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Abstract: Free- radicals (Oxygen and Nitrogen species) are formed in mitochondria during the 16 
oxidative phosphorylation.  Their high reactivity, due to not-engaged electrons, leads to an 17 
increase of the oxidative stress. This condition affects above all the brain, that usually needs a large 18 
oxygen amount and in which there is the major possibility to accumulate "Reacting Species". 19 
Antioxidant molecules are fundamental in limiting free-radical damage, in particular in the central 20 
nervous system: the oxidative stress, in fact, seems to worsen the course of neurodegenerative 21 
diseases. 22 

The aim of this review is to sum up antioxidant molecules with the greatest neuroprotective 23 
properties and the role of physical activity against free radical genesis, understanding their 24 
relationship with the Central Nervous System.   25 

Keywords: oxidative stress; cognitive decline; antioxidants. 26 
 27 

1. Introduction 28 

Oxidative stress is known to be involved in the pathogenesis of several diseases: in particular, a strict 29 
connection between a free-radical increase and the onset of neurodegenerative disorders has been 30 
widely demonstrated [1]. 31 

Free radicals are atoms or molecules characterized by one or more electrons not engaged in chemical 32 
bonds, which, remaining unpaired, tend to accept electrons from other molecules: this reaction causes 33 
their oxidation [2, 3]. An oxidation–reduction imbalance in living organisms leads to an excess of 34 
reactive oxygen and nitrogen species (RONS) with a consequent oxidative stress status [2, 4] that is 35 
classified as basal, low, intermediate and high according to its intensity [5,6].   36 

The oxidative stress is known to be involved in the genesis of several diseases such as atherosclerosis, 37 
diabetes, cardiovascular and neurodegenerative disorders [7]. 38 
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There are a large number of antioxidant defensive mechanisms against RONS. The antioxidant 39 
molecules are divided into two groups: enzymatic and non-enzymatic compounds. The enzymatic 40 
group includes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and 41 
glutathione reductase (GR). SOD, one of the main protective mechanisms against ROS, catalyzes the 42 
conversion of O2- to H₂O₂ and O₂ [8], while CAT converts the generated H₂O₂ into water and O₂ [9]. 43 
The non-enzymatic group involves glutathione (GSH), abundant in brain cells, thioredoxin (Trx), 44 
vitamins A, E and C, selenium, retinoic acid, carotenoids and flavonoids. GSH reacts with ROS to 45 
generate glutathione disulfide (GSSG) and enters a cycle together with GPx and GR [10]. 46 

All these systems are essential to protect us against a possible free radical damage.  47 

Since the brain consumes a large amount of oxygen (about 20% more than other parts of the body), if 48 
antioxidant defenses are insufficient and levels of polyunsaturated lipids are high there will be the 49 
possibility of an accumulation of biomolecules damaged by RONS [11]. So, neuronal cells are 50 
particularly vulnerable to oxidative damage because of their high oxygen consumption, the weak 51 
antioxidant defense [12] and high content of polyunsaturated fatty acids in their membranes: in fact, 52 
the lipids of the neuronal membrane are rich in chains side polyunsaturated fatty acids (PUFA). 53 
PUFAs composed of eicosapentaenoic (C20:5) and decosahexanoic (C22:6) acids are particularly 54 
vulnerable to free radicals attack due to the double bonds that allow RONS to remove hydrogen ions 55 
[13]. 56 

In particular, RONS overproduction in brain cells reacts with cell membrane PUFAs causing their 57 
peroxidation [14]. More specifically, lipid peroxidation generates a heterogeneous group of relatively 58 
stable products such as malondialdehyde (MDA), 4-hydroxy-2-nonenal (HNE), acrolein and 59 
isoprostane [15]. 60 

As a result, membrane fluidity decreases causing a greater permeability. This facilitates a massive 61 
entry of substances into the intracellular system, (eg K +, Ca2 +, etc.) that could alter membrane 62 
proteins, enzymes and receptors [16]. 63 

Carbohydrates are also influenced by RONS with the formation of advanced glycation products 64 
(AGE) [17], involved in the development of neurodegenerative disorders [18]. 65 

In addition, RONS alter DNA and RNA heterocyclic bases, in particular guanine: these alterations 66 
occur in Parkinson's disease affected brains. Instead, Alzheimer's Disease affected brains, are 67 
characterized by elevated carbonylation and nitration, that respectively introduce in proteins carbon 68 
monoxide or one or more NO₂ groups derived from nitric acid [17, 19]. 69 

All neurodegenerative disorders share several common characteristics, such as an abnormally 70 
aggregated protein accumulation and mitochondrial dysfunction that demonstrate an oxidative 71 
stress status [20]. In particular, neurodegeneration-involved reactive species are hydrogen peroxide 72 
(H₂O₂), superoxide anion (O₂⁻) and highly reactive hydroxyl radical (HO •) [21]. They are able to 73 
preclude the protein reduction, cause translation errors in vivo altering protein structure, and 74 
function [22]. 75 
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The risk of developing neurodegenerative disorders is also related to some lifestyle factors, such as 76 
obesity, sedentary lifestyle and unbalanced diet, because of their role in RONS genesis [23, 24]. 77 

Therefore, considering the fact that oxidative stress is one of the most important risk factors involved 78 
in the onset, maintenance and progression of neurodegenerative diseases, both enzymatic and non-79 
enzymatic antioxidants, in association with a healthy lifestyle, could have a fundamental protective 80 
role against them [25-28]. The oxidative stress theory and its consequences at cellular level is shown 81 
in Figure 1. 82 

 83 

Figure 1 Model of free-radical formation and its consequences at a cellular level. The intense oxygen 84 
consumption in the brain induces the formation of reactive oxygen species (ROS). Their high 85 
reactivity leads to an increase of the oxidative stress, which promotes: i) glycosylation and oxidation 86 
of proteins, leading to the formation of advanced glycation products (AGE) or loss of protein 87 
function; ii) DNA damage with oxidation or nitration of guanine bases; iii) lipid peroxidation with 88 
reduction of membrane fluidity and increase in cell permeability, resulting in alteration of cellular 89 
homeostasis. All these factors can contribute to the development of neurodegenerative disorders. 90 

 91 

 92 
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2. Vitamin C and E 93 

 A diet characterized by vegetables and fruits, is positively associated with cognitive efficiency and 94 
reduced the risk of dementia in the elderly because usually rich in Vitamin C, carotenoids and 95 
Vitamin E.  96 

Considering the chemical point of view, Vitamin C is defined as Ascorbic Acid (AA). It has six-carbon 97 
compound that contain two acid-ionizing groups [29]. In human body, brain is the region with the 98 
highest concentration of AA [30]. This high concentration, attests to the fundamental involvement of 99 
AA in brain function. Indeed, many studies suggest that AA has a neuroprotective role thanks to an 100 
antioxidant activity modulation [31, 32]. This modulation is related to the buffering of the oxidizing 101 
species induced by methamphetamine [33], homocysteine [34], ethanol [35] and other molecules [36, 102 
37].  103 

It is interesting to note that the AA activity is quite vast, considering also the interaction with Vit.E. 104 
their association is remarkable in the protection of membranes and other hydrophobic compartments 105 
[38, 39]. 106 

In particular, a clinical study has highlighted the association between vitamin E and C intake and a 107 
delayed AD onset in a group of elderly subjects [40], similar results were also obtained by Shen and 108 
colleagues in 2012 [41]. In fact, it has been shown that a supplementation of these vitamins and so 109 
their greater concentration in cerebrospinal fluids can prevent lipid oxidation in AD patients [42]. 110 

Vitamin E is a lipophilic molecule that could be found in plants and in many mediterranean diet food 111 
[43]. Vit. E is referred to compounds called tocopherols and tocotrienols [44]. These usually include 112 
8 molecules (α-, β-, γ-,δ-tocopherols and α-, β-, γ-,δ -tocotrienols), with great antioxidant capacity 113 
[45]. 114 

The presence of an electrophilic hydroxyl group on the chroman ring, allows Vitamin E to be a strong 115 
antioxidant. To understand Vitamin E role as a protective factor in neurodegenerative disorders, it 116 
has to be considered what happens if it is deficient. For example, it is demonstrated that Vitamin E 117 
deficit is related to an impairment of cerebellar Purkinje neurons that are the main integrators of 118 
cerebellar neural circuits [46] As far as Parkinson’s disease, evidence suggests that a Vitamin E 119 
supplementation can improve symptoms, functional capabilities and the inflammatory state of 120 
affected patients [47]. 121 

In addition, Khanna et al. (2003) showed a fundamental role of Vitamin E against glutamate- induced 122 
neurotoxicity [48]. In a later study, it is observed that the co-treatment with vitamin E analogs is able 123 
to block NO or O2• donor-induced cell death in rat striatal cultures [49].  124 

It is clear that, the use of vitamins E and C as antioxidant supplements is fundamental to delay the 125 
onset of neurodegenerative disorders and their complications (Figure 2). 126 

 127 
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3. Fatty Acids 128 

Recently, it has grown an interest in polyunsaturated fatty acids (PUFAs) and their beneficial effects 129 
on health, due to their strong antioxidant properties [50,51]. PUFAs (omega-3 and omega-6 fatty 130 
acids) usually have two or more double bonds in the carbon chain structure. Omega-6 fatty acids 131 
include linoleic acid (LA), γ-linolenic acid (GLA) and arachidonic acid (AA). Omega-3 fatty acids 132 
include eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). 133 

Their intake is important since their limited synthesis in humans [50,52]. 134 

Cell-membrane PUFAs composition could be modified with dietary supplementation but it depends 135 
on age and probably also on the quantity PUFAs integration [53]. High fatty acid diet increases their 136 
percentage in inflammatory cell membranes of inflammatory cell and reduces AA levels, a stress-137 
related biomarker and an inflammatory process trigger (through pro-inflammatory eicosanoids 138 
production) [54, 55]. 139 

PUFAs, in particular EPA and DHA, are interesting because of their beneficial effects in preventing 140 
cognitive decline through neuroprotective properties such as increasing nerve membrane 141 
neuroplasticity, promoting synaptogenesis, modulating signal transduction pathways in neuronal 142 
cells and attenuating inflammatory processes [50, 52, 56] (Figure 2). 143 

Furthermore, DHA, produced by the desaturation and elongation of α-linolenic acid (ALA), is able 144 
to influence a certain number of membrane proteins, such as receptors, ion channels and enzymes. 145 
Furthermore, DHA can modulate dopaminergic, serotonergic and cholinergic neurotransmission, 146 
thus regulating signal transduction pathways [57]. DHA is also considered important for 147 
neurogenesis regulation, neural synapses increase and neuronal damage protection [58]. 148 

In fact, Omega-3 DHA is directly absorbed into cell membranes: it composes at least 30% of brain 149 
matter (in general, fats are more than 50% of the brain) [57]. DHA level decreases significantly both 150 
in the blood plasma and in the brain, in physiological aging, above all in AD patients [59] because of 151 
its lower exogenous intake and its greater oxidation [60]. However, several studies suggest that 152 
Omega-3 fatty acid integration is beneficial only in the early stages of cognitive decline [57]. 153 

Indeed, there are discrepancies about fatty acid effectiveness on cognitive functioning [61-64]. That 154 
because of multiple variables such as PUFA amount to administer (both omega-3 and omega-6), the 155 
type and quality of their source (such as fish oil and / or vegetable oil or other), differences among 156 
tests to investigate cognitive efficiency, sample homogeneity in terms of age and functioning and/or 157 
cognitive impairment [65]. A recent double-blind randomized study investigated the effectiveness of 158 
fatty acid intake (omega-3 and omega-6) combined with other antioxidant vitamins in a group of 159 
older people with MCI. Neuroaspis PLP10®, a nutraceutical containing omega-3 (EPA (810 mg) / 160 
DHA (4140 mg)), omega-6 (GLA (1800 mg) / LA (3150 mg)) (1: 1 w / w), vitamin A (0.6 mg) and 161 
vitamin E (22 mg as α-tocopherol plus 760 mg as pure γ-tocopherol) was administered to the 162 
experimental group subjects for 6 months [65]. 163 
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In this study [65], both tests investigating overall cognitive function (ACE-R and MMSE) showed a 164 
significant improvement in the experimental group compared to the control group, regarding 165 
memory, language (fluency) and visual-spatial skills (ACE-R). An attentional functionality 166 
improvement was evidenced too (specifically, in a symbol cancellation test and in the Stroop test, in 167 
particular in the word and color subtests but not in the test in which the interference inhibition 168 
capacity is investigated). Besides, from a functional point of view, the experimental group obtained 169 
high scores in tests investigating muscle strength, endurance, power and balance. These physical 170 
performance parameters are important since they refer to the most demanding daily activities [66]. 171 
In parallel, an increase in the quality of life, sleep and perceived fatigue was demonstrated. 172 

The results of this study are similar to what described by Bo et al. [67]. They showed that 6-month 173 
intake of DHA (480 mg/die) and EPA (720 mg/die) could improve the perceptual speed, spatial 174 
imagery efficiency, and working memory in MCI elderly. Sinn et al. [68] has also shown that 6-month 175 
intake of fish oils (1.55 g of DHA and 0.40 g of EPA per day) improves cognitive functions and in 176 
particular executive efficiency. The same results have not been obtained on patients with known 177 
neurodegenerative diseases such as AD, to indicate that greater benefit is drawn from taking PUFA 178 
in the early stages of cognitive impairment [69, 70]. 179 

 180 

4. Coenzyme Q10 181 

Coenzyme Q10 (2,3-dimethoxy-5-methyl-6-decaprenyl-1,4-benzoquinone) is a fat-soluble compound 182 
also known as CoQ10, vitamin Q10, ubidecarenone or ubiquinone. An endogenous substance is 183 
produced by mitochondria in doses of about 3-5 mg per day. It is one of the main elements involved 184 
in mitochondrial oxidative phosphorylation and also acts as an antioxidant [70, 71]. In vitro studies 185 
have shown that CoQ10 easily crosses the blood brain barrier. 186 

Thanks to its oxidizing and antioxidant properties, it is a cellular redox state modulator.  187 

CoQ10 is located in the internal mitochondrial membrane and protects cells from apoptosis at a 188 
morphological and at a molecular level [72]. Furthermore, as a lipophilic antioxidant, it can eliminate 189 
radicals from membranes, cytosol and plasma. 190 

It plays an important role in Parkinson's disease (PD). In fact, CoQ10 levels are significantly lower 191 
than normal in neuron and platelet mitochondria of PD patients. In vitro studies on fibroblasts of PD 192 
patients have shown that CoQ10 intake restores the electron transport chain activity. The first clinical 193 
studies on the CoQ10 neuroprotective effects were reported in 1994 by Beal et al. [73]: this study 194 
demonstrated the association between 16-month CoQ10 intake (1200 mg per day) and a reduced 195 
functional decline (44%) in PD patients. Muller et al. [74] confirmed these data: 28 PD patients showed 196 
moderate symptom improvement thanks to CoQ10 oral administration (360 mg per day). 197 

The antioxidant potential of CoQ10 was further evaluated in a pilot study [75] on 11 patients with 198 
Rett Syndrome, a severe neurodevelopmental disorder in which hypoxia-induced oxidative stress 199 
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associates with the pathogenesis and the disease progression [76,78]. After 12-month CoQ10 intake 200 
(300 mg / day), there was a significant improvement in red blood cells’ energy status, suggesting an 201 
attenuation of the oxidative stress [75,76]. 202 

Promising results were also observed in a double-blind randomized clinical trial involving patients 203 
with remitting-intermittent multiple sclerosis [78]. The experimental group took 500 mg of CoQ10 for 204 
12 weeks, and showed a significant reduction in inflammatory markers, such as tumor necrosis factor 205 
α (TNF-α), interleukin 6 (IL-6) and matrix metalloproteinase 9 (MMP-9). 206 

 207 

5. Nigella Sativa 208 

Nigella sativa L. (N. sativa), also known as black cumin, is a plant grown in the Mediterranean 209 
countries, in the south and south-west Asia, characterized by its high bioactive-compound content 210 
seed (e.g. Tocopherols, vitamin A and C, β-carotene, etc.) and its anti-inflammatory, antioxidant, 211 
immunomodulating and anticancer properties [79, 80]. N. sativa contains fixed oil (22-38%), volatile 212 
oil (0.40-1.5%), proteins (21–31%), carbohydrates (25–40%), minerals (3.7 –7%), vitamins (1-4%), 213 
saponins (0.013%) and alkaloids (0.01%) [81], in particular, its biological activity is associated with its 214 
thymoquinone content (TQ) [82]. 215 

Bordoni et al. [83] revealed the association between the anti-inflammatory and antioxidant properties 216 
of N. Sativa oil (grown in the Marche region of Italy) and its conservation. Therefore, the Stored 217 
Extracted Oil (SEO) and the Fresh Extracted Oil (FEO) were obtained from the same cultivation in 218 
order to analyze their thymoquinone content. The cultivated oil showed a higher content of 219 
thymoquinone (7,200 mg / mL) compared to other crops [84,85] and it was higher in FEO while 220 
decreased with storage time.  221 

In murine models, it has been demonstrated that thymoquinone is useful to obtain a delayed onset 222 
of the microglia degeneration caused by the oxidative stress [86]. 223 

In addition, TQ is able to improve and regenerate antioxidants enzymes such as glutathione 224 
peroxidase and glutathione reductase previously repressed by Beta-amyloid in differentiated cell 225 
lines of rats affected by Alzheimer disease [87] (Figure 2).  226 

 227 

6. Chlorogenic Acids 228 

Chlorogenic acid (CA), the main phenolic coffee component, is another polyphenolic substance with 229 
an excellent antioxidant activity. It belongs to the chlorogenic acid family (CGA) that are phenolic 230 
acids derived from cinnamic acid esterification, such as caffeic, ferulic and p-coumaric acids. CGA 231 
are also widely present in drinks based on herbs, fruits and vegetables.  232 
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Chlorogenic acids have antibacterial, antioxidant and anti-inflammatory activities [88]. Several in 233 
vitro and in vivo studies have highlighted their ability to counteract neurodegenerative events. 234 
Although a preclinical study on AD transgenic mice reported that caffeine reduces brain beta-235 
amyloid (Aβ) levels [89-91], it is still unknown which element is specifically related to AD. Currently, 236 
few studies have analyzed CGA effects on human cognitive impairment. Epidemiological studies 237 
have found that coffee drinking habits reduce cognitive impairment and the risk of developing 238 
neurodegenerative diseases such as AD [92,93]. 239 

In particular, Kim et al. [94] investigated the association between coffee intake and AD 240 
neuropathological markers in vivo (411 healthy elderly subjects).  241 

The results showed that the coffee intake ( ≥2 cups / day) was associated with lower levels of Aβ brain 242 
deposition compared to its less intake (<2 cups/ day), suggesting that a moderate daily coffee intake 243 
helps to reduce amyloid pathological deposition in the brain [94].  244 

Eskelinen et al. [95] obtained similar results observing that coffee intake in middle age reduces the 245 
risk of developing AD in elderly. 246 

Recently, Kato et al. [96] conducted a pilot study and described cognitive function changes after 6-247 
months CGA intake (330 mg /die) in elderly with subjective memory loss.  248 

In particular, significantly higher scores emerged in tests investigating attentional, executive and 249 
mnesic functionality. In the same study, there was a significant reduction in A42ߚ, A42ߚ / A250 40ߚ 
plasma levels and a significant increase in DHEA-S levels after CGA intake (Figure 2). 251 

Previous studies have shown that CGAs improve blood pressure and vascular endothelial functions, 252 
both associated with dementia onset [97-99]: in fact, hypertension, in middle age, is a risk factor for 253 
dementia and cognitive impairment in old age and continuous CGA consumption may delay its onset 254 
[100]. 255 

Saitou et al. [101] investigated CGA effects on healthy subjects with subjective memory loss.  256 

In this randomized controlled double-blind study, experimental group took a compound based on 257 
CGA (caffeoylquinic acids (CQA), feruloylquinic acids (FQA) and dicaffeoylquinic acids (diCQA) for 258 
16 weeks, CQA - FQA total amount was 300 mg, obtained by extraction from green coffee beans.  259 

Participants underwent a neuropsychological examination (MMSE and RBANS) at baseline, after 8 260 
weeks and after 16 weeks. At the end of the treatment, significant differences between CGA intake 261 
group and the placebo one was evidenced: in particular, elevated scores were recorded in tests 262 
investigating motor speed, psychomotor speed and executive functions. Serum concentration of 263 
cognitive impairment-linked biomarkers revealed an increase in apolipoprotein A1 (ApoA1) and 264 
Transthyretin (TTR) levels in the experimental group at 16 weeks. 265 

Considering these results, CGA intake may improve not only motor activity, but also the cognitive 266 
functions that control its execution and monitor its efficiency.  267 
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These results confirm what was described previously by the same authors in a pilot study [95]. 268 

 269 

7. Selenium 270 

Selenium is an essential micronutrient with a very narrow recommended dietary range. The RDA for 271 
selenium is around 55 lg / day and it can be integrated with a specific dietary intake. Selenium, in the 272 
form of selenocysteine, is a component of 25 selenoprotein classes, including GPx, selenoproteins P, 273 
W and R and thioredoxins (TrxR). As an antioxidant, it provides protection from ROS-induced 274 
cellular damage [102-104] (Figure 2). 275 

Its brain concentration changes in Alzheimer's disease patients and Multiple Sclerosis ones; therefore, 276 
this element may have an important role in the protection from neurodegeneration [105-108]. 277 
Considering that old people are more exposed to selenium deficiency due to metabolic changes, 278 
lower bioavailability and diet changes [109-111], several studies have hypothesized the possibility of 279 
its exogenous assumption in order to prevent aging-related diseases.  280 

Selenoproteins, such as glutathione peroxidases (GPx), play an important role in antioxidant 281 
defenses. The main brain selenoproteins are P and GPx: the first one has been identified in senile 282 
plaques and neurofibrillary tangles, suggesting its important role against oxidative damage [112, 283 
113], GPx, which neutralizes peroxides, is expressed by neurons and glial cells [114,115]. The 284 
biosynthesis of selenoproteins depends on selenium availability. Therefore, an adequate selenium 285 
intake may be particularly important for maintaining brain function [116]. 286 

Brazil nut (Bertholletia excelsa) is the richest dietary selenium source and its intake improves 287 
selenium status [117, 118]. Although some studies have reported that selenium stet is important for 288 
maintaining cognitive efficiency [119-121], only few studies have evaluated its real clinical efficacy 289 
Cardoso et al. [119] analyzed the effects of Brazil nut consumption on cognitive function in a group 290 
of older people with MCI. The experimental group took a 5-gram Brazil nut per day, containing 291 
approximately 288.75 μg of selenium (more than the recommended levels - 55 μg / day - but not 292 
exceeding the tolerable upper intake level - 400 μg / day) [119]. Selenium plasma and erythrocyte 293 
concentrations, Gpx activity in erythrocytes, ability to absorb oxygen radicals and MDA, and lipid 294 
peroxidation genotoxic product were recorded at baseline and after 6 months. The CERAD 295 
neuropsychological battery assessed cognitive functions. After 6 months, no selenium deficiency was 296 
observed in the treated group, while control subjects had a level below the cut-off (> 84–100 μg / L). 297 
Furthermore, an increase in plasma and erythrocyte selenium concentrations was observed in the 298 
experimental group, there was also a significant improvement in erythrocyte GPX activity. Although 299 
no intergroup changes emerged in overall cognitive performance, assessed with the CERAD total 300 
score, subtests investigating constructive praxis and verbal fluency showed higher scores in the 301 
treated group. 302 

 303 
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7. Probiotics 304 

Probiotics refer to a group of live nonpathogenic microorganisms, which, when administered in 305 
adequate amounts, are able to establish the microbial balance, particularly in the gastrointestinal tract 306 
[122]. Their importance is also related to their antioxidant properties: they act as metal-ion chelators, 307 
have their own antioxidant enzymatic systems (SOD and CAT), can produce various metabolites 308 
(GSH, butyrate and folate) and mediate Antioxidant Signaling Pathways [122] 309 

According to the theory of the “gut-brain axes”, the gut microbiota can have significant effects on 310 
cognitive alterations and these alterations can be partially reversed by colonization of the gut [123]. 311 
Bagga et al. [124] showed that Probiotic administration for 4 weeks was associated with changes in 312 
several brain activation pathways regarding emotional memory and emotional decision-making 313 
abilities.  314 

Therefore, a rational manipulation of intestinal microbiota through probiotics, could affect positively 315 
Central Nervous System-associated disorders. Bonfili at al. showed that a probiotic formulation 316 
(namely SLAB51) counteracted brain oxidative damages associated with Alzheimer's disease (AD) 317 
[125]. A clinical trial by Kobayashi et al. investigated the effects of oral administration of 318 
Bifidobacterium breve strain A1 (B. breve A1) on behavior and physiological processes in Alzheimer's 319 
disease (AD) model mice. The consumption of B. breve A1 suppressed the hippocampal expressions 320 
of inflammation and immune-reactive genes that are induced by amyloid-β suggesting that B. breve 321 
A1 has therapeutic potential for preventing cognitive impairment in AD [126].  322 

Michael et al. investigated the neuroprotective role of two bacterial consortia, known as Lab4 and 323 
Lab4b, using the established SH-SY5Y neuronal cell model. Both consortia were equally able to 324 
attenuate intracellular reactive oxygen species accumulation in SH-SY5Y cells [127].  325 

Another clinical trial showed that heat-killed L. buchneri KU200793 has an important antioxidant 326 
activity mediated by its ability to increase levels of BDNF and so its intake can be considered useful 327 
in PD prevention [128]. Therefore, in accordance with the above, thanks to their antioxidant 328 
properties, probiotics seems to be fundamental to delay the progression of these neurodegenerative 329 
disorders (Figure 2). 330 
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Figure 2 Antioxidants with neuroprotective properties. Following the detachment of Keap1 subunit, 332 
Omega-3 increases the antioxidant genes expression. Vitamins E, C and Nigella Sativa (rich in 333 
vitamins) neutralize free radicals thanks to the presence of an electrophilic hydroxyl group on the 334 
chromane ring. Coenzyme Q10 (CoQ10) plays a fundamental role in the electron transport chain 335 
protecting cells from apoptosis at a morphological and molecular level. Selenium is able to reduce 336 
neurofibrillary tangle formation while chlorogenic acid reduces amyloid deposition. Probiotics act as 337 
metal ion chelators and as antioxidants using their antioxidant enzyme systems: superoxide 338 
dismutase and catalase (SOD and CAT). 339 

8. Physical Activity as an antioxidant system 340 

Regular physical exercise is able to induce a lot of adaptations on human organisms: in particular, it 341 
promotes neoangiogenesis and an antioxidant defense increase. The beneficial effects of physical 342 
activity are summarized in Figure 3. As far as the brain concerns, regular exercise leads to remarkable 343 
modifications, such as the enhancement of neuroplasticity and growth factor expression, the decrease 344 
of inflammatory states; it also acts as a buffer against the oxidative stress [129]. 345 

Brain is vulnerable to the oxidative damage due to its high O2-dependent mitochondrial activity. 346 
During exercise we observed an increased oxygen uptake and cerebral blood flow (40–70%) in order 347 
to sustain energy demands [130]. These adaptations lead to enhance mitochondrial activity and ROS.  348 
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The repeated stimulus induced by a constant and regular physical activity promotes the 349 
improvement in the antioxidant defense system, thus defining the physical activity paradox called 350 
also “hormetic effect”. The term “hormetic” means just a biphasic dose-response effect related to the 351 
exercise stimulus [131].  352 

It is interesting to note that both endurance and resistance training exercise of sufficient intensity and 353 
duration increase oxidative modification of proteins, nucleic acids and lipids. The main adaptive 354 
responses to this kind of exercises are related to their upregulation of endogenous antioxidants, such 355 
as glutathione peroxidase (GSH), superoxide dismutase [132] and Catalase (CAT). Indeed, as 356 
described by Mee-inta et al. (2019), glutathione peroxidase (L-γ-glutamyl-L-cysteinyl-glycine) plays 357 
a crucial role in astrocytes and microglia because it controls the redox balance and anti-inflammatory 358 
mediators [133].  359 

In addition to increasing main antioxidant enzyme levels, it was also observed that regular physical 360 
activity in middle-aged rats could up-regulate peroxisome proliferator-activated receptor- γ 361 
coactivator 1 α (PGC-1 α). The activation of PGC-1 α leads to an enhancement of antioxidant enzymes 362 
including GPX and Mn-SOD with a simultaneous decrease in the oxidative stress status. In addition, 363 
PGC-1 α activation promotes mitochondrial biogenesis, resulting in an increased ATP availability 364 
and a decrease in oxidizing species [134]. Thanks to this antioxidant response, resistance training is 365 
able to affect positively cognition functions. For example, Lachman et al. (2006) showed a memory 366 
improvement in older adults with disability, thanks to home-based Strong for Life program [135]. 367 
Moreover, it has been demonstrated an improved ability to remember actions in the future after a 368 
single strength exercise session in healthy youths [136]. 369 

More generally, studies have shown that resistance training can contribute significantly to the 370 
prevention of neurodegenerative diseases [137, 138, 140]. As well as to the maintenance, development 371 
and brain recovery through specific neurochemical adaptations induced by this kind of training [139]: 372 
in particular, low levels of ROS, which are produced intermittently for a short period of time during 373 
a training protocol program, activate intracellular signaling pathways that promote cellular 374 
adaptations, leading to an increase in capacity against subsequent stress. Conversely, moderate levels 375 
of ROS generation over a long period, or high generation due to high intensity exercise, induce 376 
structural and functional damage [141].  377 

It has been suggested that maybe there could be a link between muscle and brain. This because 378 
resistance training could act on rapamycin (mTOR), a serine/threonine kinase, fundamental for brain 379 
survival, and on an intracellular protein called cAMP-response element-binding protein (CREB), 380 
essential in dopaminergic neurons [142]. This theory was later confirmed by Lloyd et al. (2017), who 381 
observed how resistance training enhanced mTOR and CREB signalling in brain tissues [143]. 382 

The influence of exercise on brain redox systems has been widely reported in scientific literature: in 383 
fact, it is able to reduce OS, maintain brain redox balance and increase levels of Brain-derived 384 
Neurotrophic Factor (BDNF) [144-150].  385 
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In particular, BDNF leads to the activation nuclear factor erythroid 2-related factor 2 (Nrf2, a cellular 386 
regulator of antioxidant defense systems) [151], which regulates the expression of enzymes and 387 
detoxification antioxidants to protect brain cells from oxidants, electrophiles and inflammatory 388 
agents [152] and to maintain mitochondrial function, cellular redox and protein homeostasis [153-389 
156]. 390 

Currently, several training protocols are able to improve antioxidant defenses. High Intensity Interval 391 
Training (HIIT) is one of them. HIIT is a kind of training in which exercises are performed in 392 
intermittent aerobic intervals. The volume and the intensity of HIIT is usually 90% of VO2max and 393 
the training session lasts about 45 minutes [157]. Because of these features, HIIT induces a remarkable 394 
positive adaptation on body composition and cardiorespiratory fitness [158]. Although several 395 
studies have also shown an important correlation between HIIT and antioxidant defenses 396 
enhancement [159,160,161], the actual HIIT effects on memory and other cognitive capacities remain 397 
to be elucidated. 398 

Analyzing literature data, it is still not clear what could happen if strenuous physical activity is 399 
performed. A typical strenuous physical activity is for example, the ultra-endurance race (UE). 400 
Studies have shown that UE causes a physiological impairment on cardiac remodelling, marked 401 
muscle damage and hepatic dysfunction [162]. In addition, UE also leads to an increased oxidative 402 
damage on the central nervous systems [163]. In a recent study, de Souza et al. (2020) showed that a 403 
high-volume training, just like UE, provoked cerebellar lipid peroxidation, and unbalanced 404 
enzymatic antioxidant resources in rodents [162]. 405 

It is so possible to assume that the neuroprotective role of physical activity as an antioxidant system 406 
is more evident if a regular and constant exercise is considered, while a strenuous exercise could 407 
affect negatively brain cells. 408 

Moreover, physical activity (endurance training, HIIT or resistance training) is able to induce 409 
structural changes in several brain areas, with a consequent improvement in brain function. These 410 
modifications consist in an increased total branch length of Purkinje cells [164], cerebellar 411 
angiogenesis [165] and plasticity in the motor cortex [166]. Finally, a moderate exercise acts positively 412 
on brain cell apoptotic signals through the inhibition of RONS [167]. 413 

In summary, it seems evident that physical activity, performed in a regular way, is able to induce 414 
brain adaptations mediated by its capacity of decreasing oxidizing species and increasing antioxidant 415 
defenses with a remarkable effect on cortex, hippocampal and cerebellum function, neoangiogenesis 416 
and the reduction of neuro-inflammation [168].  417 

Unfortunately, the relationship between physical exercise and adaptation response is very complex, 418 
because of lots of variables such as intensity, volume, frequency, exercise choice, exercise order and 419 
inter-set rest intervals [169]. Their presence determines different effects on brain adaptation in terms 420 
of antioxidant defenses and oxidative stress status.  421 
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 422 

Figure 3 Beneficial effects of physical activity. Physical activity is able to induce cerebral adaptations 423 
by decreasing the levels of oxidant species and by increasing the antioxidant defenses. After regular 424 
exercise, upregulation of endogenous antioxidants is achieved, such as glutathione peroxidase (GSH) 425 
and catalase (CAT); the mammalian target of rapamycin (mTOR) pathway is activated and Brain-426 
derived Neurotrophic Factor (BDNF) gene expression increases leading to the activation of nuclear 427 
factor erythroid 2-related factor 2 (Nrf2). Following exercise, up-regulation of the peroxisome 428 
proliferator-activated receptor- γ coactivator 1 α (PGC-1 α) is also obtained. All these pathways lead 429 
to a reduction of ROS, an increase in memory and cognitive functions, as well as neuronal plasticity. 430 

9. Conclusions 431 

In the light of the above, antioxidant molecules seem to be protective against free radical damage that 432 
affects brain cells. It is possible to assume that, their intake could be fundamental to delay a potential 433 
onset of neurodegenerative diseases and improve cognitive functions. Moreover, physical activity, 434 
because of its neuroprotective role against the oxidative stress, should be performed just to amplify 435 
the effect of the antioxidant intake in patients affected by these disorders.  436 

 437 

 438 
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