on 
ComfortSense Mobile App, thanks to Bluetooth communication. Living Lab participants, thanks to the ComfortSense 
Mobile App were allowed to send temperature and humidity measurements to the central repository, self-declaring the 
classroom or the office, at any time. In such a way, we were able to collect data in any space within the pilot buildings 
without installing fixed sensors in all spaces, avoiding obviously high hardware and installation costs. Mobile App users 
registration allows to avoid redundant data. Finally, all the gathered data from fixed and wearable sensors (objective 
data), from the Mobile App (subjective data), occupancy and localization data, as well as data generated by the Direct 
Virtual Sensor, were collected in a central repository, a relational database based on MySql, as shown in Fig. 1 . Collected 
data were used both for an online web-based dashboard for the energy management and for the users within the Mobile 
App. More precisely, an online interactive dashboard was developed, according to the energy manager needs, in order 
to show specific (in space and time) user feedback in real-time, as well as daily, weekly or monthly average values related 
to objective and subjective measures. 
 

 
 
4.2. Mobile App  
A Mobile App for Android-based smartphones was developed starting from suggestions provided by Living Lab 
participants. The ComfortSense Mobile App aimed to engage users in a more aware energy management of the pilot 
buildings, to improve and boost behavioural change of occupants as well as to provide a userfriendly and immediate IT 
communication channel between occupants and the energy management. Our approach laid on, first of all, a user 
engagement process and, secondly, on a behavioural change step. The user engagement process was based on the use 
of two specific Mobile App functionalities. Users were encouraged, through an ad-hoc communication campaign, to: (1) 
communicate their comfort feedback i.e. general comfort and thermo-hygrometric, air quality, brightness and noise 
comfort and, (2) wear the SensorTag wearable (see Fig. 5 ) to collect temperature and relative humidity data. This ICT 



approach was designed in order to fill a common management gap for large public buildings, i.e. the lack of simple tools 
which allowed users to participate to the energy management of a public building. More precisely, geolocalized users’ 
feedback ( data gathering layer ) were sent and stored in real-time to a central repository ( data storage layer ). All stored 
data were used to inform in real-time the energy management of particular comfort/discomfort condition thanks to an 
online dashboard, allowing a direct communication from users to the energy management. Moreover, the stored data 
were used to directly show to the users in real-time the environmental condition of a specific space thanks to a users 
interface integrated within the Mobile App ( data visualization layer ). Users were given the possibility to visualize, at any 
time and for any space within the pilot buildings, the indoor temperature, the relative humidity, the CO2 concentration 
and other users’ feedback. The Mobile App had no push up notification system so that the decision to visualize 
environmental conditions or other people’s feedback within a specific space was left to users. The behavioural change 
process, instead, was based on the scheme presented in Section 3 . As shown in Fig. 2 , the modification of user habits 
had to conduct users from an automatic behaviour, through an intentional one, up to a new automatic behaviour; in 
particular, moving users from an “I don’t know that I don’t know”state to the “I don’t know that I know”state. This process 
was meant to increase user awareness by providing precise information on, for instance, the impact of their actions. 
Users were able to visualize the thermohygrometric condition, the amount of lux (brightness) and decibel (noise), as well 
as the average of the comfort feedback. Moreover, once a user feedback for a certain room was sent, the Mobile App 
directly showed the average comfort for that room. In this way, users had the possibility to reflect on the relation between 
their own comfort perception, the real indoor temperature, and the level of comfort expressed by other users. 
 
4.3. Direct virtual sensor  
During the whole project (9 months), about 650 users were engaged for a period between 3 and 6 months, storing more 
than 50 0 0 feedback on Global Comfort (subjective variable). The period of test varied between 3 and 6 months due to 
the delayed implementation of the fixed sensors within a few of the equipped spaces and the variation in the occupancy 
schedules (e.g. lectures schedules, exam period, .). Moreover, about 50 0,0 0 0 temperature measurements, as well as 
humidity and CO2 values, were stored (i.e. one measurement every five minute for each equipped space) into the central 
repository. More precisely, each fixed sensor was programmed to send temperature, humidity and CO2 concentration 
measurements every five minutes to a central repository through 5.0 GHz WiFi, as described in Section 4.1 . As comfort 
feedback could not be acquired periodically (but only asynchronously depending on when users gave feedback), the 
sensor data and corresponding comfort (DVS input and outputs respectively) were not-consecutive data samples in the 
time. The input/output pairs were averaged over a period of 5 min. Approximately 70% of the available input/output 
data pairs were used for the DVS training, while the remaining 30% of the data was used for validation. This breakdown 
was divided equally between the different periods of the year. Two methods were used to train and implement the DVS 
in order to set membership [55] and sparse approach [62] . Sparse algorithm consists in approximating a function using 
a “few” basis functions properly selected within a “large”set. More precisely, a sparse approximation is a linear 
combination of “many” basis functions, but the vector of linear combination coefficients is “sparse”, i.e. it has only a 
“few” non-zero elements. Deriving a sparse approximation of an unknown function from a set of its values (possibly 
corrupted by noise) is here called sparse identification. In Set-membership approach, estimation noise is supposed to be 
unknown but bounded, i.e. the only knowledge about noise consists in its bounds evaluated in a given norm (deterministic 
and not statistical). A set of all admissible solutions is found. In this case, such a set contains all the feasible solutions of 
the problem, thus providing an evaluation of the uncertainty associated to the estimation problem. The sparse algorithm 
without autoregressive component was used to implement the DVS. Fig. 6 , on the left side, shows results during the 
validation process for the Global Comfort DVS related to one of the equipped and monitored spaces during  
the research project, the Study Room at Campus Luigi Einaudi. The red line represents the real users’ feedback y user ( t 
), while the blue line exhibits the trend of the predicted value (i.e. the output of the DVS) y DVS ( t ). One can notice how 
the DVS algorithm properly forecasts extreme comfort values (value 1 = high discomfort; 5 = high comfort), while for 
high-volatile user feedback (i.e. when different users, at the same time, express high comfort and high discomfort) the 
DVS algorithm tends to average the results and consequently fails to predict user behaviour. More in detail, Fig. 6 , on 
the right side, shows the probability density function (pdf) of the prediction error, y DV S (t) −y user (t) : the pdf shows 
that, on average, 75% of the user feedback y user ( t ) falls on the range of y DVS ( t ) ±0.5 and the 95% of the users’ 
feedback lies in the range y DVS ( t ) ±1. Finally, we report the results for the other two DVSs within the same space, the 
Study Room. The thermal-hygrometric DVS, tested on the same user feedback dataset, showed a slighty larger error with 



respect to the Global Comfort DVS ( ±0.5 for the 65% of the feedback and ±1 for the 80%), while the air quality DVS was 
much more precise (97% of the feedback were perfectly predicted). The same robustness test was conducted for every 
designed DVS and every equipped space, achieving similar prediction results. 

 

 

4.4. Energy and comfort simulation  

As described in Section 3.4 , three scenarios for the energy simulation were defined the “Standard”user (reference 
scenario scenario 0), the “aware”user (scenario 1) and the “unaware”user (scenario 2) based on five variables: 1) summer 
temperature setpoint ( °C ), 2) winter temperature set-point ( °C ), 3) relative humidity (%), 4) brightness (lux) and 5) CO2 
concentration (ppm). More precisely, we referred to the European Standard EN 15251 [60] and to the PMV index [57] in 
order to set constraints and boundaries for the simulated scenarios. With respect to the EN 7730, a value of −0.16, −0.24 
and −0.11 was obtained, respectively for the Reference scenario, the Aware scenario and the Unaware scenario, for the 
PMV index during the winter period, while for the summer period we achieved, respectively, a value of 0.02, 0.08 and 0. 
Further details on simulation are provide in Fabi et al. [63] . The three main scenarios are summarized in Table 1 where 
the limit on the temperature, the relative humidity, illuminance and CO2 concentration set points are shown. First, 
starting from the reference scenario 0, modeled according to the annual energy consumption of the building, each single 
variable, one-by-one, was modified to simulate the energy consumption of the building, by maintaining the users comfort 



constraints as described in Section 3.4 . For instance, the scenario 1.1 shown in Fig. 7 , refers to the Aware macroscenario 
where only the winter set point was modified with respect to the reference scenario. Finally, all variables were changed 
at the same time in order to simulate the scenario described in Table 1 . In this way, it was possible to identify the most 
impactful parameters on energy consumption and on users comfort. Fig. 7 a shows the energy consumption prediction 
for each scenario. On the right side ( Fig. 7 b), the monthly energy consumption for the three simulated scenarios and for 
the real case are plotted as a function of time. In particular, the gray line represents the reference scenario 0, the red one 
shows the unaware scenario 2, the green one refers to the aware user scenario 1 and the blue one the real energy 
consumption. On the left side ( Fig. 7 ), instead, the annual energy consumption for each subscenario is plotted. 

 

4.5. Results and considerations on comfort & energy  
As a last step, we tested the set point limits for the three main scenarios, obtained from the energy and comfort 
simulations, with the developed thermo-hygrometric DVS trained with the users’ feedback for a typical summer period. 
Thus, for the three scenarios with different temperature setpoints i.e. scenario 0 ( T = 25 ◦), scenario 1 ( T = 27 ◦), scenario 
2 ( T = 24 ◦) we respectively obtained an average thermo-hygrometric comfort of 2.3, 2.7 and 1.7. The comparison 
between the aware scenario and the unaware scenario is shown in Fig. 8 a and b. Notice that user comfort significantly 
increases in the aware scenario (2.7) with respect to the unaware scenario (1.7), moving from a generally discomfort 
situation (1 = very cold; 2 = cold) to a more comfortable configuration (3 = ok). By comparing these results on user comfort 
together with the energy simulation, described in Section 4.4 , it is possible to reduce energy consumption, from ∼410 
kWh / m 2 (Scenario 2, Fig. 7 ) to ∼225 kWh / m 2 (Scenario 1, Fig. 7 ) and, meanwhile, to improve user comfort, from 1.7 
to 2.7 ( Fig. 8 ). 

4.6. Considerations on living lab process  
Overall, the large majority of the students involved during the codesign phase kept on participating during the following 
phase, when they were asked to provide comfort feedback during their university daily routine. In addition, more than 
600 students, who did not take part in our laboratory, decided to join the experimentation. Users decided freely to join 
to the experimentation and sent feedback through the Mobile App. An ad hoc communication campaign was organized 



for each pilot building by sending an information email through the Departments’ newsletters, by presenting the project 
and the Mobile App during the lectures or by organizing temporary stand in crowded places (e.g. bar, hall,). Thus, the 
engaged students were chosen randomly based on their needs to communicate their feelings (comfort/discomfort) or 
simply based on their interest in joining the experimentation. Generally, each student was free to send feedback at any 
time related to any classroom or laboratory within the pilot buildings, simply depending on his/her need to communicate 
his/her feeling. The communication initiatives were planned to avoid any possible bias on users, such as forcing 
reactions/feedback with incentives/penalties or other type of similar actions. In terms of the user engagement process, 
we noticed a lack of positive response to our communication input which was composed by a mixed approach of formal 
and informal channels, such as social media and official advertisements inside the buildings. Students did not react as 
expected to our proposal: it is necessary to take into account this not optimal response in order to avoid these mistakes 
in future research projects. Our suggestion to those who want to approach a crowdsensing research project is to put a 
great deal of effort in communication and engagement, in order to involve users in every stage of the experimentation. 
This is important because such innovative processes should not look like a top-down approach. Moreover, it is important 
to check in advance the compatibility between the technological level of the innovative proposal and the devices available 
on market and owned by involved users. In conclusion, it is recommended to plan a communication strategy involving 
the whole institution from the beginning. For instance, in a similar project any member of the university (e.g. students, 
researchers, academic and administrative staff) community should be aware that a project is taking place. 

4.7. Considerations on users’ engagement  
We planned to further explore various aspects of the interaction between the occupants and the energy management of 
public buildings. The goal is to reach the decoupling of the energy consumption from indoor comfort, namely to reduce 
the energy consumption and related expenditure, while keeping comfort standards. In particular, we recognize the 
importance of developing strategies toward energy saving together with the energy management of the buildings 
involved, taking into account the features of the existing Building Energy Management Systems (BEMSs). Users’ 
engagement remains a fundamental part of the project during all phases, from the design phase up to the adoption of 
new solutions. Beside the technical output, the living lab and the whole experimentation aims to improve the users’ 
awareness about the energy issues related to socio-technical systems. If possible, occupants should also acquire new 
skills in their interaction with the building, like the use of thermoregulation devices, and become able to communicate 
with the energy management. Consequently, the improvement of users’ awareness should lead to a general behavioural 
change [64] concerning energy and thermal practices. Pursuing this aim, it is important to take into account that users 
do not necessarily react to innovation in a positive way. In such research projects, researchers should avoid the so-called 
ABC models (Attitude Behaviour Choice [65] ) where the social actors are thought to be able to improve their 
consumption practices toward a more sustainable behaviour just putting into actions useful tips provided by the 
researchers. On the contrary, it is necessary to reframe their consumption practices into a wider context where many 
social and technical variables can affect the performance. For instance, a good starting point is to consider the users as 
bounded into a socio-technical system [66] composed by both social and technical elements. In our case studies, buildings 
must be considered as socio-technical systems in which users are constrained, in everyday practices, by the limits given 
by the structure [67] . 
 



 
 
5. Conclusions  
In this paper we have presented the results of a nine-month research project, Comfortsense, which took place at the 
University of Turin in 2015. The results presented here include the whole process, from the design of innovative 
technologies for the comfort and HVAC management and the development of an IT infrastructure, to the quantitative 
results on user comfort and energy consumption of HVAC systems. Thanks to comfort prediction we demonstrated that 
comfort and energy consumption can be partially decoupled adopting an adaptive indoor comfort management: a 
consistent reduction in energy consumption can be achieved taking into account real time, or predicted, feedback from 
users on Global, Thermal and Air Quality Comfort. In particular, by correlating the prediction on user comfort, i.e. the 
output of the Direct Virtual Sensor algorithm, with the output of the dynamic energy simulation, we proofed that 
modifying the HVAC and the energy management from the described “unaware”scenario to the “aware”scenario, the 
total annual energy consumption decreases from ∼410 kWh / m 2 to ∼225 kWh / m 2 and the indoor thermo-hygrometric 
comfort increase from 1.7 to 2.7 on a 1–5 scale, where 1 means too cold, 3 represents a good comfort and 5 is too hot. 
As far as an adaptive indoor comfort management is able to partially decouple indoor comfort from energy consumption 
in buildings with HVAC systems, further improvements on users’ engagement and the Living Lab process are needed. 
Better results in terms of users’ engagement, behavioural change and users-environment-management interactions 
could be obtained, adopting innovative solutions based on natural interactions [68] , point and click-interaction in smart 
environments [69] as well as designing and implementing gamification and rewards processes [70] . Finally, useful and 
necessary future works may be conducted to “close”the loop with a real-time automated process in order to improve 
our near real-time experimental case study.  
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