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Abstract. In this survey, we are interested in the instability of flame fronts
regarded as free interfaces. We successively consider a classical Arrhenius ki-

netics (thin flame) and a stepwise ignition-temperature kinetics (thick flame)

with two free interfaces. A general method initially developed for thin flame
problems subject to interface jump conditions is proving to be an effective

strategy for smoother thick flame systems. It relies on the elimination of the

free interface(s) and reduction to a fully nonlinear parabolic problem. The
theory of analytic semigroups is a key tool to study the linearized operators.

1. Introduction. Stability analysis of free boundary problems, or equivalently free
interface problems, have been for long a challenging issue (see, e.g., [27, 18]). To
mention a few examples, stability or instability questions related to the Stefan prob-
lem in all its forms have generated considerable interest since the pioneering work
[15] (see, e.g., [19, 20] and the references therein). On the other hand, variational
inequalities is an important class of free boundary problems, that includes the ob-
stacle problem (see [3, 28]). Spectral stability in nonlinear variational inequalities
has been addressed via conical linearization techniques (see [17, 16]).

In combustion theory, instability of propagating premixed flames is a complex
and difficult phenomenon. The basic propagation mode exhibits two main mech-
anisms of destabilization: one due to the thermal expansion of the gas known as
the hydrodynamic instability, and the thermal-diffusive instability which is a re-
sult of the competition between the exothermic reaction and the heat diffusion.
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2 CLAUDE-MICHEL BRAUNER AND LUCA LORENZI

The thermal-diffusive instability manifests itself by generating a cellular structure,
which in turn exhibits chaotic dynamics (see [29, 30]).

The propagation of premixed flames is usually described by the conventional
diffusional-thermal model with standard Arrhenius kinetics. Formal asymptotic
methods based on large activation energy have allowed simpler descriptions, espe-
cially when the thin flame zone is replaced by a free interface, called the flame front,
which separates burned and unburned gases. At the flame front, the temperature
and mass fraction gradients are discontinuous. In the paper [8] and related works
(see in particular [6, 7, 10, 12, 22, 23, 24]), we presented a method by which the
flame front can be eliminated and, mutatis mutandis, the system reformulated as
a fully nonlinear problems (see [25]). This new formulation has proved effective
for local existence and stability analysis (see above references), and also numerical
simulation (see [2]).

On the other hand, models describing dynamics of thick flames with stepwise
ignition-temperature kinetics have recently received considerable attention (see [4]).
There are differences with the Arrhenius kinetics: for example in the case of zero-
order stepwise kinetics there are two free interfaces. Moreover, at the free inter-
face(s), the temperature and mass fraction gradients are this time continuous. In
this survey, we point out that the general method of [8], which was developed ini-
tially for solving thin flame problems, works equally well on thick flame models
with ignition-temperature kinetics, see [1, 5, 11]. In this respect, the method is
quite general and suitable for a wide range of free interface problems.

Finally, we note that both free interface problems (Arrhenius and ignition-temperature
kinetics) do not fall within the class of Stefan problems, as there is no specific con-
dition on the velocity of the interface(s). However, at least near planar fronts, we
are able to associate the velocity with a combination of spatial derivatives up to the
second order (second-order Stefan condition, see [9] for a general remark).

The paper is organized as follows: Sections 2 and 3 are respectively devoted to
the Arrhenius kinetics (thin flame) and stepwise ignition-temperature kinetics with
zero-order reaction (thick flame), that we treat in parallel ways, identifying common
ground and differences. As has been said, a main difference is that the stepwise
ignition-temperature model presents two free interfaces, the ignition and the trailing
fronts. Both models admit one-dimensional, planar traveling wave solutions, unique
up to translation. Then, we introduce perturbations of the planar solutions and
interfaces. Following the method of [8], we derive in both cases a fully nonlinear
parabolic problem of the form:

{
Dtu(t, ·) = Lu+ F (u(t, ·)), t > 0,

Bu(t, ·) = G (u(t, ·)).
(1.1)

Here, the stepwise kinetics problem presents a substantial difficulty: specifically,
the trailing interface does not satisfy the non-degeneracy condition of [8].

The local existence of a solution to problem (1.1) is obtained in Section 4 through
a fixed point argument which requires to first solve the linearized version of such
a problem. In order to fix the function spaces, one has to take into account the
particular nature of the nonlinearities F : due to the dependence on traces of second-
order derivatives, if one is interested in classical solutions, then optimal Hölder
regularity is needed.
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In Section 5, we study the stability of the null solution of (1.1). In the two
problems under investigation, the spectrum splits into two parts, namely the con-
tinuous spectrum which consists of a parabola in the left halfplane tangent to the
imaginary axis at the origin, and the point spectrum which is the set of all com-
plex numbers solutions of the so-called dispersion relation. Here too, the stepwise
kinetics problem presents additional difficulties, because the associated dispersion
relation has no algebraic solutions, see Theorem 5.2. Finally, instability of the zero
solution of Equation (1.1), and thus of the traveling waves solutions, is established
for both problems; the results are summarized in Theorem 4.2. An important tool
is a result of [21] adapted in Theorem 5.3. However, Theorem 4.2 does not give any
information about the instability of the front. The latter issue is the subject of the
final Section 6, especially Theorem 6.3.

Notation. By R2
−, we denote the subset of R2 with negative first component.

Similarly, for a given ` > 0, we denote by S` the strip R × (−`/2, `/2) and by
S+
` (resp. S−` ) the subset of S` of elements with positive (resp. negative) first

component. Finally, SR` denotes the set (R,+∞)× (−`/2, `/2).
For i, j, k ∈ N, we write, respectively, Di

t, D
j
x and Dk

y to denote the derivative

∂i/∂ti, ∂j/∂xj and ∂k/∂yk. We also use the subscripts t, x and y to denote deriva-
tives with respect to t, x and y. For instance, utxxy denotes the derivativeDtD

2
xDyu.

We use bold style to denote vector valued functions. If u : D ⊂ Rd → Rm, we de-
note by u1, . . . , um its components. If Ω is an open subset of Rd, then we denote
by Cαb (Ω;Rm), α ∈ (0, 1), the usual space of bounded and α-Hölder continuous
functions over D and denote by ‖ · ‖Cα(Ω;Rm) the classical norm defined as the
sum of the sup-norm and the Hölder seminorm. We use the same notation when
α > 1 to denote the set of functions which are continuously differentiable up to the
[α]-th-order such that the derivatives of order [α] are (α − [α])-Hölder continuous
over Ω. Here (and just here), [α] stands for the integer part of α. The norm of a
function u in this space is defined as the sum of sup-norms of the function and its
derivatives up to the order [α] plus the sum of the (α − [α])-seminorms of all the
derivatives of order [α] of u. If I ⊂ R is an interval and Ω ⊂ Rd is an open set,

C
α/2,α
b (I × Ω;Rk) denotes the set of all bounded functions u : I × Ω × Rk which

are α-Hölder continuous with respect to the parabolic distance of Rd+1, which is
defined by d((t, x), (s, y)) =

√
|t− s|+ |x− y|2. Its norm is the sum of the sup-

norm and the α-Hölder norm of u. Similarly, C
1+α/2,2+α
b (I × Ω;Rk) is the set of

functions u which admit the classical derivatives Dtu and Dγ1
x D

γ2
y u in I × Ω for

γ1 + γ2 ≤ 2 such that the derivatives Dtu and Dγ1
x D

γ2
y u, when γ1 + γ2 = 2 belong

to Cα/2,α(I × Ω;Rk). The norm of u ∈ C1+α/2,2+α
b (I × Ω;Rk) is the sum of the

sup-norm of u and all its derivatives plus the sum of the Hölder seminorms of Dtu
and Dγ1

x D
γ2
y u, when γ1 + γ2 = 2. Given a scalar function v : I → R, where I is an

interval and x0 is an interior point of I, we denote by [v]x0
the jump of v at x0, i.e.,

provided the limits exist,

[v]x0 = lim
x→x+

0

v(x)− lim
x→x−

0

v(x).

2. Flame propagation with Arrhenius kinetics (thin flames).

2.1. The diffusional-thermal model. Flames constitute a complex physical sys-
tem involving fluid dynamics, multistep chemical kinetics, as well as molecular and



4 CLAUDE-MICHEL BRAUNER AND LUCA LORENZI

radiative transfer. An important parameter is the Lewis number Le, corresponding
to the ratio of thermal and mass diffusivities. The laminar flames of low-Lewis-
number premixtures are known to display diffusive-thermal instability, responsible
for the formation of a non-steady cellular structure (see [30]). However, the cellular
instability may be successfully captured by a model involving only two equations:
the heat equation for the system’s temperature and the diffusion equation for the
deficient reactant’s concentration. In suitably chosen units, the so-called diffusional-
thermal model reads (see, e.g., [13]):

Tt = Txx + Tyy + ω(T, Y ), (2.1)

Yt = Le−1(Yxx + Yyy)− ω(T, Y ). (2.2)

Here, T is the scaled temperature and Y the scaled concentration of the deficient
reactant. The scaled reaction rate ω(T, Y ) is given by the Arrhenius law (see [13])

ω(T, Y ) =
1

2
Le−1β2Y exp

(
β(T − 1)

σ + (1− σ)T

)
, (2.3)

where β is the dimensionless Zeldovich number, assumed to be large, and σ is the
thermal expansion coefficient. The normalizing pre-exponential factor ensures that
the planar flame propagates at speed close to unity when β � 1.

Due to the distributed nature of the reaction rate ω, it is still difficult to theo-
retically explore the system (2.1)-(2.3). One, therefore, turns to the conventional
high activation energy limit β → +∞, which converts the reaction rate term into a
localized source distributed over a free interface, x = ξ(t, y), the flame front. The
study of a thin flame propagation is thus reduced asymptotically to a free interface
problem.

2.2. Near-equidiffusional flames. To ensure that the free interface model does
not involve large parameters, one combines the limit of large activation energy
β → +∞ with the requirement that the product

γ =
1

2
β(1− Le) (2.4)

remains finite, i.e., the Lewis number Le should be closed to unity. This is the Near-
Equidiffusive Flames model, in short NEF, introduced in [26]. Here, we consider
only the case where γ is positive, i.e., the case of high mobility of the deficient
reactant. Expanding T and Y in a series of powers of β−1, where β is the Zeldovich
number, one ends up after some recombinations with the following free interface
problem for temperature Θ and enthalpy S (see [13, 14] for further details about
the NEF theory)

Θt(t, x, y) = ∆Θ(t, x, y), t > 0, x < F (t, y), y ∈ R,

Θ(t, x, y) = 1, t > 0, x ≥ F (t, y), y ∈ R,

St(t, x, y) = ∆S(t, x, y)− γ∆Θ(t, x, y), t > 0, x 6= F (t, y) y ∈ R.

(2.5)

The functions Θ and S are continuous at the front, whereas their normal derivatives
(say, DnΘ and DnS) satisfy the following jump conditions at the interface

lim
x→F (t,y)+

DnΘ(t, x, y)− lim
x→F (t,y)−

DnΘ(t, x, y) = − exp(S(t, F (t, y), y)),

lim
x→F (t,y)+

Dn[S(t, x, y)− γΘ(t, x, y)]− lim
x→F (t,y)−

Dn[S(t, x, y)− γΘ(t, x, y)].

(2.6)
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Further, as x tends to ±∞, the following conditions are prescribed

Θ(t,−∞, y) = S(t,−∞, y) = S(t,+∞, y) = 0. (2.7)

As it is easily verified, this system admits a planar traveling wave solution, with
velocity −1, which reads in the coordinate z = x+ t:

Θ0(z) =

{
ez, z ≤ 0,

1, z > 0,
S0(z) =

{
γzez, z ≤ 0,

0, z > 0.
(2.8)

2.3. Derivation of the fully nonlinear problem (Arrhenius kinetics). It is
standard to fix the interface at the origin by setting F (t, y) = −t + s(t, y), ξ =
x− F (t, y) = z − s(t, y). In this new framework:

Θt + (1− st)Θξ = ∆sΘ, in (0,+∞)× (−∞, 0)× R,
Θ = 1, in (0,+∞)× (0,+∞)× R,
St + (1− st)Sξ = ∆sS − γ∆sΘ, in (0,+∞)× R \ {0} × R,

(2.9)

where

∆s = [1 + (sy)2]Dξξ +Dyy − syyDξ − 2syDξy.

The jump conditions (computed at ξ = 0) are [Θ]0 = [S]0 = 0 and√
1 + (sy)2 [Θξ]0 = − exp(S), [Sξ]0 = γ[Θξ]0, (2.10)

which follow from (2.6). The main step now is the ansatz (see [8, 23]):

Θ = Θ0 + sΘ0
x + u1, S = S0 + sS0

x + u2,

which, taking advantage of the boundary conditions

[Θ]0 = [Θ0]0 = 0, [Θ0
x]0 = [Θ0

x]0 = −1,

enables us to express the interface s in terms of the trace of u2 at ξ = 0−:

s(t, y) = [u2(t, ·, y)]0 = −u2(t, 0−, y), t > 0, y ∈ R. (2.11)

Replacing (2.11) in (2.9) and (2.10), we obtain a system in the only unknowns u1,
u2. However, it is convenient to rewrite it in the standard form of a system in R2

−,
setting u = (u1, u2, u3) where u3(t, ξ, y) = u2(t,−ξ, y) for ξ < 0 and y ∈ R. We get{

ut = Lu+ F0(u)− vt(·, 0, ·)Ψ(u), in (0,+∞)× R2
−,

Bu = G (u), in (0,+∞)× R,
(2.12)

where the linear operator L is given by

L v = L (v1, v2, v3) = (∆v1 −Dξv1, ∆v2 −Dξv2 − γ∆v1, ∆v3 +Dξv3), (2.13)

the linear boundary operator B has three components B1, B2 and B3, defined by
B1v = γv1(0, ·)− v2(0, ·) + v3(0, ·),

B2v = γv1(0, ·) + γDxv1(0, ·)−Dxv2(0, ·)−Dxv3(0, ·),

B3v = v1(0, ·) + v3(0, ·)−Dxv1(0, ·),

(2.14)
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F0(v) = (f1(v), f2(v), f3(v)) with

f1(v) =(Dyv1(0, ·))2[Θ0
ξξ − v1(0, ·)Θ0

ξξξ +Dξξv1] +Dyyv1(0, ·)[Dξv1 − v1(0, ·)Θ0
ξξ]

+ 2Dyv1(0, ·)[Dξyv1 −Dyv1(0, ·)Θ0
ξξ],

f2(v) =(Dyv1(0, ·))2[S0
ξξ − v(0, ·)S0

ξξξ +Dξξv2] +Dyyv1(0, ·)[Dξv2 − v1(0, ·)S0
ξξ]

+ 2Dyv1(0, ·)[Dξyv2 −Dyv1(0, ·)S0
ξξ]− γf1(v),

f3(v) =(Dyv1(0, ·))2Dξξv3 − 2Dyv1(0, ·)Dξyv3 −Dyyv1(0, ·)Dxv3,

on smooth enough functions v : R2
− → R3. Finally,

Ψ(v) = (−v1(0, ·)Θ0
ξξ +Dξv1, −v1(0, ·)S0

ξξ +Dξv2, −Dξv3),

and

G (v) = (0, 0, g(v)), g(v) = 1 + h(0, ·)− ev3(0,·)√
1 + (Dyv1(0, ·))2

.

However, the differential system in (2.12) contains Dtu1(t, 0, y) in the right-hand
side. The main point is that Equation (2.11) yields Dtu1(t, 0, y) = −st(t, y). The
first equation in (2.12) reads for u1 and Dxu1 small enough:

Dtu1(t, ξ, y) =∆v(t, ξ, y)−Dξu1(t, ξ, y) + (f1(u(t·, ·))(ξ, y)

−Dtu1(t, 0, y)[−u1(t, 0, y)eξ +Dξu1(t, ξ, y)],

so that if we evaluate it at ξ = 0 then we get the formula:

st = −∆u1(·, 0, ·)−Dξu1(·, 0, ·) + f1(u(t, ·, ·))
1− u1(·, 0, ·) +Dxu1(·, 0, ·)

. (2.15)

Therefore, the velocity of the interface s is expressed in terms of the trace of first-
and second-order derivatives of u at the interface itself (see [9]).

Plugging (2.15) in (2.12), we get the following fully nonlinear parabolic problem
for u:{

ut(t, ξ, y) = Lu(t, ξ, y) + (F (u(t, ·, ·)))(ξ, y), t ≥ 0, ξ < 0, y ∈ R,
(Bu(t, ·))(y) = G (u(t, ·))(y), t ≥ 0, y ∈ R,

(2.16)
with

F (v) = F0(v)− ∆v1(0, ·)−Dξv1(0, ·) + (f1(v)(0, ·))
1− v1(0, ·) +Dξv1(0, ·)

Ψ(v)

on smooth enough functions v : R2
− → R3.

3. Flame propagation with stepwise temperature kinetics (thick flames).
Models with stepwise ignition-temperature kinetics (see [4]) are substantially differ-
ent from those arising in conventional thermo-diffusive combustion with the stan-
dard Arrhenius kinetics at large Zeldovich number. Here, we are going to focus on
a zero-order stepwise kinetics model, see [11] for a model with stepwise ignition-
temperature kinetics and a first-order reaction.
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3.1. Zero-order stepwise kinetics model. For the zero-order stepwise kinetics
(see [1, 4, 5]), the model reads (compare to (2.1)-(2.3)):{

Tt = Txx + Tyy +W (T, Y ),

Yt = Le−1(Yxx + Yyy)−W (T, Y ),
(3.1)

where the reaction rate W (T, Y ) is given by

W (T, Y ) =

{
A, if T ≥ θi and Y > 0,

0, if T < θi and/or Y = 0.
(3.2)

Here, 0 < θi < 1 is the ignition temperature and A > 0 is a normalizing factor.
For the first-order stepwise kinetics, the reaction rate is more standard and reads
W (T, Y ) = AYH(T − θi), where H stands for the Heaviside function (see [4],[11]).

There are two principal differences with Arrhenius kinetics. The first one is
that the reaction zone is of order unity, while in the case of Arrhenius kinetics the
reaction zone is infinitely thin. This fact suggests to refer to traveling fronts for
stepwise temperature kinetics as thick flames, in contrast to thin flames arising in
Arrhenius kinetics. The second, even more important difference, is the following. In
the case of Arrhenius kinetics (see Section 2), there is a single interface separating
burned and unburned gases. In contrast to that, in case of zero-order ignition-
temperature kinetics given by (3.2), there are two interfaces: the ignition interface
where T = θi and the trailing interface being defined as a largest value of x where
the concentration is equal to zero.

Denoting by x = F (t, y) the ignition interface and by x = G(t, y) the trailing
interface, the model that we consider in this section, set in the strip S` = R ×
(−`/2, `/2) of R2, is the following one:

Tt(t, x, y) = ∆T (t, x, y), x < G(t, y),

Y (t, x, y) = 0, x < G(t, y),

Tt(t, x, y) = ∆T (t, x, y) +A, G(t, y) < x < F (t, y),

Yt(t, x, y) = Le−1∆Y (t, x, y)−A, G(t, y) < x < F (t, y),

Tt(t, x, y) = ∆T (t, x, y), x > F (t, y),

Yt(t, x, y) = Le−1∆Y (t, x, y), x > F (t, y),

(3.3)

where the functions T and Y are continuous across the interfaces for t > 0 and their
normal derivatives are continuous as well at the interfaces.

This system admits a one-dimensional traveling wave (planar) solution (T 0, Y 0)
which propagates with constant positive velocity V (see [4, Section 4]).1 It is
convenient to choose the normalizing factor A = 1/R in such a way that V = 1,
where the positive number R = R(θi) is given by:

θiR = 1− e−R, 0 < θi < 1.

1The attentive reader will have noticed that the flame front moves here from −∞ to +∞, while
in Section 2 it propagates from +∞ to −∞; it is just a matter of convention.
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With this choice, the traveling wave solution reads as follows in the coordinate
z = x− t:

T 0(z) =


1, z ≤ 0,

1 +
1− z − e−z

R
, 0 < z < R,

θie
R−z, x ≥ R.

Y 0(z) =



0, z ≤ 0,

e−Lez − 1 + Lez

LeR
, 0 < z < R,

1 +
1− eLeR

LeReLez
, z ≥ R.

3.2. Derivation of the fully nonlinear problem (stepwise kinetics). As in
Subsection 2.3, we look for solutions close to the traveling wave solution and we
transform system (3.3) into an equivalent system set in a fixed domain. There are
some differences and some additional difficulties, one of those is the presence of two
moving boundaries as already outlined. We list here below the steps to be followed
to get to the final system.

(1) Free interfaces as small perturbations of the interfaces of the traveling wave: we
write F and G in the form

G(t, y) = g(t, y), F (t, y) = R+ f(t, y),

with f and g smooth and small enough.
(2) Cut-off function: we introduce a smooth function β : R→ R, which is compactly
supported in (−2δ, 2δ) and equals one in (−δ, δ) for some δ > 0.
(3) New coordinates: we replace the x variable with the new variable ξ defined by
x = t+ ξ + %(t, ξ, y), where

%(t, ξ, y) = β(ξ)g(t, y) + β(ξ −R)f(t, y).

In the new systems of variables (t, ξ, y), the trailing front is fixed at ξ = 0, whereas
the ignition front is fixed at ξ = R.
(4) New unknowns: in the spirit of Subsection 2.3, we introduce the ansatz:

T (t, ξ, y) = T 0(ξ) + %(t, ξ, y)T 0
ξ (ξ) + u(t, ξ, y), (3.4)

Y (t, ξ, y) = Y 0(ξ) + %(t, ξ, y)Y 0
ξ (ξ) + v(t, ξ, y), (3.5)

which can be interpret of a sort of Taylor expansion of (T, Y ) around the traveling
wave solution (T 0, Y 0). Functions u and v play the role of a remainder and for
stability issues we can assume that u and v are “sufficiently small” in a sense still
to be made precise.
Expanding (1 + %ξ)

−1 = 1− %ξ + (%ξ)
2(1 + %ξ)

−1, after a long but rather straight-
forward computation, we can determine the differential equations for the unknowns
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u and v in the new variables (t, ξ, y). They read as follows:

ut =uξ+∆u+%t(1 + %ξ)
−1(%T 0

ξξ + uξ)− (1 + %ξ)
−3%ξξ(1 + %2

y)(%T 0
ξξ + uξ)

− (1 + %ξ)
−1
[
(%ξ + %yy)(%T 0

ξξ + uξ) + 2%y(%yT
0
ξξ + uξy)

]
+ (1 + %ξ)

−2
[
2%y%ξy(%T 0

ξξ + uξ) + (%2
y − %2

ξ)(%T
0
ξξξ + T 0

ξξ + uξξ)

− 2%ξ(%T
0
ξξξ − %2

yT
0
ξξ + uξξ)

]
, (3.6)

in (0,+∞)× (R \ {0, R})× (−`/2, `/2),

vt =vξ + Le−1∆v + %t(1 + %ξ)
−1(%Y 0

ξξ + vξ)

− Le−1(1 + %ξ)
−3%ξξ(1 + %2

y)(%Y 0
ξξ + vξ)

− Le−1(1 + %ξ)
−1
[
(Le %ξ + %yy)(%Y 0

ξξ + vξ) + 2%y(%yY
0
ξξ + vξy)

]
+ Le−1(1 + %ξ)

−2
[
2%y%ξy(%Y 0

ξξ + vξ) + (%2
y − %2

ξ)(%Y
0
ξξξ + Y 0

ξξ + vξξ)

− 2%ξ(%Y
0
ξξξ − %2

yY
0
ξξ + vξξ)

]
, (3.7)

in (0,+∞)× [(0, R) ∪ (R,+∞)]× (−`/2, `/2),

v = 0 in (0,+∞)× (−∞, 0)× (−`/2, `/2). (3.8)

The right-hand sides of the previous two equations contain the function %, so
that they depend on the functions f and g. To get rid of these terms, we argue as
follows.

(6) Writing % in terms of u and (the ξ-derivative of) v: the derivative T 0
ξ (R) does

not vanish at the interface x = R and gives rise to a kind of transversality or
non-degeneracy condition (see [8]). In particular, since T 0

ξ (R) = −θi, evaluating

Equation (3.4) at ξ = R, we deduce that

f(t, y) = θ−1
i u(t, R, y), t ∈ (0,+∞), y ∈ (−`/2, `/2). (3.9)

The trailing interface has a different nature with respect to the ignition interface.
Indeed, since T 0

x (0) = Y 0
x (0) = 0, the non-degeneracy condition of [8] is not verified

and this prevents us from writing g in terms of u or v. On the other hand, T 0
ξ (0+) =

−R−1 and Y 0
ξξ(0

+) = R−1Le, so that they do not vanish. So, we can write

g(t, y) = −RLe−1vξ(t, 0
+, y), t ∈ (0,+∞), y ∈ (−`/2, `/2). (3.10)

It thus follows that

%(t, ξ, y) = θi
−1β(ξ −R)u(t, R, y)−RLe−1β(ξ)w(t, 0+, y). (3.11)

Although the front g could be eliminated, the method used in Subsection 2.3,
which has been introduced in [8], is not applicable since g is related to the derivative
of v and not to v. To overcome this difficulty, we look at the problem satisfied by
u and w = vξ. Differentiating equation (3.7), at least at a formal level so far, is not
complicated, due to the fact that % is independent of ξ and, in fact, it turns out
that w solves the equation

wt =wξ + Le−1∆w + %t(1 + %ξ)
−1(%Y 0

ξξξ + wξ)

− Le−1(1 + %ξ)
−3%ξξ(1 + %2

y)(%Y 0
ξξξ + wξ)

− Le−1(1 + %ξ)
−1
[
(Le %ξ + %yy)(%Y 0

ξξξ + wξ) + 2%y(%yY
0
ξξξ + wξy)

]
+ Le−1(1 + %ξ)

−2
[
2%y%ξy(%Y 0

ξξξ + wξ) + (%2
y − %2

ξ)(%Y
0
ξξξξ + Y 0

ξξξ + vξξξ)

− 2%ξ(%Y
0
ξξξξ − %2

yY
0
ξξξ + wξξ)

]
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in (0,+∞)× [(0, R) ∪ (R,+∞)]× (−`/2, `/2),

(7) Elimination of % from the right-hand side of the equation for u and w: differ-
entiating (3.11) with respect to ξ and y is easy, so we skip the details. On the
other hand, the right-hand sides of (3.6) and (3.7) depend also on %t, which in its
turn depends on the traces at ξ = R and ξ = 0 of the t-derivative of v and w,
respectively. To get rid of the t-derivative of u, we evaluate (3.6) at ξ = R+. Since
all the derivatives of % with respect of ξ vanish and taking (3.11) into account, we
get

ut(t, R, y) =uξ(t, R
+, y) + ∆u(t, R+, y)− θ−1

i uyy(t, R, y)uξ(t, R
+, y)

+ θ−1
i ut(t, R, y)[u(t, R, y) + uξ(t, R

+, y)]

− 2θ−1
i uy(t, R, y)uξy(t, R+, y)

+ θ−2
i (uy(t, R, y))2[uξξ(t, R

+, y)− u(t, R, y)− θi]
− θ−1

i u(t, R, y)uyy(t, R, y).

Since u and v are small perturbations of the traveling wave solutions, we can assume
that 1− θi−1(u(t, R, y) + uξ(t, R

+, y)) is positive, so that

ut(t, R, y) =[1− θi−1(u(t, R, y) + uξ(t, R
+, y))]−1

× {uξ(t, R+, y) + ∆u(t, R+, y)− θ−1
i uyy(t, R, y)uξ(t, R

+, y)

− θ−1
i u(t, R, y)uyy(t, R, y)− 2θ−1

i uy(t, R, y)uξy(t, R+, y)

+ θ−2
i (uy(t, R, y))2[uξξ(t, R

+, y)− u(t, R, y)− θi]}. (3.12)

Arguing similarly, differentiating and evaluating (3.7) at x = 0+, we get

wt(t, 0
+, y) = {Lewξ(t, 0

+, y) + ∆w(t, 0+, y)

+RLe−1
[
wyy(t, 0+, y)(Lew(t, 0+, y) + wξ(t, 0

+, y))

+ 2wy(t, 0+, y)wξy(t, 0+, y)
]

+R2Le−2(wy(t, 0+, y))2

× [−Le2w(t, 0+, y) +R−1Le2 + wξξ(t, 0
+, y)]}

× [Le +R(Lew(t, 0+, y) + wξ(t, 0
+, y))]−1. (3.13)

(8) Interface conditions for u: since T 0, Y 0 belong to C1(R) and T and Y , in the
original variables t, x and y, are continuous at the ignition and trailing fronts, with
continuous normal derivatives, it turns out that in the new unknowns t, ξ, y, the
derivatives Tξ and Yξ are continuous at ξ = 0 and ξ = R. Thus, from (3.4) we
deduce that

[Yξ(t, ·, y)]ξ0 = [T 0
ξ (t, ·)]ξ0 + ρ(t, ξ0, y)[T 0

ξ (t, ·)]ξ0 + [u(t, ·, y)]ξ0 ,

where ξ0 ∈ {0, R}, i.e., [u(t, ·, y)]0 = [u(t, ·, y)]R = 0 for t ∈ (0,+∞) and y ∈
[−`/2, `/2].
Differentiating (3.4) and (3.5) for ξ 6= R and taking the jumps across ξ = R, it can
be easily shown that

[uξ(t, ·, y)]R = −R−1f(t, y), [w(t, ·, y)]R = R−1Le f(t, y)
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for t ∈ (0,+∞) and y ∈ (−`/2, `/2). Using (3.9) and (3.10), we obtain the two
jump conditions for uξ at the fronts, which are

u(t, R, y) + θiR[uξ(t, ·, y)]R = 0, Le[uξ(t, ·, y)]R + [w(t, ·, y)]R = 0

for t ∈ (0,+∞) and y ∈ (−`/2, `/2).
(9) The missing jump conditions: to recover the last two missing conditions at the
trailing and ignition fronts, we differentiate (3.5) twice in a neighborhood of x = 0
and take the trace at x = 0+. Condition (3.10) allows us to get

Yξξ(0
+, ξ, y) = LeR−1 + Lew(t, 0+, y) + wξ(t, 0

+, y). (3.14)

We now eliminate Φξξ from the left-hand side of (3.14). For this purpose, we observe
that, for ξ positive and sufficiently small, the equation for Y in the variables t, ξ
and y reduces to

Yt =Yξ + Le−1∆Y + Le−1g2
yYξξ − 2Le−1gyYξy −R−1

+ (gt − Le−1gyy)Yξ

Computing the limit as ξ tends to 0+ gives

Yξξ(t, 0
+, R)[1 + (gy(t, y))2] = LeR−1.

Finally, taking advantage of (3.10) and (3.14) we get the additional interface con-
dition at the trailing interface

Lew(t, 0+, y) + wξ(t, 0
+, y) = LeR−1{[1 +R2Le−2(wy(t, 0+, y))2]−1 − 1}.

The condition at the ignition interface ξ = R can be obtained in a similar way. More
precisely, (i) one differentiates (3.5) twice with respect to ξ and takes the jump at
x = R (taking (3.9) into account), (ii) then, one computes directly the jump at
ξ = R of Yξξ. Putting everything together, in the end one gets the condition

Le [w(t, ·, y)]R + [wξ(t, ·, y)]R = −LeR−1{[1 + θ−2
i (uy(t, R, y))2]−1 − 1}.

Combining all the previous steps, we conclude that the pair u = (u,w) satisfies
the nonlinear problem{

Dtu(t, ·) = Lu+ F (u(t, ·)), t > 0,

Bu(t, ·) = G (u(t, ·)),
(3.15)

where

L v = (∆v1 +Dxv1,Le−1∆v2 +Dxv2), (3.16)

Bv =



v1(0+, ·)− v1(0−, ·)
v1(R+, ·)− v1(R−, ·)
Le[Dxv1(0+, ·)−Dxv1(0−, ·)] + v2(0+, ·)
Le v2(0+, ·) +Dxv2(0+, ·)
1

2
(v2(R+, ·) + v2(R−, ·)) + θiR[Dxv2(R+, ·)−Dxv2(R−, ·)]

Le[Dxv1(R+, ·)−Dxv1(R−, ·)] + v2(R+, ·)− v2(R−, ·)
Le[v2(R+, ·)− v2(R−, ·)] +Dxv2(R+, ·)−Dxv2(R−, ·)


, (3.17)

on smooth functions v = (v1, v2). We denote by Bj (j = 1, . . . , 7) the seven
components of the operator B.

The nonlinear functions F and G have the same structure as the corresponding
operators in Subsection 2.3, even if their expressions are much more complicated
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(we refer the reader to [1] for the expression of the such nonlinearities). The two
main features of such operators are the following:

(i) they are quadratic at zero;
(ii) function F (v) depends also on the traces of second-order derivatives of v at

ξ = 0 and ξ = R.

Remark 3.1. In the same way as in Subsection 2.3, in view of Equation (3.11)
for %t together with formulae (3.12)-(3.13), the velocities of interfaces f and g are
expressed in terms of traces of first- and second-order derivatives of u (see [9]).

4. Local existence and function spaces. The local existence of a solution
to problems (2.16) (Arrhenius kinetics) and (3.15) (stepwise kinetics) is obtained
through a fixed point argument which requires to first solve the linearized version
(at zero) of the above problems. In order to fix the function spaces where to study
such linearized problems, one has to take into account the particular nature of the
nonlinearities F . Working with classical solutions to problems (2.16) and (3.15), it
comes out that optimal Hölder regularity is needed, due to the dependence of the
previous nonlinearity on traces of second-order derivative of the unknown. Thus, for
problem (2.16), one deals with the Hölder spaces X0, Xα, X1 and X2+α (α ∈ (0, 1)),
which are defined as follows:

X0 is the set of all functions u ∈ Cb(R2
−;R3) such that u(·, y) vanishes as x

tends to −∞, for all y ∈ R;
Xα is the set of all functions u ∈ Cαb (R2

−;R3) such that u(·, y) vanishes as x
tends to −∞, for all y ∈ R;

X1 is the set of all functions u ∈ C1
b (R2

−;R3) such that u(·, y) vanishes as x
tends to −∞, for all y ∈ R;
X2+α is the set of all functions u ∈ C2+α

b (R2
−;R3) such that the components

of u(·, y) and its first- and second-order derivatives vanish as x tends to −∞
for each y ∈ R.

Here, X0 and Xα are endowed with the norm of Cb(R2
−;R3) and Cαb (R2

−;R3), re-

spectively, whereas X1 and X2+α are endowed with the norm of C1
b (R2

−;R3) and

C2+α
b (R2

−;R3), respectively.
On the other hand, when one deals with problem (3.15), the spaces X0, Xα, X1

and X2+α are defined as follows:

X0 is the set of all pairs f = (f1, f2) such that (i) f1 ∈ Cb(S−` ;R)∩C([0, R]×
[−`/2, `/2];R) ∩ Cb(SR` ;R), (ii) f2 ∈ Cb([0, R] × [−`/2, `/2];R) ∩ Cb(SR` ;R),
(iii) fj(·,−`/2) = fj(·, `/2) for j = 1, 2;
Xα is the set of all pairs f = (f1, f2) such that (i) f1 ∈ Cαb (S−` ;R)∩Cα((0, R)×
(−`/2, `/2);R)∩Cαb (SR` ;R), (ii) f2 ∈ Cαb ((0, R)×(−`/2, `/2);R)∩Cαb (SR` ;R),
(iii) fj(·,−`/2) = fj(·, `/2) for j = 1, 2;

X1 is the set of all pairs f = (f1, f2) such that (i) f1 ∈ C1
b (S−` ;R)∩C1

b ([0, R]×
[−`/2, `/2];R) ∩ C1

b (SR` ;R), (ii) f2 ∈ C1([0, R] × [−`/2, `/2];R) ∩ C1
b (SR` ;R),

(iii) fj(·,−`/2) = fj(·, `/2) and ∇fj(·,−`/2) = ∇fj(·, `/2) for j = 1, 2;
X2+α denotes the set of all pairs f = (f1, f2) such thatDβf = (Dγf1, D

γf2) ∈
Xα, Dγfj(·,−`/2) = Dγfj(·, `/2) for each |γ| ≤ k, j = 1, 2.
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The previous spaces are endowed with the norms

‖f‖X0 = ‖f1‖Cb(S−
` ;R)

+

2∑
j=1

(‖fj‖C([0,R]×[−`/2,`/2];R) + ‖fj‖Cb(S+
` ;R)

),

‖f‖Xα = ‖f1‖Cαb (S−
` ;R) +

2∑
j=1

(‖fj‖Cα((0,R)×(−`/2,`/2);R) + ‖fj‖Cαb (S+
` ;R)),

‖f‖X1 = ‖f1‖C1
b (S−

` ;R)
+

2∑
j=1

(‖fj‖C1([0,R]×[−`/2,`/2];R) + ‖fj‖C1
b (S+

` ;R)
),

‖f‖X2+α
=
∑
|γ|<2

‖Dγf‖∞ +
∑
|γ|=2

‖Dγf‖Xα .

Also, some parabolic Hölder spaces are needed. In the case of problem (2.16),
for T ∈ (0,+∞] they are defined as follows:

Xα/2,α(T ) is the set of functions u ∈ C
α/2,α
b ((0, T ) × R2

−;R3) such that
u(t, ξ, y) = 0 vanishes as ξ tends to −∞ for all t ∈ [0, T ] and y ∈ R;

X1+α/2,2+α(T ) is the set of all functions u ∈ C
1+α/2,2+α
b ((0, T ) × R2

−;R3)
such that Dγ1

t D
γ2
ξ D

γ3
y u(t, ξ, y) vanishes as ξ tends to −∞ for every t ∈ [0, T ],

y ∈ R and 2γ1 + γ2 + γ3 ≤ 2.

Such spaces are endowed, respectively, with the norm of C
α/2,α
b ((0, T ) × R2

−;R3)

and C
1+α/2,2+α
b ((0, T )× R2

−;R3).
The corresponding spaces in the case of problem (3.15) are defined as follows:

Xα/2,α(T ) is the set of all pairs f = (f1, f2) such that f1 : [0, T ] × S` → R,

f2 : [0, T ] × S+
` → R and sup

t∈(0,T )

‖f(t, ·, ·)‖Xα , sup
(ξ,y)∈S`

‖f1(·, ξ, y)‖Cα/2((0,T ))

and sup
(ξ,y)∈S+

`

‖f2(·, ξ, y)‖Cα/2((0,T )) are all finite;

X1+α/2,2+α(T ) denotes the space of all the pairs f such that Dγ1
t D

γ2
ξ D

γ3
y f

belongs to Xα/2,α(T ) for every γ1, γ2, γ3 ≥ 0 such that 2γ1 + γ2 + γ3 ≤ 2.

These are Banach spaces with the norms

‖f‖Xα/2,α(T ) = sup
t∈(0,T )

‖f(t, ·, ·)‖Xα + sup
(ξ,y)∈S`

‖f1(·, ξ, y)‖Cα/2((0,T ))

+ sup
(ξ,y)∈S+

`

‖f2(·, ξ, y)‖Cα/2((0,T )),

‖f‖X1+α/2,2+α(T ) =
∑

2γ1+γ2+γ3≤2

‖Dγ1
t D

γ2
ξ D

γ3
y f‖Xα/2,α(T ).

The theory of analytic semigroup is a very useful tool to study the linearized
problems associated to (2.16) and (3.15), and prove optimal Schauder estimates for
the solution of those problems.

The main steps in this direction are the following:

(1) one proves that in both the two problems under consideration, a suitable re-
alization L of the linear operator L (defined in (2.13) and (3.16)), whose domain
contains functions u such that Bu = 0 (where the operator B is defined in (2.14)
and (3.17)), generates an analytic semigroup in X0 (where now we need to consider
complex-valued functions);
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(2) one characterizes the interpolation spaces of order α/2 and 1 + α/2, i.e., the
spaces DL(α/2,∞) and DL(1 + α/2,∞), as spaces of Hölder continuous functions.

Such realizations are defined as follows. In the case of problem (2.12),2{
D(L) = {u ∈ X1 ∩W 2,p

loc (R2
−;C3) : Lu ∈ X0, Bu = 0 at x = 0},

Lu = Lu, u ∈ D(L),

whereas, in the case of problem (3.15), D(L) is the set of all functions u ∈ X such

that (i) uj(·,−`/2) = uj(·, `/2) for j = 1, 2, (ii) denoting by u]1 and u]2 the periodic
extension, with respect to the variable y, of the functions u1 and u2, it holds that

u]1 ∈ C1
b ((−∞, 0]× R;C) ∩

⋂
p<+∞W 2,p

loc ((−∞, 0]× R;C);

u]1, u
]
2 ∈ C1([0, R]×R;C)∩C1

b ([R,+∞)×R;C)∩
⋂
p<+∞W 2,p

loc ((R+ \ {R})×
R;C),

(iii) Lu ∈ X0 and Bu = 0. Moreover, Lu = Lu for every u ∈ D(L).
Then, the theory of analytic semigroup applies and allows to show the following

result.

Proposition 4.1. Fix α ∈ (0, 1) and T > 0. Then the following properties are
satisfied:

Linearized problem (2.16): for every f ∈ Xα/2,α, ψ ∈ C(1+α)/2,1+α
b ([0, T ] × R)

and u0 ∈ X2+α, satisfying the compatibility conditions

B1u0 = B2u0 = 0, B3u0 = ψ(0, ·),
the Cauchy problem

Dtu(t, ·, ·) = Lu(t, ·, ·) + f(t, ·, ·), t ∈ [0, T ],

B1(u(t, ·, ·)) = 0, t ∈ [0, T ],

B2(u(t, ·, ·)) = 0, t ∈ [0, T ],

B3(u(t, ·, ·)) = ψ(t, ·), t ∈ [0, T ],

u(0, ·) = u0,

(4.1)

admits a unique solution u ∈X1+α/2,2+α(T ). Moreover, there exists a positive
constant C, independent of data and u, such that

‖u‖X1+α/2,2+α(T ) ≤ C
(
‖f‖Xα/2,α(T ) + ‖u0‖X2+α

+ ‖ψ‖C(1+α)/2,1+α((0,T )×R)

)
.

(4.2)
Linearized problem (3.15): for every f ∈Xα/2,α, ψ1, ψ2 ∈ C(1+α)/2,1+α((0, T )×

(−`/2, `/2)) and u0 ∈ X2+α, which satisfy the compatibility conditions

Bu0 = (0, 0, 0, ψ1, 0, 0, ψ2) Bj(Lu0(0, ·) + f(0, ·)) = 0, j = 1, 2

and the conditions f(0, ·,−`/2) = f(0, ·, `/2), Dγu0(·,−`/2) = Dγu0(·, `/2),

D
(j)
y ψ1(·,−`/2) = D

(j)
y ψ1(·, `/2) and D

(j)
y ψ2(·,−`/2) = D

(j)
y ψ2(·, `/2) for ev-

ery multi-index γ with length at most two and j = 0, 1, the Cauchy problem

Dtu(t, ·, ·) = Lu(t, ·, ·) + f(t, ·, ·), t ∈ [0, T ],

Bj(u(t, ·, ·)) = 0, t ∈ [0, T ], j = 0, 1, 2, 3, 5, 6,

B4(u(t, ·, ·)) = ψ1(t, ·), t ∈ [0, T ],

B7(u(t, ·, ·)) = ψ2(t, ·), t ∈ [0, T ],

u(0, ·) = u0,

(4.3)

2Here, X1 consists of complex-valued functions.



INSTABILITY OF FREE INTERFACES 15

admits a unique solution u ∈X1+α/2,2+α(T ) such that

Dγ1
ξ D

γ2
y u(t, ·,−`/2) = Dγ1

ξ D
γ2
y u(t, ·, `/2), t ∈ [0, T ], γ1 + γ2 ≤ 2.

Moreover, there exists a positive constant C, independent of data and u, such
that

‖u‖X1+α/2,2+α(T )

≤C
(
‖f‖Xα/2,α(T ) + ‖u0‖X2+α

+

2∑
j=1

‖ψj‖C(1+α)/2,1+α((0,T )×(−`/2,`/2))

)
.

(4.4)

To face the nonhomogeneous boundary conditions, one needs to introduce some
suitable so-called “lifting operators”, i.e. suitable operators N with the following
properties:

• in the case of problem (2.16), such operator maps Cαb (R) into Xα+1 and

B1Nψ = B1Nψ = 0, B2Nψ = ψ

for each function ψ ∈ Cαb (R);
• in the case of problem (3.15), such operator maps C([−`/2, `/2];R2) into X2+α

and

BNψ = (0, 0, 0, ψ1, 0, 0, ψ2).

Using these lifting operators, one can write the solution u to problem (4.1) in
the form

u(t, ·) = etLu0 +

∫ t

0

e(t−s)L[f(s, ·) + LNψ(s, ·)]ds−L
∫ t

0

e(t−s)LNψ(s, ·)ds (4.5)

and the solution to problem (4.3) in the form

u(t, ·) = etLu0 +

∫ t

0

e(t−s)L[f(s, ·, ·) + LNψ(s, ·)]ds− L
∫ t

0

e(t−s)LNψ(s, ·)ds,

(4.6)
for t ∈ [0, T ]. These two formulae are a variant of the well-known Balakrishnan
formula used to write the solution of a homogeneous (at the boundary) problem
using the semigroup etL generated by the realization L of the operator L mentioned
above. Such formulae will be extremely important in the analysis of the stability of
the traveling wave solutions, which will be addressed in Section 5.

In view of Proposition 4.1 and using in particular estimates (4.2) and (4.4) to-
gether with the fact that F and G are quadratic at zero, one can quite easily prove
the following result.

Theorem 4.2 (Theorem 3.1 in [12] and Theorem 5.1 in [1]). Fix any T > 0 and
α ∈ (0, 1). There exist ρ, ρ0 > 0 such that the following properties are satisfied.

Problem (2.16): for every u0 ∈ X2+α with ‖u0‖X2+α ≤ ρ0 and satisfying the
compatibility conditions

B1u0 = B2u0 = 0, B3u0 = g(u0), B1(Lu0 + F (u0)) = 0,

problem (2.16) admits a unique solution u ∈ X1+α/2,2+α(0, T ) such that
u(0) = u0 and ‖u‖X1+α/2,2+α(0,T ) ≤ ρ.
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Problem (3.15): for each u0 ∈ X2+α with ‖u0‖X2+α ≤ ρ0 and satisfying the com-
patibility conditions

Bu0 = G (u0), B1(Lu0 + F (u0)) = B2(Lu0 + F (u0)) = 0,

Dγu0(·,−`/2) = Dγu0(·, `/2)

for each multi-index γ with length at most two, problem (3.15) admits a unique
solution u ∈X1+α/2,2+α(T ) with u(0, ·) = u0. Moreover, ‖u‖X1+α/2,2+α(T ) ≤
ρ.

5. Instability of the traveling wave solutions. The change of variables and
unknowns that we have performed in Subsections 2.3 and 3.2 changed the traveling
wave solutions to problems (2.5)-(2.6) and (3.3) into the null solution to problems
(2.16) and (3.15), respectively. So, to study the stability of the traveling wave
solution to problem (2.5)-(2.6) (resp. (3.3)), it suffices to study the stability of the
null solution to problem (2.16) (resp. (3.15)). This latter issue is strongly related
to the location of the spectrum of the operator L. So, a deep analysis of σ(L) is
required. In both the two problems under investigation, the spectrum splits into
two parts: the so-called continuous spectrum and the point spectrum. The former
consists of a parabola in the left-hand plane which is tangent to the imaginary axis
at the origin, the latter is the set of all the admissible complex numbers λ, roots
of the so-called dispersion relation (see, e.g., [29, Section 5]), which combines the
wavenumber k, λ and a real parameter, hereafter γ or Le.

The dispersion relation associated with problem (2.16) is not difficult to set and
to analyze. In fact, it reads:

D(k, λ, γ) = r2(1− 2r1)− γ(r2
2 − k2)

1− 2r1
= 0,

where

r1 = r1(k, λ) =
1 +
√

1 + 4λ+ 4k2

2
, r2 = r2(k, λ) = 1− r1, (5.1)

k ∈ R and γ is a physico-chemical parameter (see (2.4)).
It can be checked that, for γ > 1, it defines implicitly a real-valued function

k 7→ λ(k), defined in the interval [0, 2−1
√
γ − 1] with K = K(γ) > 0, it is positive

in (0, 2−1
√
γ − 1) and vanishes at 0 and at 2−1

√
γ − 1. Moreover, k 7→ λ(k) is

increasing in (0, kc) and decreasing in (kc, 2
−1
√
γ − 1), where kc is defined by

kc =
1√
2γ

[(
1+
√

1 + 3γ

3

)3

+

(
γ

2
− 1

)(
1+
√

1+3γ

3

)2

− γ
(

1+
√

1 + 3γ

3

)
+
γ

2

] 1
2

.

In particular, the following result holds true.

Theorem 5.1 (Theorem 4.1 of [12]). For γ > 1, let λc = λ(kc). Then, the interval
[0, λc] consists of eigenvalues of L. Moreover, the halfplane {λ ∈ C : Reλ > λc} is
contained in the resolvent set of the operator L.

On the other hand, the (reduced) dispersion relation associated with problem
(3.15) is more involved; we have infinitely many functions

D(k, λ,Le) = exp

(
R

2
(Le− 1−Xk(λ)− Yk(λ,Le))

)
− 1 + θiRXk(λ) = 0, (5.2)



INSTABILITY OF FREE INTERFACES 17

where 
Xk(λ) =

√
1 + 4λ+ 4λk,

Yk(λ,Le) =
√

Le2 + 4λLe + 4λk,

λk = 4π2k2`−2,

(5.3)

for each k ∈ N ∪ {0}. Here, the real parameter is the Lewis number Le ∈ (0, 1).
Any root λ of the equation D(k, λ,Le) = 0 defines an eigenvalue of operator L.

The analysis of (5.2) is not easy at all and its solutions can not be determined
explicitly. The strategy to overcome such a difficulty relies on the use of the implicit
function theorem and leads to the following theorem.

Theorem 5.2 (Corollary 6.4 in [1]). For fixed ignition temperature θi ∈ (0, 1) and
width ` sufficiently large, there exists a critical value of the Lewis number Lec ∈
(0, 1) such that, whenever 0 < Le < Lec, the spectrum of the operator L contains
elements with positive real parts. Moreover, the part of σ(L) in the right halfplane
{λ ∈ C : Reλ ≥ 0} consist of 0 and a finite number of eigenvalues.

We sketch here below the main points to obtain the proof of such a theorem.

(1) As a first step, one proves that there exists `0(θi) such that, for all ` > `0(θi)
there exists a maximal integer K such that the equation D(k, λ,Le) = 0 has a
unique root Lec = Lec(k) ∈ (0, 1) for every k ∈ {1, . . . ,K}. Moreover,

0 < Lec(K) ≤ · · · ≤ Lec(2) ≤ Lec(1).

(2) Under the assumptions of the previous point, one then proves that there exist
λ∗ ∈ (0,

√
λ1) and a decreasing, continuously differentiable function ϕ̃ : (0,Lec) →

(0, λ∗) such that D(1, ϕ̃(Le),Le) = 0 for all Le ∈ (0,Lec(1)). This is the point where
the implicit function theorem is used, thanks to the fact that the function D(1, ·, ·)
is smooth in [0,

√
λ1]× [0,Lec(1)].

(3) Finally, we set Lec = Lec(1).

To prove the pointwise instability result for both the two problems, the following
adaption of a result in [21, p.105] plays a crucial role.

Theorem 5.3 (Lemma 6.5 in [1]). Let X be a complex Banach space, r > 0 and, for
every n ∈ N, let Sn : B(0, r) ⊂ X → X be a bounded operator. Then the following
properties are satisfied.

(i) If Sn(x) = Mx + O(‖x‖p) as ‖x‖ → 0, for some p > 1 and some bounded
linear operator M on X with spectral radius ρ > 1, then the origin is unstable,
i.e., there exist c > 0 and, for any δ > 0, x0 ∈ B(0, δ) and n0 ∈ N (depending
on δ) such that the sequence x0, . . . , xn0 , where xn = Sn(xn−1) for any n =
1, . . . , n0, is well defined and ‖xn0

‖ ≥ C.
(ii) In addition to the assumptions in (i), assume that there exists an eigenvector

u of M with eigenvalue λ ∈ C such that |λ|p > ρ and that there exists x′ ∈ X ′
such that x′(u) 6= 0. Then, there exist c > 0 and, for any δ > 0, x0 ∈ B(0, δ)
and n0 ∈ N (depending on δ) such that the sequence x0, . . . , xn0 , where xn =
Sn(xn−1) for any n = 1, . . . , n0, is well defined and |x′(xn0

)| ≥ c|x′(u)|.



18 CLAUDE-MICHEL BRAUNER AND LUCA LORENZI

The idea would be to apply such a theorem with X being the set of all admissible
initial data for problems (2.12) and (3.15), i.e., the sets

{u ∈ X2+α : v(0, y)− vξ(0, y) 6= 1 for y ∈ R,
B1u0 = B2u0 = 0, B3u0 = G(u0), B1(Lu0 + Fu0) = 0}

{u ∈ X2+α : u(t, R, y) + uξ(t, R
+, y) 6= θi, R(Lew(t, 0+, y) + wξ(t, 0

+, y)) 6= −Le,

for ξ ∈ [−`/2, `/2], Gu0 = G(u0), Bj(Lu0 + Fu0) = 0, j = 1, 2}

and the operator Sn, defined by Sn(u0) = u(n,u0, n − 1), where u(n, ·,u0, n − 1)
denotes the solution to problem

Dtu(t, ·) = L (u(t, ·)) + F (u(t, ·)), t > n− 1,

B(u(t, ·)) = G (u(t, ·)), t > n− 1,

u(n− 1, ·) = u0.

Since the problem is autonomous, by Theorem 4.2 this problem has a solution
defined in a time-interval [n− 1, n− 1 +Tn] for every n ∈ N and the infimum of the
sequence (Tn) is positive.

However this choice is not admissible since both the two previous sets (let us
denote them by Y) are not Banach spaces due to the compatibility conditions which
are of nonlinear type. The trick to overcome this problem consists in showing
that the intersection of Y with a sufficiently small neighborhood of the origin (in
X2+α) is the graph of a smooth function defined in a neighborhood of 0 of the
interpolation space DL(1 + α/2,∞). Then, Theorem 5.3 will be applied taking as
X the interpolation space DL(1 + α/2,∞).

To prove that Y is the graph of a smooth function, the crucial step is the definition
of a suitable projection on the space X2+α. Such a projection is defined through
a right-inverse of the operator u 7→ Cu = (B1u,B2u,B3u,B1Lu) (resp. of the
operator u 7→ Cu = (Bu,B1u,B2u)) defined on X2+α, let us denote it by M .
Setting P = I −MC , it turns out that P projects onto the kernel of the operator
C , which, in fact, coincides with the interpolation spaces DL(1 + α/2,∞).

Lemma 5.4 (Lemma 4.4 in [12] and Lemma 4.7 in [1]). For 0 < α < 1 there exists
a neighborhood Ω of 0 in X2+α such that I ∩ Ω is the graph of a smooth function
Φ : B(0, ρ) ⊂ D(Lα)→ (I − P )(X2+α) for a suitable ρ > 0. Moreover Φ′(0) = 0.

To prove the lemma it suffices to observe that the nonlinear function H :
B(0, r) ⊂ X2+α 7→ Yα, defined by

H (u) = (Bu− G (u), B1(Lu+ F (u)),

if we are dealing with problem (2.12), and

H (u) = (Bu− G (u), B1(Lu+ F (u)), B2(Lu+ F (u))),

otherwise, where r > 0 is chosen sufficiently small such that F is well defined in
B(0, r). Then F is smooth and F ′(0) = C is an isomorphism from (I − P )(X2+α)
to Yα. Applying the implicit function theorem one can conclude the proof.

Now, for each n ∈ N we can apply the operator Sn : B(0, ρ) ⊂ DL(1+α/2,∞)→
DL(1 + α/2,∞) by setting

Snu0 = Pu(n, ·,u0 + Φ(u0), n− 1).

Note that L , B are independent of t and the nonlinear operators F and G depend
on t only through the unknown function u. Therefore, the uniqueness of the solution



INSTABILITY OF FREE INTERFACES 19

of the initial value problem, associated with problem (2.16) (resp. (3.15)), implies
that u(n, ·,u0 + Φ(u0), n− 1) = u(1, ·,u0 + Φ(u0), 0) (see Theorem 4.2). Thus, the
function Snu0 is the projection along P (X2+α) of the value at t = 1 of the solution
to problem (2.12) (resp. (3.15)) with initial condition (at t = 0) u(0, ·) = u0,
i.e., Snu0 = Pu(1, ·,u0 + Φ(u0), 0) := T0u. To apply Theorem 5.3(i) one needs
to show that there exist a linear operator M and an exponent p > 1 such that
Sn(x) + Mx + O(‖x‖p) as x tends to 0. In fact, in our case, we can take p = 2.
Indeed, using formulae (4.5) and (4.6) it is immediate to check that

Tnu0 = T0u0 =eLu0 + P

∫ 1

0

e(1−s)L[F (u(s, ·)) + LN g(u(s, ·)]ds

− PL
∫ 1

0

e(1−s)LN g(u(s, ·))ds

if we are dealing with problem (2.12) and

Tnu0 = T0u0 =eLu0 + P

∫ 1

0

e(1−s)L[F (u(s, ·)) + LN (g1(u(s, ·)), g2(u(s, ·)))]ds

− L
∫ 1

0

e(1−s)LN (g1(u(s, ·)), g2(u(s, ·)))ds

otherwise. It has to be noticed that PeL(u0 + Φ(u0)) = eLu0 since u0 belongs
to DL(1 + α/2,∞), which is invariant under the action of the operator L since P
commutes with eL, and Φ(u0) ∈ (I − P )(DL(1 + α/2,∞)), so that PeLΦ(u0) = 0.

Since the functions F , g, g4 and g7 are quadratic at zero, a direct computation
reveals that the integral terms in the previous two formulae are quadratic at zero
as well. It turns out that the splitting Snu0 = Mu0 + O(‖u0‖2) holds true if one
takes M = eL.

We summarize the result so far obtained in the following theorem.

Theorem 5.5 (Corollary 4.5 in [12] and Theorem 6.6 in [1]). Fix α ∈ (0, 1) in
Lemma 5.4. Then, the following properties are satisfied.

Problem (2.16): for γ > 1, the null solution to problem (2.16) is unstable in the
X2+α-norm.

Problem (3.15): under the assumptions of Theorem 5.2, for each Le ∈ (0,Lec) the
null solution of problem (3.15) is unstable in the X2+α-norm.

6. Instability of the fronts. The instability result of Theorem 5.5 is rather weak
because the C2+α-norm of the space X2+α is a very heavy norm. In particular, it
does not give any information about the instability of the front: it could happen
that ‖u(t, ·)‖X2+α is far from 0 for some t but s(t, ·) = −v(t, 0, ·) stays small for
every t.

To prove that also the front is pointwise unstable, we take advantage of the
second part of Theorem 5.3. For this purpose, a deeper analysis of the part of the
spectrum of L which lies in the right-halfplane is required. In the case of problem
(2.12), things are a bit easier and one can show the following result.

Proposition 6.1 (Theorem 4.1 in [12]). Fix γ > 1. Then, for each λ = λ(k) ∈
[0, λc] (see Theorem 5.1), there exists a corresponding eigenfunction of the form
u(ξ, y) = u∗(ξ)g(y) for every (x, y) ∈ R2

−, where function g is any solution to the
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ordinary differential equation g′′ = −k2g, whereas the function u∗ = (u∗,1, u∗,2, u∗,3)
is defined by

u∗,1(ξ) = er1ξ,

u∗,2(ξ) = − γ

1− 2r1
ξer1ξ(r2

1 − k2) + (γ − r2)er1ξ,

u∗,3(ξ) = −r2e
−r2ξ,

for every ξ ≤ 0, where rj = rj(k, ω), j = 1, 2, are defined in (5.1).

In the case of problem (3.15), one can prove the following.

Proposition 6.2 (Theorem 6.6 in [1]). Under the assumptions of Theorem 5.2,
there exists an eigenvalue λ of operator L, whose modulus equals the spectral radius
of the operator M = eL. In particular, for every y0 ∈ R, there exists an eigen-
functions u∗ such that u∗,1(R+, y0) 6= 0 and u∗,2(0+, y0) 6= 0. It suffices to take
u∗ = (u∗,1e1(· − 2π`−1y0), u∗,2e1(· − 2π`−1y0)), where

u∗,1(ξ) = eν
+
1 ξχ(−∞,0](ξ)+

(
e(X1+µ

+
1 )R(θiRX1−1)

eµ
+
1 R−eν+

1 R
eν

−
1 ξ+

eµ
+
1 R

eµ
+
1 R−eν+

1 R
eν

+
1 ξ

)
χ(0,R)(ξ)

+
θiRe

(X1+µ+
1 )RX1

eµ
+
1 R − eν+

1 R
eν

−
1 ξχ[R,+∞)(ξ),

u∗,2(ξ) = −Le(Le + µ+
1 )eν

+
1 RX1

(eµ
+
1 R − eν+

1 R)Y1

(
eµ

−
1 ξ − (Le + µ−1 )eµ

+
1 ξ

)
χ[0,R)(ξ)

+ (1− eY1R)d1e
µ−
1 ξχ[R,+∞)(ξ),

for every ξ ∈ R, where, X1 and Y1 are defined in (5.3), whereas

ν±1 = −1

2
±
√

1 + 4λ+
16π2

`2
, µ±1 = −Le

2
±
√

Le2 + 4Leλ+
16π2

`2
.

Fix y0 ∈ R. Applying Theorem 5.3, with

Problem (2.12): x′(u) = −u2(0, y0), for every u and taking as u an eigenfunction
corresponding to the eigenvalue r = eωc of the operator eL such that g(y0) 6= 0;

Problem (3.15): x′(u) = −u2(0, y0), for every u and taking as u the eigenfunction
in Proposition 6.2, corresponding to an eigenvalue of L such that |λ| equals the
spectrum radius of L, to prove the instability of the trailing interface; x′(u) =
−u1(R, y0), for every u and taking as u the eigenfunction in Proposition 6.2,
corresponding to an eigenvalue of L such that |λ| equals the spectrum radius
of L, to prove the instability of the ignition interface,

we can prove the instability of the front for both the two problems. We summarize
such a result in the following theorem.

Theorem 6.3 (Corollary 4.8 in [12] and Theorem 6.6 in [1]). The following prop-
erties are satisfied.

Problem (2.16): fix γ > 1. Then the front of the planar travelling wave solution of
problem (2.5)-(2.7) is pointwise unstable, i.e., there exists a positive constant
C ′ such that for every y0 ∈ R and for every ρ > 0 there exist u0 ∈ X2+α with
‖u0‖X2+α ≤ ρ, and n0 ∈ N such that, |s(n0,u0)(y0)| ≥ C ′.
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Problem (3.15): fix 0 < θi < 1 and the ` sufficiently large. Then, for each Le ∈
(0,Lec) both the trailing and the ignition interfaces of the planar travelling
wave solution to problem (3.3) is unstable, i.e., there exists a positive constant
C ′ such that for each y0 ∈ R and δ > 0 there exist u0,u

∗
0 ∈ B(0, δ) ⊂ X2+α

and n0, n
∗
0 ∈ N depending on δ such that min{|f(n0, y0)|, |g(n∗0, y0)|} ≥ C ′.

7. Conclusion. In this paper, we have considered two classes of free interface
problems in combustion theory describing the propagation of premixed flames:

(i) the conventional diffusional-thermal models with standard Arrhenius kinetics
(see [13]): at the flame front, i.e. the free interface, the temperature and mass
fraction gradients are discontinuous (thin flame);

(ii) models describing dynamics of thick flames with stepwise ignition-temperature
kinetics that have recently received considerable attention (see [4]). There are
differences with the Arrhenius kinetics: in the case of zero-order stepwise
kinetics there are two free interfaces; the temperature and mass fraction gra-
dients are this time continuous at the free interfaces.

We have shown that in both classes the instability of the traveling wave solution
can be addressed by the method of [8] initially developed for solving problems with
discontinuous gradient at the interface. The velocity of the front is associated with a
combination of spatial derivatives up to the second-order. Subsequently, the system
is reformulated as a fully nonlinear problem (see [25]) and the theory of analytic
semigroups is then a key tool to study the linearized operators. We also observed
that the non-degeneracy (or transversality) condition in [8] may be circumvented
by differentiating at least partially the system.

Finally, we point out that this method is quite general and may apply to other
gamuts of problems that involve a finite number of free interfaces or free boundaries.
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