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Abstract 

 

District heating networks have become widespread due to their ability to distribute thermal energy 

efficiently, which leads to reduced carbon emissions and improved air quality. Additional benefits 

can derive from novel demand side management strategies, which can efficiently balance demand 

and supply. However, their implementation requires detailed knowledge of heating network 

characteristics, which vary remarkably depending on urban layout and system amplitude. Moreover, 

extensive data about the energy distribution and thermal capacity of different areas are seldom 

available. For this purpose, the present work proposes a novel procedure to develop a fast scale-free 

model of large-scale district heating networks for system optimization and control. Each network 

community is represented and modeled as an aggregated region. Its physics-based model is identified 

starting from a limited amount of data available at the main substations and includes heat capacity 

and heat loss coefficients. The procedure is demonstrated and validated on the network of Västerås, 

Sweden, showing results that are in agreement with data from the literature. Thus, the model is well 

suited for real-time optimization and predictive control. In particular, the possibility to easily estimate 

the heat storage potential of network communities allows demand side management solutions to be 

applied in several conditions. 

Keywords: District Heating Network; Demand Side Management; building heat capacity; scalability; 

gray-box model 
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1. Introduction 

The European Union has recently established long-term objectives to reduce greenhouse gas 

emissions and, potentially, achieve climate neutrality by 2050, by engaging all sectors of the economy 

and society [1]. These goals require a complete transformation of the energy system, in which the 

heating and cooling sector plays a significant role in terms of consumption reduction and potential 

for decarbonization. Indeed, thermal energy distribution to households and industries can be 

accomplished by District Heating Networks (DHNs) in a more efficient way compared to individual 

devices, since they consist of supplying heat produced in centralized plants to the end-users by means 

of a network of pipelines. Hence, these networks enable the utilization of multiple energy resources, 

such as renewables, waste heat from industrial processes [2] and storage systems. Moreover, DHNs 

reduce the number of emission sources, as they move the generation devices based on fuel combustion 

in centralized sites outside cities and residential zones. For this reason, populated areas, where 

reduction in carbon dioxide emissions and improvement in air quality conditions are paramount, are 

ideal for extending this technology to a large scale.  

DHNs are already the dominant heat supply systems in some countries such as Sweden and Finland, 

where they meet about half of the overall thermal demand [3]. In Austria, Poland and Czech Republic 

the share of heat supply from DHNs is reaches around 25%, while it goes down to less than 5% in 

southern European countries (e.g. Italy and Spain) [3]. Despite such large differences, research and 

innovation actions on these topics are widespread across all other European countries, as DHNs have 

a predominant role in all future decarbonization scenarios [3]. This is confirmed by 58 projects funded 

by the European Union as part of the Horizon 2020 Framework Programme and which focus on smart 

district heating systems [4]. Moreover, according to Sernhed et al. [5], in Sweden a large number of 

research projects is being carried out to reduce further energy consumption in DHNs and to promote 

their application to other areas, while Leoni et al. [6] present their research on innovative business 

models for Austrian district heating utilities.  
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However, a widespread application of these systems can be challenging [7], as the design, 

management and control of DHNs vary significantly depending on several factors: 

• the geographical area, which defines the typical climate and, therefore, the specific energy 

demand; 

• the system scale [8], which defines the overall demand and the required approach for its 

representation (i.e. in small-scale systems, consumers can be modeled individually, while in 

large-scale systems different methods should be used since that level of detail would require 

a significant computational burden);  

•  the system configuration and layout, which is becoming more complex due to the need to 

integrate renewable energy sources; 

• the availability of data and information, e.g. energy consumption, building type, weather data 

and system temperatures.  

In order to overcome the aforementioned drawbacks, it is necessary to have reliable models of DHNs, 

which can be used for different purposes, e.g. design studies, optimization solutions and control-

oriented applications. Indeed, it is challenging to perform experimental investigations since proper 

test rigs are not typically available, due to the system size and characteristic time range. Moreover, 

demonstration studies of new system configurations and management strategies cannot usually be 

carried out in real networks, due to the necessity to fulfill the customers’ comfort requirements. 

Furthermore, the comparison of different solutions in real test cases may be inconsistent, as the 

boundary conditions and disturbances cannot be effectively controlled and are subject to large 

variations over the year. For these reasons, additional research contributions regarding the 

improvement of bottom-up energy system models [9] are required to investigate novel management 

and control solutions and, thus, to make district energy more widespread, energy-efficient and cost-

effective.  
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1.1 District heating models 

In the literature there is an increasing number of papers that focus on the development of mathematical 

models [10] for the simulation of the production, distribution and consumption aspects of DHNs. 

Figure 1 illustrates the main modeling approaches with a focus on distribution network and heat load.  

 

 

Figure 1. Summary of the main modeling approaches of district heating networks available in the literature: focus on the 

consumption (and distribution) aspect.  

 

Concerning the district heat load prediction, the most common classification is reviewed by Ma et al. 

[11]: 

• Physical models, or white-box models, rely on physical principles and conservation laws (e.g. 

energy conservation equation), but typically require a significant computational effort, leading 

to impracticable calculation times in optimization and control applications; 

• Statistical models, or black-box models, are based on experimental data and are trained with 

large datasets, but they do not include a physical representation of the phenomena underlying 

the system; 
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• Hybrid models, or gray-box models, are based on a manageable physical representation of the 

system that relies on empirical relationships obtained from available data giving benefits 

halfway between the aforementioned modeling approaches.  

In the light of this, connected buildings can be modeled with several techniques depending on the 

level of detail required by the simulation aim. For instance, 3D modeling approaches can be adopted 

for a detailed representation of the architecture and materials [12]; model order reduction through 

linearization and simplification allows the model of the building envelope to be scaled into an 

equivalent model [13]; and building archetypes can be developed and identified through proper 

representative parameters and construction details [14]. Coakley et al. [15] provide an overview of 

available calibration procedures, which aim to match the output of a building model with measured 

data. The paper highlights that it is generally difficult to represent the building environment 

accurately, due to the large number of interacting variables and complex architectures. In addition, 

the study focuses on individual buildings without considering the connection to district energy 

systems, and the difficulties in obtaining a fast representation of DHN customers are therefore 

emphasized. On the other hand, Lundström et al. [16] describe a space heating model for existing 

multifamily buildings, comprising a lumped thermal network (i.e. resistance-capacitance), radiator 

heating systems and procedures for pre-processing data and boundary conditions. Simulation tests 

performed on a single-zone building in the Nordic climate show that the model is reliable and 

computationally fast when compared to detailed building simulation tools. However, information 

such as building geometrical and thermal properties are required as input data.  

In urban districts, the increasing number of buildings leads to significant calculation time and makes 

it unfeasible to adopt a detailed modeling approach, especially in optimization and control-oriented 

studies. In this regard, Fonseca and Schlueter [17] combine statistical and analytical methods to 

cluster buildings in urban neighborhoods and to provide a multi-dimensional model for the 

investigation of energy efficiency solutions. The work refers to a building archetype database based 
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on statistical data and adopts detailed geo-referenced information on the analyzed area. Marquant et 

al. [18] propose another density-based clustering method to quantify the potential of DHNs by 

dividing the city-scale system into smaller subsystems and relying on spatial and temporal aspects of 

building characteristics. This is done in particular to overcome the limitations of Mixed Integer Linear 

Programming (MILP) problems, which are exploited in many studies to optimize urban networks 

[19–21]. Another approach consists of the development of an open source map of heat demand 

density data for European Union countries, UK, Norway, Iceland and Switzerland [22]. This tool 

underestimates or overestimates the demand depending on the high or low density of the area, 

therefore it can be used mainly for preliminary planning analyses. 

As regards the distribution network, various models with different levels of detail are employed to 

represent the system. Some works investigate the transient physical phenomena occurring within the 

pipelines of DHNs by coupling the detailed hydraulic equations with the thermal advection-diffusion 

equations, and solving them with an analytic form [23]. While this research introduces significant 

complexity to the overall system model, another paper [24] aims to further reduce it by aggregating 

the distribution network and comparing two different methods. One of these allows the number of 

pipes to be reduced from forty-four to three. Guelpa and Verda [25], instead, propose a compact 

model that uses the graph theory to represent the topology of large-scale DHNs: each pipe is a branch 

and each connection is a node. This model does not incorporate the prediction of consumer thermal 

demand. The same drawback can be observed in other works introducing steady-state system models 

for DHN planning [26] and dynamic models for topology analysis [27] and sector coupling [28].  

 

1.2 Demand Side Management solutions  

One of the most promising key enabling solutions is Demand Side Management (DSM), as it aims to 

overcome the mismatch between demand and supply [29] through optimal use of existing thermal 

storage means in the system (e.g. structural thermal mass). The quantification of the DSM and load 



7 

 

shifting potential in DHNs is possible only through the knowledge of the key physical properties of 

the system.  

Despite their suitability for large-scale DHNs, none of the modeling strategies outlined above 

investigates the potential role of the system heat capacity as storage within optimization and control 

algorithms, in order to introduce small indoor temperature fluctuations and achieve flexibility through 

DSM [30]. This application is explored by Yin et al. [31], who propose a linear regression model 

calibrated on data from detailed simulation in order to estimate demand response potential at building 

level. 

Since DHNs, depending on size, comprise a large number of pipelines, some works analyze the water 

in the networks as thermal storage. For instance, Kouhia et al. [32] show that, when the grid is used 

as storage by allowing the supply temperature to vary freely within certain constraints, the heat 

provision costs are reduced by 2 %. Moreover, supply temperature optimization is regarded as a 

promising development to be addressed. Sartor and Dewallef [33] propose to increase the temperature 

supplied to the DHN up to 140 °C (technical constraint) to mitigate the payback time of additional 

storage tanks and to improve the operation of the Combined Heat and Power (CHP) plants, which are 

the most common production units in these systems. The significant increase in heat loss is 

counterbalanced by a 0.2 EUR/MWh decrease in heat cost due to the avoided use of the backup 

boilers.  

In parallel, other papers analyze the end-users connected to the network as thermal storage [34]. In 

particular, a study by  om   o  ć et al. [35] proposes a building simulation model coupled with a 

linear optimization model of the DHN in Sønderborg, Denmark, to analyze the benefits of preheating 

the thermal mass of part of the connected residential building stocks, which are sorted in six 

archetypes. Hence, data such as floor area, construction age and internal heat capacity are required to 

replicate the analysis. One of the most relevant studies regarding the thermal inertia of buildings in 

DHNs is proposed by Kensby et al. [36], which presents an actual pilot test performed on five 
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multifamily residential buildings in order to investigate their potential to serve as short-term energy 

storage. The selected consumers are equipped with data acquisition devices and subject to five test 

control cycles, consisting of different periods of charging and discharging. The results are scaled up 

in order to provide an estimation of the heat storage potential for DHN. Indeed, the authors conclude 

that an energy amount of 0.1 kWh per square meter of heated floor area causes variations in indoor 

temperature lower than 0.5 °C in heavy buildings. In a subsequent paper [37], these empirical tests 

are combined with an energy balance model and a unit commitment problem to compare the use of 

the building thermal capacity with that of centralized storage tanks. In this case, the former is divided 

into shallow storage (i.e. radiators and indoor air) and deep storage (i.e. structural elements), which 

show different rates of heat transfer. This additional level of complexity, which requires the 

estimation of the model parameters of these types of storage, might hinder its application to other 

contexts.  

An interesting approach is proposed by Bhattacharya et al. [38], who generalize information from the 

consumers located downstream each main substation and, based on this, create a substation model of 

low complexity, in order to reduce the dimensionality of a network optimization problem. Then, they 

present successful demand response strategies based on such a hierarchical architecture. Nevertheless, 

it is assumed that the substation managers know the building thermal parameters, which have to be 

investigated through a dedicated data-driven technique [39].  

Similarly, other studies investigate both the network and consumers as potential heat storage devices. 

It is oftentimes specified that the latter is a more feasible solution, but the required individual analysis 

of the DHN and building construction characteristics [40] can be time-consuming and often 

inaccurate (since such parameters are not always well-known). An integrated approach to the 

operational optimization of DHNs that includes all three types of storage (i.e. hot water tanks, thermal 

inertia of pipelines and thermal inertia of buildings), but not real-time control, is proposed in [41].  
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Recent control-oriented studies manage to reduce thermal imbalance between heat users by means of 

an online prediction and indoor temperature feedback method [42], to lower the operating 

temperatures of the network [43] or to maximize the utilization of industrial waste heat [44]. In all 

these strategies, the consumer heat load is provided by means of other techniques and cannot be varied 

to integrate DSM. This is mainly due to system complexity [45] and lack of fast and suitable modeling 

approaches.  

On the other hand, a promising control application is shown in [46] by the authors of the present 

paper. A novel controller based on Model Predictive Control (MPC) operates DSM in a large-scale 

DHN by storing heat within the heat capacity of the end-users to improve network operation. For this 

purpose, the different communities of the network are considered as thermal batteries with a 

maximum storage capacity. The MPC varies the State of Charge of these batteries in an optimal way 

and achieves up to 16 % reduction in the demand peaks and up to 20 % reduction in heat loss from 

the distribution pipelines. This application, however, requires a compatible model that contains 

physical information of district heating aggregated communities (e.g. heat capacity and loss) in order 

to estimate their DSM potential and build the State of Charge.  

The available consumer models outlined in the previous sections are summarized in Table 1 with 

their main features, advantages and disadvantages. It emerges that, while models with a higher degree 

of complexity can be used for faithful simulation of DHN consumers, they cannot be exploited for 

applications where a low computational time is paramount, such as DSM and advanced control 

strategies, which require the model to be computed many times within a relatively short time frame 

in the search for an optimal or at least sub-optimal control law.  

Therefore, it is necessary to develop a complete modeling procedure, not available in the literature, 

to extract key information on the system main dynamics in order to enable real-time DSM.  
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Table 1. Summary of literature models of the consumers in district heating networks and their main features. 

Paper Modeling 

technique 

Model type Key equations and 

details 

Key applications Inclusion of 

heat capacity 

Suitability 

for DHNs 

Advantages Disadvantages 

[12] 3D building 

model 

White-box Physical model of 

building zones and 

HVAC system 

Calibration, 

identification of energy 

saving techniques 

Yes No High level of detail 

and accuracy 

Information on building 

properties and layout 

required 

[34,35] Multi-zone 

model 

White-box Zone physical model 

with heat transfer 

phenomena 

Energy flexibility and 

demand response 

evaluation 

Yes Yes High level of detail Building properties 

required, high 

computational time 

[13] Simplified 

linear time-

invariant 

White-box State-space 

representation of 

physical phenomena 

Urban energy 

simulation 

No Yes Good trade-off 

accuracy 

computational time 

Information on building 

properties required 

[14] Building 

archetypes 

Gray-box Parameters 

representative of key 

physical variables 

Building retrofit, 

optimize regulation 

No No Reduction of 

required 

parameters 

Large housing database 

required, not necessarily 

representing all house 

types 

[16] Lumped 

thermal 

network 

Gray-box Resistance-capacitance 

network equations 

Energy planning and 

management 

Yes No Low computational 

time, good 

accuracy 

Information on building 

properties required 

[17] Energy 

consumption 

patterns 

Gray-box Physical model of 

building zone coupled 

with statistical 

aggregation analysis 

Analyze energy 

efficiency measures 

No Yes 4D visualization of 

district heat load 

patterns allowed 

Geographic information 

system required 

[18] Density-based 

clustering 

Gray-box Homogeneity index to 

represent cluster load 

profile 

Large-scale modeling 

and MILP optimization 

No Yes Fast resolution of 

large optimization 

problems 

Building energy demand 

profiles required 

[31] Linear 

regression 

model 

Gray-box Linear equation fitted on 

data from detailed 

physical model 

Demand response 

potential prediction 

Yes No High level 

simulation not 

needed 

High level simulation 

needed for different 

building types 

[37] Two-node 

energy storage 

system 

Gray-box Hourly thermal energy 

balance  

Unit commitment 

problem with thermal 

energy storage 

Yes Yes Fast applicability 

to optimization 

problem with heat 

storage 

Tuning of model 

parameters required 

[41] Heat load as 

predicted time 

series  

Black-box - Network optimization, 

demand side 

management 

No Yes Fast resolution of 

large optimization 

problems 

Prediction method 

required, no 

correspondence with 

physical phenomena 

[47] Heat load 

pattern 

Black-box - Discovery of typical 

and atypical behavior in 

DHNs 

No Yes Large-scale 

automatic analysis 

allowed 

Large dataset required, 

no correspondence with 

physical phenomena  
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1.3 Scope and contribution of the work 

As mentioned above, the state-of-the-art research on DHNs lacks simplified models of DHN 

communities with all three following features: 

• They are control-oriented, suitable in particular for online optimization and optimal control 

applications;  

• They include heat capacity estimation suitable for DSM;  

• They can be applied to large-scale DHNs without the need to carry out extensive and detailed 

investigations of the network characteristics and individual building data, which can be time-

consuming and often inaccurate.  

In order to address this research gap, the present paper proposes a novel procedure to build a reduced-

order, scale-free model of DHN aggregated end-users by means of a limited amount of data, which 

are usually available from the system substations, and with a small set of assumptions. The procedure 

does not depend on the scale of the system, as it merges and aggregates the dwellings connected to 

the substation regardless of their specific characteristics and dynamic response. Other studies 

introduce aggregation approaches of DHN areas for system design and integration in urban contexts 

[48], but not for DSM and control.  

The proposed hybrid solution combines data-driven knowledge with a physics-based approach to 

evaluate the main parameters of the connected communities, which incorporates their heat capacity 

and heat losses to the environment. This simplifies the district modeling procedure to a great extent, 

making it accessible to district heating utilities without specific modeling competences and without 

requiring system knowledge with a fine granularity. The obtained gray-box model can then be used 

to implement MPC and achieve a higher system efficiency as demonstrated in [46]. 

The method is tested on the district heating network of the city of Västerås, in central Sweden. 

Nonetheless, it is applicable to substations supplying entire regions (without detailed information on 

the utilization units) as well as individual buildings.  
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2. Model development 

This section details the research method presented in this paper for the development and identification 

of a control-oriented model that includes the estimation of heating network dynamic parameters in 

order to enable DSM. A schematic illustration of the method is given in Figure 2.  

 

Figure 2. Block diagram of the method for the aggregated region model development. 

 

The aim of the model is to represent a generic area of a district heating network supplied by a 

substation heat exchanger, regardless of the number, topology or type of the connected buildings, 

starting from the data available from the given substation. The considered dataset is analyzed and 

preprocessed in order to eliminate odd values and outliers (Section 2.1). Then, it is used to identify 

the relevant coefficients of a simplified model that represents the given aggregated set of consumers 

(i.e. aggregated region) and considers both their heat loss and heat capacity (Section 2.2). The 

application and verification of this procedure to the main substation heat exchangers of a large-scale 

DHN is carried out in Section 3, together with sensitivity analysis on the model coefficients. Then, 

the obtained values are compared with specific coefficients per unit of heated area or heated volume, 
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typically related to individual buildings connected to DHNs, available in the literature [37,49]. This 

represents the model validation with literature parameters (Section 4). 

 

2.1 Data preprocessing 

In many countries such as Sweden, district heating providers are required to measure heat 

consumption through smart meter devices installed in the substations. The availability of data makes 

it possible to identify the usual behavior of the system to a greater extent and to investigate more 

efficient management strategies. For instance, Calikus et al. [47] perform a data-driven investigation 

of the heat load pattern of two district heating networks in southern Sweden in order to provide a 

better understanding of typical and atypical customer behavior depending on their category. However, 

it is still common that in other contexts the data acquisition devices are only installed in given sections 

of the network. Hence, as mentioned in Section 1, it is beneficial to investigate methods that can be 

implemented in networks where the end-users are not monitored at an individual building scale.  

Moreover, since the data are collected automatically [47], there might be connection issues resulting 

in missing data or values that are not significant in the dataset. Hence, a proper preprocessing phase 

is carried out to remove the acquisitions corresponding to missing sensor readings.  

Generally, the datasets available at the substation heat exchangers include the following quantities:  

• water mass flow rate of the primary side of the substation heat exchanger, ṁ; 

• supply and return temperature of the primary side of the substation heat exchanger, TS and TR, 

respectively; 

• outdoor temperature, Text. 

Therefore, the thermal power actually transferred to each region Q̇, which covers the heat demand of 

the aggregated end-users, can be calculated according to the energy balance in Eq. (1): 
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𝑄̇ = 𝑚̇ ⋅ c ⋅ (𝑇S − 𝑇R) (1) 

where c is the water specific heat capacity.  

In other cases, the thermal power or the heat supplied over a given time interval are available from 

heat meters. The following procedure is applicable as long as the thermal power can be derived.  

Since this analysis aims to create a model that is suitable for exploiting the heat capacity of the 

consumers when there is a significant thermal demand, e.g. to implement DSM strategies in presence 

of thermal peaks, the data referred to heating seasons (i.e. from October of each year to March of the 

following year) are extracted from the initial dataset.  

In addition, other conditions in which the collected heat demand is low and which are usually far 

from the typical pattern of a heating season are excluded. For this purpose, days during which 

acquired data show one of the following features are eliminated from the dataset:  

• the thermal power is zero or negative; 

• the supply temperature is lower than a given threshold (e.g. 40 °C);  

• the difference of temperature at the primary side of the substation is lower than a threshold 

(e.g. 10 °C); 

• the outdoor temperature is higher than 19 °C. 

The presence of such cases in the dataset might be due to failures in the measurement equipment or 

connection.  

 

2.2 Model identification 

The model identification procedure is similar to that proposed by Guelpa et al. [49], who adopt a 

clustering approach in order to identify the relevant characteristics of the buildings in the DHN of 

Turin, Italy. They calculate the coefficients that characterize a compact model based on the energy 

balance of each building starting from seasonal data.  
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In the present work, firstly the data are visualized in order to identify load profiles and typical 

behaviors. Generally, each day of the heating season shows a double peak behavior in heat load, in 

which the load increase in the early morning is followed by a maintenance period and then a second 

peak in the evening. Then, without other information concerning the individual end-users and the 

network specific configurations, the dataset related to each region is used to identify a simplified 

dynamic model that represents the sum of the buildings of the given area as a single aggregated 

consumer, depicted in Figure 3. For this purpose, the region is considered as a system with a given 

mass at a uniform temperature T, which is an equivalent representation of the energy content of the 

aggregated consumer.  

 

 

Figure 3. Schematic representation of the assumption of aggregated region adopted in the work. The data available at the 

substation heat exchanger of the aggregated region are water mass flow rate ṁ, supply and return temperature TS and TR, 

respectively and, consequently, thermal power Q̇ transferred to the region.  

 

A simplified and reliable representation of the aggregated consumer has to consider the main factors 

that affect its thermal behavior, which are (i) the heat dissipation through the envelope – determined 

by the difference between indoor and outdoor temperatures – and (ii) the thermal power supplied by 

the DHN. The model is represented by the thermal balance in the following form: 
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𝑑𝑇

𝑑𝑡
= −

𝑈

𝐶
(𝑇 − 𝑇ext) +

1

𝐶
𝑄̇ (2) 

where Text is the outdoor temperature and Q̇ is given by Eq. (1). The aggregated heat transfer 

coefficient U and the aggregated heat capacity C of the region are the relevant parameters of the 

model. It is worth stating that the energy needs of all connected buildings contribute to the heat 

demand of this aggregated consumer and, consequently, influence the collected dataset. Thus, the 

results of the model identification procedure based on such dataset reflects the merged properties of 

the buildings, regardless of their size and dynamic response. Furthermore, this assumption reduces 

the influence of the behavior of atypical buildings such as differently-sized spaces (difficult to model 

individually at district scale), even when deviating from the average.  

The procedure for the calculation of the model coefficients from the available data is described in the 

following sections.  

 

2.2.1 Calculation of the heat transfer coefficient 

In the most part of large DHNs, actual indoor temperatures are rarely acquired, and significant mean 

values are difficult to estimate. Thus, the heat transfer coefficient U is calculated by assuming that 

the indoor thermal conditions of the aggregated consumer are constant, with an equivalent 

temperature equal to 21 °C [50], for given periods over the day, as described below. Eq. (3) is obtained 

and calculated for each data point of the dataset.  

𝑈 =
𝑄̇

(𝑇 − 𝑇ext)
 (3) 

The mean of the obtained values gives the estimation of the average coefficient U.  

Four different calculation methods are compared to challenge the reliability of the assumption: 
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• Method 1: all data related to the heating seasons are selected for the calculation of the average 

U. 

• Method 2: the data corresponding to the maintenance phase on weekdays, in which the indoor 

comfort conditions of the buildings are kept constant [49] due to building occupation, are 

selected for the calculation of the average U. This typically corresponds to late morning and 

afternoon, e.g. hours from 10 a.m. to 6 p.m. In residential dwellings this maintenance phase 

can last longer, however, the present model includes different types of end-users, such as 

commercial and education buildings. Hence, the assumption of constant indoor temperature 

is presumably more reliable during the hours of the day mentioned above, in order to include 

all users. 

• Method 3: the data corresponding to the days on which the percentage variation between 

maximum and minimum daily thermal power is close to the percentage variation between 

maximum and minimum indoor-outdoor temperature difference are selected for the 

calculation of the average U. This means that the daily variation of the outdoor temperature 

can potentially justify the daily variation of the heat load as well as the initial assumption. 

• Method 4: both sides of Eq. (3) are integrated in order to obtain the coefficient as the integral 

mean over each day. The average of these values over the heating season is selected for the 

calculation of the average U.  

The results given by these calculations are discussed in the light of the results of the case study 

presented in Section 3. The method that is expected to better comply with the initial assumption of 

constant indoor temperature over a daily maintenance phase is method 2. In any case, once the heat 

transfer coefficient U has been selected, it is possible to proceed with the model identification. 
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2.2.2 Calculation of the heat capacity coefficient 

Starting from the estimation of the equivalent heat transfer coefficient calculated above, the heat 

capacity C is evaluated by assuming that the indoor temperature of the aggregated region is subject 

to periodic variations over the days. For instance, in most buildings in Sweden the indoor temperature 

set-points are kept at 21 °C during the day while a set-back temperature of 17 °C is fixed during the 

night [50]. The typical daily profile of the indoor building temperature is subject to an increase up to 

approximately the former temperature and then a decrease to the latter. It is reasonable to assume that 

the evolution of the region equivalent temperature over each day resembles this profile.  

The coefficient of each region is estimated by solving the following optimization problem: 

• The equivalent indoor temperature of the aggregated consumer is simulated with the input 

data over a defined period as a function of C.  

• The temperature has to be maintained within the set-point and set-back boundaries (i.e. TSP,max 

and TSP,min, respectively), which can vary over the day. For this purpose, a cost function that 

considers the total heat-degree-hours over the simulation period for which the temperature, as 

a function of C, is higher than TSP,max or lower than TSP,min is evaluated as follows: 

𝐽(𝐶) = ∫ max(0, 𝑇(𝐶, 𝑡) − 𝑇SP,max) 𝑑𝑡 − ∫ min(0, 𝑇(𝐶, 𝑡) − 𝑇SP,min) 𝑑𝑡

+ ∑ 𝜙 𝑓k(𝐶, [𝑡k, 𝑡k+1])

𝑘

 

(4) 

• Since the temperature also has to show a variation over each day, the maximum and minimum 

temperatures reached during each day shall lie within given acceptability bands (e.g. 20 °C to 

22 °C and 17 °C to 18 °C for the maximum and minimum temperatures, respectively). A 

feasible daily behavior of the equivalent indoor temperature, with its extreme values contained 

within the acceptability bands, is shown in a qualitative way in Figure 4. The width of the 

acceptability bands inherently considers in the aggregated model the behavior variability of 

different buildings within a region. The set-point and night set-back temperatures as well as 
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the width and position of the acceptability bands can be defined in accordance with the 

regulations or typical conditions of the country in which the system under analysis is located.  

• For each k-th day, a flag variable fk is assigned, which is equal to 0 if the constraints described 

in the previous point are met, and equal to 1 otherwise. This means that, for each day in which 

the equivalent temperature, as a function of C, does not match the given acceptability bands 

(fk = 1), a penalty factor ϕ (e.g. 106 °C s) is added to the cost function J(C). In this way, the 

solution of the optimization problem is pushed away from unacceptable values of C.  

• The cost function J(C) is minimized and, therefore, the value of C that leads to the most 

reasonable behavior of the system is obtained. 

This procedure is adopted to guarantee that the value of C is coherent with the expected daily 

periodical variation. A low value of heat capacity leads to sharp oscillations in the temperature and, 

consequently, to the underestimation of the storage potential of the given region. On the contrary, a 

high value of the coefficient leads to a nearly constant temperature behavior and to the overestimation 

of the storage capability. This, in turn, leads to the underestimation of the effects on the end-users of 

various management choices. 

 

Figure 4. Qualitative representation of a feasible daily behavior of the equivalent indoor temperature of the aggregated 

region. The shaded areas are the acceptability bands for the maximum and minimum daily values.   
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3. Results 

In this section, the procedure described in Section 2 is evaluated through its application to a case 

study, which is the large-scale DHN of the city of Västerås, in the Västmanland county, in central 

Sweden. After a description of the case study and the available dataset, the obtained results are 

presented and assessed through sensitivity analysis. Since the method has been described in a generic 

way, its further extension to different systems, sizes and applications is straightforward. 

 

3.1 Case study description 

The Västerås DHN is supplied by a centralized production site, comprising a waste-to-energy CHP 

plant, back-up boilers and thermal energy storage tanks. Six peripheral regions within the area are 

supplied by the DHN: Surahammar, Skultuna, Rönnby, Tillberga, Barkarö and Hallstahammar. 

Historical data are collected from the main substation heat exchangers of the six external regions 

during the period January 2016–May 2019, with a resolution of one hour. The acquisitions regard the 

water mass flow rate, supply temperature and return temperature. Hence, the hourly thermal power 

provided to each region can be derived from Eq. (1).  

The entire thermal power dataset together with the outdoor temperature are illustrated in Figure 5. It 

can be noted that, as expected, the thermal demand in the summer months in significantly lower than 

in winter. This justifies the selection of the heating seasons for the model development phase, as 

indicated in Section 2.1. It has to be stated that the regions of Surahammar and Skultuna show a flat 

pattern during 2016 and during 2016 and 2018 to 2019, respectively. As a matter of fact, the data 

collection campaigns may be subject to several issues, such as potential faults in the metering system 

or data communication protocol, which are accurately classified in [51]. Furthermore, it is underlined 

that district heating utilities encounter significant difficulties in identifying and solving faults and 

deviations [51]. Thus, it is paramount to show that the presented procedure is feasible in realistic 

conditions, including datasets with low quality.  
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Figure 5. Original dataset of outdoor temperature and thermal power transferred to the regions. 

 

For this reason, it is worth reporting also an illustrative dataset deriving from the automatic 

preprocessing procedure of a region characterized by incomplete data due to real-world faults. The 

data of thermal power, mass flow rate, and supply and return temperature related to one heating season 

of Surahammar, chosen as an illustrative example, are reported in Figure 6, after being preprocessed. 

It is verified also in this case that, while the outdoor temperature decreases, the thermal power 

increases almost symmetrically, as a consequence of a higher demand to keep end-user comfort.  
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Figure 6. Thermal power, outdoor temperature, mass flow rate, and supply and return temperatures of the region of 

Surahammar during the 2018–2019 heating season.  

 

The original datasets of all six regions are cleaned by means of the automatic procedure according to 

the preprocessing criteria listed in Section 2.1. All heating seasons (October-March), if they respect 

the mentioned criteria, are extracted. Finally, the resulting new dataset of each region is used to 

identify the parameters of the model in Eq. (2) representing its thermal behavior.  

 

3.2 Identification results 

The model identification procedure consists of calculating, for each aggregated region, firstly the heat 

transfer coefficient and, once its value has been selected, solving the optimization problem that 

calculates the heat capacity coefficient.  
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As regards the heat transfer coefficient U, the results obtained with the four methods (see Section 

2.2.1) for the six regions of the network are reported in Table 2. The average values and standard 

deviations (absolute and relative to the average) are also shown. It is possible to notice that the 

standard deviation is lower than 8 % in all cases, so all the methods can be considered almost 

equivalent. However, methods 1 and 4 tend to return lower values of the coefficients. This might be 

due to the fact that it is not consistent with the assumption of constant indoor temperature to consider 

all the daily measurements. On the other hand, the hypothesis of constant indoor temperature only 

during the maintenance period is expected to better represent the behavior of the buildings over the 

day. Thus, the coefficients obtained with method 2 are used to proceed with the model identification. 

Moreover, it is more convenient to overestimate the coefficient that affects the heat losses to the 

environment, in order to reduce the risk of adopting new DMS solutions that do not comply with the 

comfort requirements.  

 

Table 2. Calculation of the heat transfer coefficient U (in [kW/°C]) for all six regions with four different methods. The 

average value and standard deviation are also shown. 

Region Method 1 Method 2 Method 3 Method 4 Average  
Standard 

deviation  

Standard 

deviation 

 [kW/°C] [%] 

Surahammar 367.2 390.2 392.0 366.8 379.0 13.9 3.7 

Skultuna 219.4 239.5 250.4 218.7 232.0 15.6 6.7 

Rönnby 99.3 101.8 101.9 99.3 100.6 1.5 1.5 

Tillberga 177.0 200.3 201.6 176.6 188.9 13.9 7.4 

Barkarö 114.3 117.0 117.0 114.2 115.6 1.6 1.4 

Hallstahammar 1046.0 1104.7 1106.6 1046.0 1075.8 34.5 3.2 

 

The subsequent calculation of the heat capacity coefficient C is carried out with the following 

parameters:  
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• set-point and set-back temperatures of 21 °C and 17 °C, respectively, according to the typical 

conditions in Sweden presented in Section 2.2.2; 

• acceptability bands for the maximum daily temperature between 20 °C and 22 °C, and for the 

minimum daily temperature between 17 °C and 18 °C. 

The results of the estimation of the heat transfer coefficient U and heat capacity coefficient C of the 

Västerås DHN regions are reported in Table 3. 

The identification procedure has been demonstrated on six regions under the assumption that there is 

no additional knowledge on the type of end users, in order to make it potentially replicable to any 

substation. In any case, if additional system knowledge is available for a specific substation (e.g. 

share of constituent building types, building occupation, typical set-point temperature), it is possible 

to customize the related parameters of the method (e.g. set-point or night set-back temperature, width 

of the acceptability bands, length and time of the maintenance phase). 

Table 3. Estimation of the heat transfer coefficient and heat capacity coefficient for the six regions of the Västerås district 

heating network. 

Region U [kW °C-1] C [kJ °C-1] 

Surahammar 390.2 1 .750 ‧ 106 

Skultuna 239.5 11.974 ‧ 106 

Rönnby 101.8 5. 50 ‧ 106 

Tillberga 200.3 10.550 ‧ 106 

Barkarö 117.0  .875 ‧ 106 

Hallstahammar 1104.7  9. 50 ‧ 106 

 

3.3 Sensitivity analysis 

The robustness and reliability of the procedure for estimating the parameters U and C with a feasible 

margin of error is assessed through sensitivity analysis. For this purpose, the six aggregated regions 
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of the Västerås DHN are simulated for three representative days of January: this means that the model 

equations of the regions represented by Eq. (2) are integrated with, as inputs, the historical data of 

thermal power and outdoor temperature for the given period. The simulations are carried out firstly 

with the calculated coefficients and then with the coefficients that are increased and decreased by a 

given percentage, in order to show their influence on the behavior of the model. Figure 7 represents 

the equivalent indoor temperature when the heat transfer coefficient U is varied by ±10 % while 

Figure 8 represents the equivalent temperature when the heat capacity coefficient C is varied by the 

same percentage. Since the standard deviation of U calculated with different methods (Table 2) is 

lower than 8 % in all cases, it is reasonable to assume that value as an uncertainty parameter. 

The results show that an increase in U has a greater effect on the behavior of the model than an equal 

increase in C. Thus, the margin of error on the former is smaller than on the latter. Nevertheless, U 

has been estimated with good confidence by the fact that different methods lead to similar outcomes. 

 

Figure 7. Sensitivity analysis of the behavior of the model with the heat transfer coefficient U, considering a ±10 % 

variation. 
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Figure 8. Sensitivity analysis of the behavior of the model with the heat capacity coefficient C, considering a ±10 % 

variation. 

 

Additionally, it is possible to state that the calculated coefficients (Table 3) lead to an acceptable 

behavior of the equivalent temperature (full lines), while the curves obtained with lower and higher 

values of U (dashed and dashed-dotted lines, respectively) tend to diverge due to the dynamic nature 

of the model. The effect of varying the heat transfer coefficient is reduced when the outdoor 

temperature is higher (e.g. autumn and spring). This is given by the fact that the rate of variation of 

the temperature is proportional to U and to the difference between the equivalent temperature and the 

outdoor temperature (Eq. (2)). For this purpose, Table 4 reports the average deviation between -10 % 

and +10 % curves (Figure 7) in three different seasons, showing a significantly lower deviation 

(obtained with higher and lower values of U) during middle seasons.  

On the other hand, the deviation obtained by varying the heat capacity coefficient as presented above 

is not appreciable. The influence of this parameter is further explored by increasing and decreasing it 

by up to one order of magnitude. For this purpose, Table 5 reports the maximum and minimum value, 
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and the maximum difference of the equivalent temperature profile of Surahammar, taken as example. 

As expected and mentioned in Section 2.2.2, a lower C leads to significant daily temperature 

variations (i.e. up to two times higher than that obtained with the calculated baseline coefficient), 

while a higher C leads to a flat temperature profile. Since both conditions are not acceptable, the 

calculated value of C, which leads to daily temperature oscillation with an amplitude of around 2 °C 

to 3 °C, is considered reasonable for the presented model.  

 

Table 4. Influence of the heat transfer coefficient U on the behavior of the model: average temperature deviation in [°C] 

between the two temperature curves (i.e. -10 % and +10 %) on three representative days in different seasons. 

Region November [°C] January [°C] March [°C] 

Surahammar 2.98 4.02 2.42 

Skultuna 2.00 3.61 2.41 

Rönnby 2.69 4.18 2.18 

Tillberga 2.72 3.95 2.26 

Barkarö 3.40 4.20 2.54 

Hallstahammar 2.90 4.14 2.43 

 

Table 5. Influence of the heat capacity coefficient C on the behavior of the model evaluated for the region of Surahammar 

on three representative days (January 15–17, 2017). C0 is the calculated heat capacity coefficient (i.e. baseline, see Table 

3), which leads to the parameters presented in bold.  

C/C0 

[-] 

Maximum temperature 

[°C] 

Minimum temperature 

[°C] 

Maximum temperature 

difference [°C] 

Temperature difference 

variation compared to 

baseline [%] 

0.1 23.57 14.30 9.26 +208 

0.2 23.19 15.53 7.66 +148 

0.5 21.83 17.33 4.50 +47.4 

1 20.65 17.88 2.78 0 

2 20.21 18.84 1.37 -25.7 

5 20.00 19.16 0.84 -59.1 

10 20.00 19.63 0.37 -73.7 
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4. Model validation 

The heat transfer coefficients and heat capacity coefficients of the models developed in Section 2 and 

3 can be compared and validated with literature data if converted to specific parameters per unit of 

heated space. 

Since the total heated area of the regions of the Västerås DHN is unknown, this is estimated based on 

the energy statistics published by the Swedish Energy Agency [52]. The document reports the values 

of the average yearly energy consumption per square meter of heated surface for different Swedish 

counties. The ratio between the total yearly consumption Qtot,i of a given region i and the average 

yearly consumption Qavg gives the estimation of the total heated surface of that region, namely Atot,i, 

as in Eq. (5): 

𝐴tot,i =
𝑄tot,i

𝑄avg
 (5) 

The model coefficients calculated above are then scaled with this estimation to obtain the specific 

coefficients per unit of the heated area given by Eqs. (6): 

𝑈𝐴,i =
𝑈i

𝐴tot,i
 (6a) 

𝐶𝐴,i =
𝐶i

𝐴tot,i
 (6b) 

By assuming an average height H of the heated environments of 3 m, it is possible to further scale the 

values and obtain the specific coefficients per unit of heated volume UV and CV.  

𝑈𝑉,i =
𝑈𝐴,i

𝐻
 (7a) 

𝐶𝑉,i =
𝐶𝐴,i

𝐻
 (7b) 
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The statistics for the county of Västmanland, where Västerås is located, present the average yearly 

heat consumption Qavg between 135 kWh/m2 and 165 kWh/m2 [52]. The range of variation with this 

parameter of the total heated area estimated for the Västerås DHN regions are reported in Table 6. 

 

Table 6. Estimation of the total heat and total heated area of the six regions of the Västerås district heating network. 

Region Qtot [kWh] Atot [m2] 

Surahammar 4.18 ‧ 107 (2.95 ± 0.14) ‧ 105 

Skultuna 1.90 ‧ 107 (1.28 ± 0.1 ) ‧ 105 

Rönnby 1.22 ‧ 107 (0.82 ± 0.08) ‧ 105 

Tillberga 2.02 ‧ 107 (1. 6 ± 0.1 ) ‧ 105 

Barkarö 1.22 ‧ 107 (0.8  ± 0.09) ‧ 105 

Hallstahammar 1.21 ‧ 108 (8.15 ± 0.81) ‧ 105 

 

The sensitivity analysis of the specific coefficients UV and CV by varying Qavg within the 

abovementioned boundaries is shown in Figure 9. The characteristic time of each region τ, obtained 

as the ratio between the heat capacity and the heat dissipation to the environment, is also represented: 

𝜏i =
𝐶i

𝑈i
 (8) 

The values of the coefficients UV and CV calculated in [49] for individual buildings in the Turin DHN 

are around 0.85 W/(m3 °C) and 5 ‧ 104 J/(m3 °C), respectively. The characteristic times vary 

significantly depending on building type: most values are around 7 ‧ 104 s, while some are even 

smaller than 5 ‧ 104 s.  
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Figure 9. Specific coefficients of heat transfer (a) and heat capacity (b) per unit of heated volume by varying the average 

yearly consumption, and characteristic time (c). 

 

Even though results obtained in this work are slightly lower than the literature values, they share the 

same order of magnitude. In addition, the fact that the characteristic times are comparable shows that 

the heat transfer and heat capacity coefficients are coherent. Moreover, it is worth stating that the 

literature values have been obtained for individual buildings in the city of Turin, which is 

characterized by old multi-story dwellings. The regions of Västerås are likely to be characterized by 

aggregations of newer or more energy-efficient dwellings, therefore a lower loss coefficient can be 

reasonably expected. This is confirmed by a research stating that the average temperature loss of 

Italian houses – when the indoor and outdoor temperatures are 20 °C and 0 °C, respectively – is 1.5 
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°C, while in Sweden this parameter drops to 1.2 °C [53]. Hence, lower values of the heat loss 

coefficient for networks in Sweden compared to Italy are justified by the different characteristics of 

the connected buildings. Additionally, another paper [40] reports that the values of the internal heat 

capacity of light-weight buildings drop to 8 ‧ 104 J/(m2 °C), which corresponds to around 3 ‧ 104 J/(m3 

°C) and is coherent with the analysis in Figure 9.  

A further check with the considerations drawn in [41] is represented in Figure 10. According to  eś o 

et al., the aggregated DSM actions performed (i.e. storage of thermal energy in consumer capacity) 

are limited to 1.4 % of the total heat demand [41] in the period analyzed. The potential daily heat 

storage obtained with this assumption can be compared with that obtained with the model proposed 

in this work. In this case, the energy stored is calculated as: 

𝑄stored = 𝐶∆𝑇max (9) 

 here ∆Tmax is the maximum acceptable variation in indoor temperature compared to the required 

set-point, considered equal to ± 0.5 °C. The results obtained are comparable also in this case.  

 

Figure 10. Energy stored in the region’s thermal capacity: comparison between this model and that proposed by  

Leśko et al. [41]. 
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Finally, a preliminary test of the model feasibility for DSM is carried out by means of a simple 

application in the Simulink® environment [54]. Thermal power supply – available from the historical 

data – from the substation heat exchanger to the model of the aggregated consumer is simulated and 

the equivalent indoor temperature of the aggregated consumer is then visualized. An exemplifying 

result concerning the region of Surahammar for the heating season from October 2018 to March 2019 

is depicted in Figure 11. It can be noted that the estimated U and C are reliable, as the simulated 

behavior is plausible and does not diverge in the long-term. Indeed, the model temperature is kept 

around 21 °C and is subject to daily variations between 2 °C to 4 °C, which is compatible with the 

expected profile. Additional weekly periodical variations in the temperature evolution can be noticed 

and justified by the different behavior typically observed on weekends and during holidays (when 

commercial, industrial or tertiary-sector end-users seldom require heating). This has an influence on 

the temperature of the aggregated region, which is a representation of its energy content.  

 

 

Figure 11. Preliminary test of the model performed with a Simulink® application [54]. The results of the indoor 

temperature refer to the region of Surahammar during the heating season from October 2018 to March 2019. 
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5. Discussion 

The presented model of a DHN aggregated region can be used for several applications, since it has 

the following advantages:  

• The model provides an estimation of the heat capacity of the buildings connected to a given 

substation as an aggregated consumer and, therefore, paves the way for its exploitation as 

thermal storage. It should be noted that most state-of-the-art models of DHNs consider the 

multiplicity of consumers as an external element which acts on the network by imposing a 

heat demand that cannot be varied.  

• In this regard, the heat capacity coefficient can be used to provide insights on the heat storage 

potential of a given region or set of consumers to enable DSM options. Assuming that the heat 

demand of a region (obtained from historical data or forecasted) is able to keep the indoor 

thermal comfort of the consumers in that region, for instance by maintaining the indoor set-

point temperature, and considering a suitable temperature deviation from that set-point, it is 

possible to calculate the amount of heat that can be stored over a given time period without 

altering user comfort perception (Eq. (9)). The potential heat storage capacity achievable with 

an indoor temperature deviation of ±0.5 °C for the Västerås regions is illustrated in Figure 12. 

The graph shows similar results to those presented in [31], which concern the estimation of 

building demand response potential.  

• The exploitation of the regions as thermal storage allows DSM strategies such as peak shaving 

to be implemented without requiring the installation of dedicated storage devices, the cost-

effectiveness of which should be carefully evaluated by the system operator.  

• This model is able to aggregate several buildings connected to a substation only requiring 

basic data on energy flows, without the need to carry out a time-consuming evaluation of the 

building types and characteristics, which may introduce errors and inaccuracies. This is 

different from many literature models, which manage the heat storage potential starting from 
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archetypes or individual building characterization and, therefore, cannot easily extend smart 

management and control solutions to large-scale networks.  

 

 

Figure 12. Heat storage potential of the six regions. The full line represents the historical thermal power, while 

the shaded area represents the heat that can be stored each hour by considering an indoor temperature deviation 

of 0.5 °C.  

 

• The model is scale-free and can applied to any part of the system for which data are available. 

The described approach does not depend on the number of buildings or on the focus area, thus 

it is valid for a city as well as for an individual building. The characteristics of the region 

constituents, which influence the collected dataset, are directly reflected and included in the 

results of the model identification procedure. In addition, the procedure is fast and easily 

replicable by the utilities of several heating networks, without needing specific modeling 

competences or system knowledge with a fine granularity.  
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• Due to the simplified approach used in its development, the proposed model can be easily 

exploited in Linear Programming optimization problems, for which practical and fast software 

solutions are available [55].  

• In the presented procedure, an increase in system size does not correspond to an exponential 

increase in optimization complexity. The model is therefore particularly suitable for unlocking 

the potential of Model Predictive Control, where computational speed is of primary 

importance. MPC implements optimal control with a receding time horizon strategy, updating 

the system state and model variables and repeating the online optimization at every given time 

interval [56]. Hence, the simplifications of the proposed model are effectively 

counterbalanced by this periodic feedback, which allows modeling inaccuracies to be rejected.  

As previously mentioned, the demonstration of MPC for achieving demand side management in an 

entire DHN with this model was successful in [46]. 

A potential limitation of the presented model can be identified in the low level of detail in representing 

individual buildings, as they are clustered with equivalent parameters and properties. Nevertheless, 

the experimental definition of a significant value of the actual indoor temperature of the buildings in 

large-scale DHNs is not straightforward and a management solution based on its detailed monitoring 

may not be applicable. Hence, a region-level view can be beneficial, especially in real-time control 

applications of the distribution network. Moreover, the conservative estimation of the heat storage 

potential leads to a negligible risk of jeopardizing end-user comfort. 

Future developments of the study will be dedicated to a further validation of the model on controlled 

small-scale and large-scale real demonstrators. Measurement devices will be installed, the indoor 

temperature will be monitored, and experimental tests will be conducted on DHN portions of different 

sizes.  
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6. Conclusions 

The currently available models of large-scale district heating networks do not allow the thermal 

capacity of the connected end-users to be efficiently included in system optimization and real-time 

control. Indeed, typically the inclusion of thermal mass relies either on indoor temperature monitoring 

(which is rarely available in large-scale heating networks) or on a detailed knowledge of the 

characteristics of the buildings (e.g. time constants, materials and size) and, therefore, this is time-

consuming and daunting for large-scale applications. This work proposed a method that can be readily 

applied using a potentially small amount of data usually accessible to district heating providers. 

Starting from the data available at the main substation heat exchangers of the peripheral regions of 

the district heating network of Västerås, Sweden, a physics-based equivalent model of each 

aggregated region was identified and validated with data from the literature and simulations. 

Additionally, sensitivity analysis was carried out to further show the robustness and reliability of the 

procedure, and its potential replicability to different substations. The model was exploited to evaluate 

the aggregated storage potential of the regions and will be the key element of smart optimization and 

control strategies. Indeed, the model is ideal for implementing demand side management, e.g. shaving 

the peaks of thermal energy distribution, and for setting up real-time predictive controllers. Thus, the 

proposed complete procedure will provide valuable tools for the digitalization of district heating and 

sustainable energy transition. 
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Nomenclature   

Atot  total heated area [m2] 

C  aggregated heat capacity coefficient [kJ °C-1] 

c  water specific heat capacity [kJ kg-1 °C-1] 

f  flag variable for meeting acceptability band constraints [-] 

H  average height of heated environment [m] 

J  cost function [°C h] 

ṁ  mass flow rate [kg s-1] 

Q̇  thermal power [kW] 

Q  heat [kJ] 

Qavg  average yearly heat consumption [kWh m-2] 

Qtot  total yearly heat consumption [kWh] 

T  temperature [°C] 

t  time [s] 

U  aggregated heat transfer coefficient [kW °C-1] 

ϕ  penalty factor for violation of acceptability band constraints [°C s] 

τ  characteristic time [s] 

 

Subscripts 

A  specific per unit of heated area 

ext  outdoor 



47 

 

i  region i 

k  day k 

max  maximum 

min  minimum 

R  return 

S  supply 

SP  set-point 

stored  stored 

V  specific per unit of heated volume 

 

Acronyms 

CHP  Combined Heat and Power 

DHN  District Heating Network 

DSM  Demand Side Management 

MILP  Mixed Integer Linear Programming  

MPC  Model Predictive Control 


