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In the present study, rare earth elements (REEs, i.e., La, Ce, Nd, and Pr) were hydrometallurgically recovered in
oxalate form with presence of very low concentration of Co, Al, Zn and Ni from solution after processing of
spent Nickel metal hydride (Ni-MH) batteries. The recovered mixture was used as alternative source in the syn-
thesis of magnetocaloric materials. In this study, a manganite sample with general formula ABO3 was selected to
be prepared since it is relatively easy to synthesize and is tuneable by adjustment of the doping concentration.
The conventional solid-state reaction method was used to prepare an orthorhombic structure of manganite
with presence of REE2O3 and MnO2 as secondary phases reported from x-ray pattern at room temperature.
The thermomagnetic measurements showed a PM to FM transition at 184 K in a 0.01 T magnetic field that shifts
to 194 K by increasing themagnetic field to 1.8 T. Themagnetocaloric properties were determined by calculating
the isothermal entropy change and directly measuring the adiabatic temperature change. A reversible
magnetocaloric effect was observed.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The development of clean energy technologies such as hybrid
electric vehicles (HEVs), wind energy, and high-efficiency lighting,
catalyst and other related fields has increased the demand for rare
earths metals [1]. Rare earths (REEs) consumption is divided be-
tween the different sectors as follow: glass industry (polishing,
68%; additives, 42%), 28,400 t; catalysts (fluid cracking, 72%; cata-
lytic converters, 28%), 27,400 t; neodymium‑iron boron magnets,
26,300 t; metallurgy and alloys, 23,600 t; and other uses, 23,500 t
[1]. However, supply's issues limit such growing consumption.
Most of the world's supply comes from only a few sources domi-
nated by China, which controls almost 95% of the global Rare
earth oxide production [2]. Therefore, REEs have been considered
as a controversial issue and extremely critical raw materials for
the European Union that strongly depends on both heavy and
light REEs [3]. This poses a potential competition for proposing
new solutions including maximizing or optimizing the recovery of
REEs from spent nickel metal hydride (Ni-MH) batteries where
.V. This is an open access article und
the anode is commonly a REENi5 alloy consisting of mischmetal
(Ce, La, Pr and Nd) and substituents like Co, Ni, Zn, and Al [4–6].
The REE amounts differs from one type of batteries to another. Tak-
ing as examples Ni-MH-type, a HEV battery pack contains 3.5 kg
REEs [7], 1 g of REEs per AAA battery, 60 g for a household power
tool and a hybrid electric vehicle battery contains around 2Kg of
REEs [8]. In general, spent batteries are recycled via pyrometallurgy.
However, during such treatment, REEs end up in the slag and are
not further recovered (e.g. Umicore). Pyrometallurgy have been im-
plemented on an industrial scale by Umicore (Belgium) where the
REEs revert to slag phases. The recovery of REEs in molten salt elec-
trolysis was proposed by Honda in collaboration with Japan Metals
& Chemicals Co. Ltd. Different methods of extraction have been ex-
plored where the REEs are recovered as a mixture [5,9,10]. Com-
pared to other routes, hydrometallurgical processing of NiMH
batteries is considered as an environmentally friendly method to
bring the REEs mixture into solution feed [11]. The drawback asso-
ciated with such approach is that the mixed REEs solution has lim-
ited industrial use if the contained REEs are not individually
separated. Moreover, the separation of such mixture to individual
metals is significantly demanding with respect to energy, chemical
reagents, and waste generation. Therefore, the reuse of the stream
er the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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mixture generated from waste of NiMH for synthesis of new mate-
rials is challenging and has not been explored yet. The valorisation
of REEs mixtures into new applications could improve the recycling
rate of those critical raw materials and can make their utilization
more sustainable.

An innovative method has been developed for valorisation of waste
of batteries. The reuse of the REEs stream is proposed as an alternative
source for the synthesis of solid-state refrigerants for magnetic cooling
application. In fact, the REEs present in Ni-MH batteries waste are also
the main elements composing the magnetocaloric materials with gen-
eral formula La1-xREExMn1-xMxO3.

The interest inmagnetic refrigeration startswith the discovery of the
magnetocaloric effect (MCE),which is the change of entropy (ΔSm) or of
temperature (ΔTad) that accompanies magnetic transitions in materials
when a magnetic field is applied or removed, under isothermal or adia-
batic condition, respectively. It was firstly discovered in iron by E. War-
burg in 1881. The suitability of a magnetocaloric material for cooling
application depends on the large and reversible ΔSm and ΔTad in small
field changes and their temperature profile. Another parameter for the
evaluation of magnetocaloric effect is the relative cooling power (RCP)
which corresponds to the amount of heat transferred between cold
and hot sinks in an ideal refrigeration cycle [12].

Thanks to its eco-friendliness and improvements in energy effi-
ciency, magnetic refrigeration is considered as a good alternative
for conventional refrigeration based on gas compression/expansion
[13,14]. In a typical magnetocaloric refrigerator, amagnetocaloric mate-
rial is used in the form of a regenerator matrix. An extensive research
along this line include the development of newmaterials and new syn-
thesis methods to search a new environmentally friendly refrigerant.
The material selection criteria have been well presented by Gottschall
et al. [15]. Awide category ofmaterials have been proposed as candidate
for MCE such as Gd based compounds [16,17], La(FeSi)13 based alloys
[18–20], Mn-Fe-P [21,22], manganites and other compounds [23–26].
Generally, both first order magnetic transition FOMTmaterials and sec-
ond order magnetic transition SOMT materials have been studied.

Among the different classes, Lanthanum manganites with gen-
eral formula ABO3, where A is La and B = Mn were studied as
magnetocaloric materials thanks to their near-room-temperature
magnetic transition [27]. Recently, Bahl et al. [28] showed that
their strength lies in the ability to accurately tune the Curie temper-
ature TC. The tunability of TC and the magnetocaloric response in a
wide temperature range can be achieved by a chemical substitution
in A site or B site. REE-elements, such as Ce, Pr, Nd, etc.… were used
to substitute La. The effect of substitution on the structural, mag-
netic and magnetocaloric properties was widely studied [29,30].
The optimization of dopant can improve the magnetocaloric re-
sponse of these materials. By efficiently REEs and metal site
substituting, we can reach the same composition as the virgin
compound in the manufacturing process with discarded outputs
from recycling of Ni-MH batteries. The mass adoption of REEs
magnetocaloric materials is slowed down by the scarcity of REEs.
Hence, the use of REEs feed as starting precursors in the synthesis
is challenging and motivating.

The main goal of this paper is the valorization of Ni-MH batte-
ries waste by reutilization in the production of magnetocaloric ma-
terials. Synthesis, structural and magnetocaloric properties of
manganite oxide prepared from Ni-MH wastes were investigated.
This approach can support further studies on this topic and it can
be considered a more sustainable solution to reduce the waste gen-
erated by industries by proposing an application where the waste
of batteries can be reused, with a mitigation of the impact related
to mining and the dependence on critical raw materials. The pro-
posed solution can help to scale down the economic and environ-
mental impact of the production technologies for magnetocaloric
materials.
2

2. Experimental procedure

2.1. Materials

Ni-MH batteries, hydrochloric acid (HCl), Cyanex 923 (from Cytec),
NaNO3, HNO3 tributyl phosphate diluted (TBP) in kerosene, decanol,
oxalic acid (Merck), Mn(C2O4) 3.H2O and ultra-pure water (MilliQ
Millipore,> 18 MΩ/cm) were used in this study.

2.2. Sample processing

The preparation of the magnetocaloric material from the waste
of batteries was done in 2 major steps: REEs recovery from Ni-MH
batteries using hydrometallurgical processing and synthesis of man-
ganite starting from the recovered mixture by using solid state
reaction.

2.2.1. Hydrometallurgical processing of NiMH: REEs recovery
Solution containing separated REEs from other cathode materials

were obtained in the process described by Petranikova et al. [11]. The
Ni-MH battery was firstly manually dismantled and pretreated [11].
For leaching, the solid materials were added in smaller amounts at the
time (2 g per minute) to 8 M HCl solution at 30⸰C in 5 L glass leaching
reactor.

Then, the extraction was performed by using solvating extractants
mainly trialkylphospine oxide mixture Cyanex 923 and tributyl phos-
phate diluted (TBP) in kerosene in several stages:

- Pre-Extraction: (8% Cyanex 923, 10% TBP, 82% kerosene)was used to
remove Fe (99.9%) and Zn (99.9%) from the leachates: the extraction
was performed in four extraction stages followed by three scrubbing
stages. A low percentage of Co (8%), Y (5%), Mn (1%) and REEs (2%)
was co-extracted.

- Main Extraction: (70% Cyanex 923, 10% TBP, 10% kerosene, 10%
1-Decanol) was used to separate Al and REEs from Ni, K and Mg.
Three extraction stages were needed. At this stage, 98% Ni, 99.8% K,
and 99.5% Mg were obtained in the aqueous phase.

- Scrubbing: Mixture of NaNO3 and HNO3 were used to remove co-
extracted Co, Mn and Ni from the organic phases.

- Stripping process:1 M HCl were used to recover Al and REEs. Low
impurities of Co, Mn, Ni, Zn and Al were also present in the final
product due to high viscosity of the organic phase and entrapment
of the aqueous phase from the previous step.

Petranikova et al. [11] showed that seven stages were sufficient to
strip out Al and REEs. The process was performed in a counter-current
system using pilot plant scale mixer-settlers. The flowsheet of the tech-
nology is shown in Fig. 1.

REE ions in solution were precipitated in REE oxalates, REE2(C2O4)3
according to Eq. (1):

2 REE3þ aqð Þ þ 3 C2O4
2−

aqð Þ ! REE2 C2O4ð Þ3 sð Þ ð1Þ

2.2.2. Conventional solid-state reaction method
A polycrystalline sample REE*MxMn1-xO3 were prepared by using

conventional solid-state reaction method starting from REE2(C2O4)3,
xH2O obtained from the waste and Mn(C2O4)3.H2O. The precursors
were mixed in stoichiometric proportions and grinded for 30 min. The
obtained powderwas then annealed at 800 °C in air for 12 h and pressed
into pellets of 15 mm diameter and 2 mm thickness. The pellets were
sintered at 900 °C and 1000 °C for 24 h with intermediate grinding
and pelleting processes. The final annealing temperature was 1100 °C
for 24 h.



Fig. 1. Flow chart ofmain extraction process for anodicmaterial (usingmultistagemixer-settler system). Values in red relate tometal in the organic feed after last stage of each step. Values
in black relate tometal in the aqueous feed. All the values are reported in regard to themetal concentration in Leachate A. Symbols E,W and S represent extraction, scrubbing and stripping
steps respectively [11]).
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2.3. Characterization

An X-ray diffractometer Bruker (XRD) D8 Advance is used to study
the phase structure and purity of the sample. The composition of the
rare earth mixture obtained from the waste was determined by an In-
ductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES,
iCAP 6500, Thermo Fischer). Thermogravimetric analysis was per-
formed to check the decomposition of the oxalate. The chemical compo-
sition and the morphology of the recovered waste and manganite
sample were studied using scanning electron microscopy (SEM)- JEOL
7800F Prime. Magnetic measurements as a function of temperature in
different magnetic fields were performed using an extraction magne-
tometer (MAGLAB SYSTEM 2000 by Oxford Instruments). The adiabatic
temperature change was directly measured with a home-made experi-
mental set up based on a Cernox bare chip temperature sensor [31]with
the “cyclic protocol” described in [32]. The field changewas achieved by
turning on and off a low-inductive electromagnet, with a maximum
field of 1.8 T.

3. Results and discussion

3.1. Structure and morphology

The oxalate was dissolved in HCl andwas analyzed with ICP-OES. Its
general formula is REE2(C2O4)3. xH2O; REE = REE*Mx* where
REE*_La0.7Ce0.17Pr0.065Nd0.061Y0.04Na0.004 and M*x = Co0.0013
Ni0.0014Zn0.001Al0.019Mn0.001. XRD pattern of oxalate obtained from the
waste of NiMH battery powder was presented in Fig. 2(a). The recovery
process leads to the formation of REE2(C2O4)3, xH2O compound which
was confirmed by the DIFFRAC.EVA software. The TGA measurement
plotted in Fig. 2(b) reports the decomposition temperature of the
oxalate. The oxide form REE2O3 can be obtained by annealing at 900 °C
for 12 h (see Fig. 2(c)).

Fig. 3 shows the x-ray diffraction pattern for the preparedmanganite
compound. The measurement was performed with continuous scan-
ning by a detector covering a 2θ angular range from 10° to 80° with a
step size of 0.04 and a wavelength of 1.541874 Å. A composite
3

compound was identified for the manganite by the DIFFRAC.EVA
software. It is composed of one major phase of manganite crystallized
in orthorhombic structure (81.4%) with presence of two secondary
phases that correspond to the REE-oxide mixture (18.00%) used as
startingmaterial andMnO2 (0.6%). The phases contentswere confirmed
by using Match software.

The crystallites size was calculated by using the Debye Scherrer
equation:

DSC ¼ Kλ
βcosθ

ð2Þ

where K, λ, θ, and βD are respectively the grain shape factor, the x-ray
wavelength, the Bragg diffraction angle and the full width at half maxi-
mum (FWHM) of the diffraction peak, respectively. The instrumental
broadening effect was eliminated. The crystallites size is about
27.87 nm for the manganite sample.

The morphology of the samples was examined with the SEM. The
images of the recovered REEs oxalate is observed in Fig. 4. It consists
of rods with different diameters ranging from 300 nm to 4 μm and the
length of about 500 nm to 10 μm. Micrometric size particles were
observed for the manganite compound. The particles are non-
homogenous with different shapes. Each particle is composed of differ-
ent crystallites.

3.2. Magnetocaloric study

3.2.1. Magnetometric measurements
Fig. 5(a) reports the temperature dependence of the magnetization

M(T) measured in different magnetic fields, ranging from 0.01 T to
1.8 T, with a temperature sweep on heating between 150 and 240 K.
The curves show that the sample undergoes a ferromagnetic (FM) to
paramagnetic (PM) transition. The critical temperature (TC) was de-
rived by taking the minimum of dM/dT curves (Fig. 5(b)). The inset of
the Fig. 5(b) shows the variation of TC as function of applied magnetic
field. The TC shifts toward higher temperaturewith the increase ofmag-
netic field indicating an enhancement of the ferromagnetism. The rate



Fig. 2. a) X-ray diffraction pattern of the recovered REE-mixture from Ni-MH during
hydrometallurgy process, b) Weight loss curves, c) X-ray diffraction pattern of the oxide
form of the waste obtained at 900 °C.
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of the change is about 5.5 K/T. The TC varies from184±1K to 194±1K
under 0.01 T and 1.8 T respectively. Such behavior was already reported
in the literature for different virgin manganites which showed a PM to
FM magnetic transition upon cooling [33–37]. The secondary phases
do not show magnetic properties in the 100–300 K temperature
range, as demonstrated by the absence of other magnetic transitions
and the paramagnetic state above the Curie temperature. Their effect
is to decrease the net mass magnetization of the prepared material.

Fig. 5(c) shows the temperature dependence ofmagnetization taken
at 0.01 and 1 T on heating and on cooling. No thermal hysteresis be-
tween both protocols was detected around the transition in a 0.01 T ap-
pliedmagnetic field,which can be a feature of second order transition of
the sample. By increasing the applied magnetic field up to 1 T, no mod-
ification was observed on the thermal hysteresis showing no transfor-
mation in the phase transition nature. However, the magnetization vs
T curves height decreases. Moreover, the magnetization increases
from 8.98 Am2Kg−1 to 59 Am2Kg−1.

Additional information on themagnetic properties of the sample can
be obtained by studying the inverse of magnetic susceptibility as func-
tion of temperature χ−1(T) at different magnetic fields. The curve χ−1

(T) is plotted in Fig. 5(d). Using the Curie – Weiss (CW) law,
χ Tð Þ ¼ C

T−θP
, where, C and θp are respectively the Curie constant and

the Weiss temperature, we obtained a θp of 187 K. This positive value
suggests the presence of ferromagnetic spin interaction. No Griffiths
phase like has been detected.

3.2.2. Magnetocaloric properties: Isothermal entropy change
The isothermal entropy change ΔST is of central importance for

magnetocaloric materials. It is related to the temperature derivative of
magnetization M and to the strength of the magnetic field μ0H change
through the Maxwell relation:

ΔST ¼ μ0

ZH

0

∂M
∂T

� �
dH ð3Þ

The ΔST(T) curves for a magnetic field variation of 1 T and 1.8 T, re-
ported in Fig. 6(a), were calculated by applying the Maxwell relation at
M(T) data. The maximum entropy change |ΔST max| for 1 T is 1.07 ±
0.02 J kg−1 K−1. By applying a highermagnetic field of 1.8 T, it increases
Fig. 3. X-ray diffraction pattern of the prepared manganite.



Fig. 4. SEM images of a) REEs oxalate recovered from the waste b) manganite sample.
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to a value of 1.67 ± 0.05 J kg−1 K−1. These values are lower compared
with the ΔST obtained for other manganite compounds mainly because
of the inhomogeneity of the sample and the presence of secondary
phases [38–41].

As an example, in recent works, the first order La0.7Ca0.3MnO3 man-
ganite showed a higher entropy change at low magnetic fields. By
Fig. 5. a) Variation ofmagnetization (M) as function of temperature (T) for themanganite samp
the manganite sample. The inset shows TC versus magnetic field curves, c) M(T) curves on hea
temperature curves for 1 T.

5

applying a magnetic field of 0.5 and 1.0 T, it reaches 5.04 and
6.25 J kg−1 K−1 [42]. This compound shows a higher isothermal en-
tropy, a typical characteristic of first order transition differently from
the compound obtained from waste of batteries that shows a second
order transition with lower and wider isothermal entropy. We could
get the impression that the manganite obtained from waste has a poor
le in amagneticfield varying from0.01 T to 1.8 T, b) (dM/dT) versus temperature curves for
ting and cooling for a 0.01 T and 1 T applied magnetic field, d) inverse of susceptibility vs



Fig. 6. Isothermal entropy change as a function of temperature for twomagnetic fields 1 T
and 1.8 T variations.

Fig. 7. ΔTad(T) of the manganite sample directly measured on cooling and on heating by
applying and removing a magnetic field of 1.8 T.
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performance in comparison to other magnetocaloric compounds. How-
ever, it is possible to enhance the MCE performance by exploiting sev-
eral factors such as composition, grain size, sintering temperature, or
pressure application and by improving the homogeneity of the sample.
Moreover, combining the obtained manganite from NiMH spent with
another manganite composition or oxides can ameliorate the MC feasi-
bility. In a recent work, M. Pekała et al. reported the magnetocaloric
properties of the La0.8Sr0.2MnO3/La0.7Ca0.3MnO3 composite and found
that the magnetic field dependence of magnetic entropy change is
stronger for the nano- than the polycrysctalline composite [43]. The ef-
fect of chemical order on manganite were already reported [44].

The RCP is also an important parameter that can characterize a
magnetocaloric material. It can be calculated by considering themagni-
tude of and their full width at half-maximum ẟTFWHM. It is defined
as [45]:

RCP ¼ ΔSmax⁎ẟFWHM ð4Þ

The values yielded are 37.45 and 78.5 Jkg−1 respectively for 1 and
1.8 T. For comparison purpose, themagnetocaloric parameters for stud-
ied rawmaterials that possesses acceptablemagnetic cooling properties
are presented in Table 1. The sample exhibit comparable performance to
other oxides working in a close Curie temperature but very low com-
pared to the intermetallic alloy La(FeSi)13 based samples and Gd. The
low magnetocaloric parameters values make the present sample not
Table 1
Comparison of the magnetocaloric properties for manganite obtained from waste of
Ni-MH batteries and other materials studied for magnetic refrigeration.

Compound TC
(K)

μ0H
(T)

ΔTad-max

(K)
−ΔSmax

(Jkg−1 K−1)
RCP
(Jkg−1)

Ref

Manganite from waste
of NiMH batteries

194 1.8 0.41 1.67 78.5 Present
work

Gd 299 2 – 4.2 196 [16]
LaFe11.83Mn0.32Si1.3Hx 294 2 4.9 12.6 105.6 [46]
La0.8Ca0.2MnO3 183 2 – 2.23 112.36 [47]
La0.7Sr0.3Mn0.9Ti0.1O3 210 1 – 0.84 49 [48]
Sm0.35Pr0.2Sr0.45MnO3 182.5 5 – 5.23 219.03 [49]
La0.66Y0.04Ca0.3MnO3 190 2 – 5.5 143 [50]
La0.4Pr0.3Ca0.3MnO3 186 5 – 6.92 – [51]
La0.45Pr0.25Ca0.3MnO3 199 5 – 7.27 – [51]
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suitable for magnetic cooling application. Further improvement of the
compound should be realized.

3.2.3. Direct measurement of the magnetocaloric effect
The adiabatic temperature change, ΔTad, is the most important

parameter to describe the performance and the feasibility of a mag-
netocaloric material for cooling application. It is known as the tempera-
ture change of the material upon the adiabatic application of magnetic
field. It was directly measured using a cyclic protocol that consists in a
continuous measurement of the ΔTad with a cyclical application of the
magnetic field to the material while the temperature of the environ-
ment is slowly varied.

The adiabatic temperature change corresponding to the application
and removal of a 1.8 T magnetic field upon cooling and heating is plot-
ted in Fig. 7. It shows no thermal hysteresis, as observed in the M
(T) curves. The cooling and heating curves are superposed and themea-
sured ΔTad is the same both applying and removing the magnetic field,
thus demonstrating the reversibility of the magnetocaloric effect. The
maximum value is ǀΔTadmax ǀ = 0.41 ± 0.07 K at 198 K upon application
and removal of 1.8 T field. This obtained adiabatic temperature change
is very low compared to other promising manganite oxide prepared
from virgin oxides. This may be due to the presence of different second-
ary phases such as the REE-oxide mixture and to the broadening of the
transition, probably caused by the inhomogeneity of the sample.

The relative cooling power can be also calculated using the following
equation [45]:

RCP ¼ ΔTad−max ⁎ẟFWHM ð5Þ

The RCP value obtained from the direct measurement of
magnetocaloric effect is 13.53K2.

4. Conclusion

In conclusion, hydrometallurgy was used as efficient method for the
REEs recovery from the outputs generated from Ni-MH batteries. The
reuse of the recovered metals for new energy applications was pro-
posed and the synthesis of a manganite sample for magnetic refrigera-
tion application was investigated. The X-ray diffraction structure
analysis shows a non-pure manganite phase with the presence of sec-
ondary phases; rare earth oxide used as starting material and MnO2.
The temperature dependence of magnetization reveals a FM- PM
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transition of the sample in the range 184-194 K upon applying a field
varying from 0.01 to 1.8 T. The sample showed a reversible
magnetocaloric effect, with an isothermal entropy change of 1.67
Jkg−1 K−1 and an adiabatic temperature change of 0.4 K in a magnetic
field change of 1.8 T. Themagnetocaloric properties are weak compared
to different candidates formagnetic refrigeration,mainly because of the
inhomogeneity of the sample and the presence of secondary phases. A
few future scenarios that can enhance the magnetocaloric efficiency
for the waste sample are further A and B site substitutions, producing
composite with other materials and changing synthesis conditions.
We still found it worthwhile to reuse the waste of Ni-MH batteries for
cooling application: the reduction of the oxide form of manganites to
an alloy REE(FeSi13) may give better chance for this application.
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