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Abstract  13 

Pavement management system (PMS) is a set of tools that assist road agencies in 14 

finding optimal strategies for maintaining pavements in a serviciable condition over a period 15 

of time. Usually, municipalities base their PMS on the deterioration monitoring through a 16 

visual survey but the distresses identification is complex and the operations are based on 17 

visual and instrumental inspections. As regards natural stone pavements, which are very 18 

widespread in the road heritage of cities, in literature there are very few studies. The authors 19 

analyzed two supervised classification approaches (Semi-Automatic Classification Plugin for 20 

QGIS and a Convolutional Neural Network (CNN)), based on Unmanned Aerial Vehicle 21 

(UAV) photogrammetry, to detect stone pavement’s pattern. This study showed that using a 22 

U-Net CNN on images obtained from UAV is an excellent alternative to the traditional 23 

manual inspection and can be implemented for other types of stone pavements, also with the 24 

aim of distress identification. 25 
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Highlights 26 

 PMS of urban road rarely has an organized structure. 27 

 There is a lack of tools for natural stone pavements distress analysis. 28 

 Two supervised classification approaches based on UAV photogrammetry were 29 

analyzed. 30 

 Supervised classifications are used for the detection of stone pavement’s pattern. 31 

 U-Net CNN is an excellent alternative to the manual inspection.  32 

Keywords 33 

Pavement management system, stone pavement, segmental pavement, automatic 34 

classification, deep learning, convolutional neural network 35 
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1. Introduction 38 

Pavement management system (PMS) is a set of tools that assist road agencies in finding 39 

optimal strategies for maintaining pavements in a serviciable condition over a period of time. 40 

The implementation of PMS is a complex operation with the aim of analyzing and modelling 41 

road surface deterioration, providing appropriate road maintenance and rehabilitation 42 

strategies, maximizing performance during the service life establishing priority scheduling 43 

optimizing agency costs [1–3]. It is highly data dependent and acquiring these data is 44 

expensive and time-consuming as it has seen the involvement of increasingly specialised 45 

skills and equipment over time. The PMSs are differently graduated on the basis of the 46 

extension and type of road-network to be managed, as well as on the budget and instrumental 47 

investigation and processing systems available. However, most of the PMSs were created to 48 

manage large network referring to major road and airport infrastructures while the 49 

applications of such systems to urban areas are few in the world [4–8]. The PMS of urban 50 

road rarely has, for several reasons, an organized structure. Primarily, they are subject to 51 

economic constraints, but also, because of the huge diversification of type and use of roads, 52 

they are subject to different traffic conditions with too short extensions for systematic long-53 

term investment planning. Usually, municipalities base their PMS on the monitoring of the 54 

deterioration through a visual survey such as the pavement condition index (PCI) assessment 55 

procedure based on a numerical scale from 100 (perfect condition) to 0 (failed pavement) [9]. 56 

The use of the PCI in urban areas has considerable limits because the distress manual 57 

identification is more complex and the operations are basically based on visual and 58 

instrumental inspections on short paving trunks. The distresses are identified from specific 59 

typological catalogues, in a not easy environment, with many obstacles and operational 60 

problems typical of urban life (parking, facilities, etc..).  61 
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With the exception of a few isolated studies [10], the literature on PMS does not cover 62 

situations that are very widespread in the road heritage of cities, i.e. natural stone pavements. 63 

They represent the largest framework of the historical European city’s material structure, the 64 

main features of the architecture of the public roads, right up to the development of motor 65 

vehicles [11,12]. Stone block pavements, falling within the segmental pavements category, 66 

differ from others road pavements because the wearing course is made of individual small 67 

elements placed in a predefined laying pattern, above an unbound or bound bedding layer. 68 

Stone elements characterized by different materials, shapes and dimensions can be used for 69 

the surface layer. Under this course the structure is similar to that of a flexible or semi-rigid 70 

pavement. The structural capacity of such pavements, subject to both vertical and horizontal 71 

loads due to braking, acceleration and steering, depends not only on underlying layers but also 72 

on the size of the elements used, on the laying patterns, on the joints’ filling material and on 73 

joints’ thickness [13]. The main types of deterioration of segmental pavements can be divided 74 

into two macro-categories [14]: vertical displacements (depressions, faulting, heave and 75 

rutting), which are mainly due to the high vertical loads on the pavement together with a lack 76 

of bearing capacity of the deeper layers, and horizontal displacements due to the horizontal 77 

component of vehicular loads transmitted under conditions of adherence to the pavement 78 

which causes the relocation of the blocks (horizontal creep) [15]. A third type of distress 79 

concerns the fracture of the blocks due to the incorrect selection of used materials. However, 80 

an interaction between the causes of deterioration is recurrent with the generation of other 81 

types of distress such as excessive joints width, joint filling loss and pumping, missing pavers 82 

and patching [10,14,16]. Stone paving involves a multiplicity of aspects to be evaluated that 83 

are not only related to the maintenance of structural and functional requirements, but also 84 

aesthetic and formal: poorly executed repairs, joint emptying and loss of laying pattern 85 

geometry are themselves important distresses hard to detect and quantify with acceptable 86 
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speed and precision. The traditional manual inspection of pavements, especially for segmental 87 

pavements, can be a complex task for a person and the supervision usually requires trained 88 

staff, becoming highly time-consuming, labor-intensive, subjective and quite expensive.  89 

Thus, the possibility of using different methodologies for the automatic detection of a 90 

segmental pavement’s pattern, which is the main objective of this study, would represent an 91 

unexplored and interesting strategy to be used into an urban PMS. Recent studies are 92 

attempting to automate the process of analysis of road pavements and the detection of 93 

distresses in order to obtain accurate and low-cost data, but they mainly refer to asphalt and 94 

concrete pavements, which are the most common and congested roads where distresses can 95 

significantly affect road users’ safety and comfort [17]. The most studied techniques involve 96 

laser-based systems and imagery from cameras. The formers include a variety of devices such 97 

as laser profilers and terrestrial laser scanners but are generally very expensive. For this 98 

reason, systems based only on imagery are considered a viable alternative at a significantly 99 

lower cost. After acquisition, images are processed to analyze distresses. As far as data post-100 

processing is concerned, traditional 2D image post-processing techniques are, for instance, 101 

edge detection and morphology, binarization and thresholding [18]. Applications for 102 

automated or semi-automatic data extraction are instead based on image processing 103 

algorithms and computer vision [19–22] or emerging methods such as deep learning [23–26]. 104 

Deep learning and semi-automatic classification tools, has shown good results in 105 

automatically detecting and assessing the health condition of civil infrastructure such as 106 

flexible pavements [27–30]. In the European and North American contexts, however, in many 107 

urban centers there is a strong presence of streets with historical pavements, such as stone 108 

cubes pavements, that require attention. For this type of pavements, in fact, even before the 109 

survey of distresses, it is fundamental the laying pattern detection. Although laying pattern is 110 
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one of the aspects that more than others characterize stone pavements but, at the same time, it 111 

is difficult to evaluate its geometry as well as its geometric stability over time. 112 

The attempt to automatically detect a historical natural stone pavement in this study 113 

has included a preliminary survey conducted using photogrammetry from Unmanned Aerial 114 

Vehicle (UAV) and a subsequent post-processing phase. UAV technique is not commonly 115 

used for road pavement surveying, but it is now well established in other civil engineering 116 

applications. As will be highlighted in this paper, the use of UAVs allows the rapid 117 

acquisition of images compared to a ground survey, high resolution images thanks to the 118 

sensors used, which are increasingly high performance, the integrated use of radiometric and 119 

geometric 3D information, the possibility of immediate georeferencing (and therefore the 120 

location of any distress) thanks to GPS sensors available. For the automatic pattern detection, 121 

two supervised classification approaches will be tested. The former is based on the use of 122 

algorithms for the classification of remote sensing images. In particular the Semi-Automatic 123 

Classification Plugin (SCP) [31], a free open source plugin for QGIS [32], was used. The 124 

choice of this tool is due to the widespread use of QGIS software by municipalities. The latter 125 

method instead relies on the use of a Convolutional Neural Network (CNN), which allows a 126 

higher degree of automation and to overcome some limitations related to the radiometric 127 

uncertainties present in the RGB input data to be analyzed. The combined use of UAV 128 

photogrammetry and semi-automatic classifications can increase the efficiency of the process 129 

by outperforming people in speed and accuracy, working evenly and being independent of 130 

human factors. 131 
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2. Materials and methods 132 

2.1. Study area 133 

The survey was carried out on a natural stone pavement located in the historical city 134 

center of Ascoli Piceno (Marche region of Italy). The surveyed street is “Via Pietro 135 

Alamanni” (the yellow line in Figure 1), that is parallel to the cardo maximus (Via Cassero, 136 

Via Malta and Via Pretoriana, the green line) and intercepts at right angles “Corso Mazzini” 137 

(the red line) which represents the decumanus maximus of the city, as Ascoli Piceno is a city 138 

of Roman structure. The analyzed street is within a Limited Traffic Zone that allows transit 139 

only to residents and is also open to unauthorized vehicles in exceptional periods of time. The 140 

street geometry allows the transit of small vehicles, so that only cars and two-wheeled 141 

vehicles are allowed to pass through; therefore, it can be assumed that there are low transits 142 

and loads not greater than those of cars.  143 

 144 

Figure 1 – Historic center of Ascoli Piceno and identification of the pilot road section. 145 

The historical center of the city of Ascoli Piceno is strongly characterized by the presence of 146 

stone pavements of different types; the street surveyed specifically consists of small, cubic, 147 

Trentino’s porphyric elements, commercially in 6/8 class placed in an overlapping arcs laying 148 

pattern (Figure 2). Table 1 summarizes the property of the commercial 6/8 class. The choice 149 
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of this street as the object of the survey derives from two main aspects. The first one is linked 150 

to the fact that the historic center of Ascoli Piceno, almost entirely built in travertine, is 151 

among the most admired in Marche region and central Italy, due to its artistic and 152 

architectural heritage and has been nominated several times for the list of UNESCO World 153 

Cultural and Natural Heritage Sites. Secondly, “Via Pietro Alamanni” had a high level of 154 

deterioration, so it is of great interest in the issue of stone pavement distresses. Moreover, in 155 

view of its future reconstruction, it has been possible to use it as a pilot road section on which 156 

various types of distresses survey have been carried out as well as a set of destructive and 157 

non-destructive tests. 158 

 159 

Figure 2 - Small, cubic, Trentino’s porphyric elements in 6/8 class placed in an overlapping 160 

arcs laying pattern (dimensions in cm). 161 

Table 1 - Property of the commercial 6/8 class. 162 

Length and width 6.0-9.0 cm 

Height 5.5-8.0 cm 

Weight 130-135 kg/m2 

Number of elements approx. 155-160/m2 

 163 

As shown in Figure 3, the pavement presented several distresses. The pavement had 164 

numerous patches: Figure 3a displays sections of pavement where there are missing pavers 165 

which have been reinstated with a dissimilar material. With regard to the joints, i.e. the empty 166 

spaces between adjacent stone cubes, they were filled with different materials: as can be seen 167 
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in Figure 3b some of these still had the original filling material, i.e. sand, others were filled 168 

with cement mortar, others have lost the filling material and have not been restored. In 169 

addition, there were areas in which the joints between blocks have widened. Excessive joint 170 

width can occur from a number of factors and as joints get wider, the block layer becomes 171 

less stiff and can lead to overstressing the substructure layers or to the loss of some stone 172 

cubes that have not been replaced and have not been patched. Finally, in many areas (Figure 173 

3a) the stone pavement showed numerous vertical irregularities like depressions (sections that 174 

present lower elevations than the surrounding areas), faulting (areas where the elevation of 175 

adjacent stone cubes differ or have rotated), heave (sections that have elevations that are 176 

higher than the surrounding areas) and rutting (a surface depression in the wheel path).  177 

 178 

Figure 3 – Distresses detected on the stone pavement during the survey. 179 

2.2. Data acquisition and photogrammetric processing 180 

The survey was carried out on a pilot road section, with a length of about 80 m, by drone 181 

photogrammetry and involved a surface equal to 472 m2. All street images were collected by a 182 

DJI Phantom 4 pro quadcopter drone. Thirteen control points, detected by Topcon ISO1 Total 183 

Robotic Station and GPS antennas, were used for the definition of the reference frame and for 184 

the optimization of the image orientation solution. The targets were placed along the sides of 185 
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the street at an average distance of 8 meters to ensure a constant distribution along the entire 186 

planimetric extension of the street. A total of 194 images were acquired, alternating nadir and 187 

oblique shots. The equipped camera has one-inch 20-MP (5472 × 3648 resolution) CMOS 188 

sensor with a focal length of 8.8 mm. The shutter speed is 1/2000 to 1/8000 s and the sensor 189 

size is 12.83 × 7.22 mm. The actual ground resolution of the acquired images can be 190 

quantified using the Ground Sampling Distance (GSD, i.e. the size of an object element 191 

corresponding to a single pixel in the digital image). The GSD can be calculated as in Eq.(1) 192 

[33]: 193 

𝐺𝑆𝐷 =
𝑍∙𝑝

𝑓
           (1) 194 

where 𝑍 is the object distance (distance from the camera to the pavement surface), 𝑝 is the 195 

pixel size of the sensor and 𝑓 is the focal length of the lens. In this study GSD was equal to 196 

1.3 mm. 197 

The expected depth (along Z direction) accuracy 𝜎 can be estimated by the Eq. (2): 198 

𝜎 =
𝑍

𝑓
∙

𝑍

𝐵
∙ 𝜎𝑚            (2) 199 

where 𝜎𝑚 is the measurement precision of the image coordinates (assumed to be ±1 pixel) and 200 

𝐵 is the base length (distance between the two consecutive shots) [34]. The resulting depth 201 

precision of coordinates is about 3.1 mm. 202 

The first processing stage (3D reconstruction and orthophoto generation) was carried out with 203 

Agisoft Metashape software; the software adopts a fairly standardized processing pipeline: 204 

image block orientation through a structure from motion automatic procedure, generation of a 205 

3D point cloud representing the detected object, generation of a triangular mesh model from 206 

the point cloud, creation of raster products such as Digital Elevation Model (DEM) and 207 

orthophotos. Considering the GSD, the orthophotos have been generated with 2 mm per pixel 208 

resolution, suitable to better appreciate the texture of the stone pavement. To achieve the 209 
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highest possible resolution, all processing steps have been done using the highest quality 210 

settings offered by the software. Two sections of the orthophoto obtained from the survey 211 

carried out on “Via Pietro Alamanni” are shown in Figure 4. 212 

 213 

Figure 4 – Sections of the orthophoto obtained from the survey carried out in “Via Pietro 214 

Alamanni”; a) In the orthophoto the strong presence of shadows is evident; b) In this section 215 

patches with different material filling are present. 216 

2.3. Training area and class identification 217 

Both classification methodologies considered in this work (SCP and CNN) are supervised 218 

classification techniques. As such, they consist of two successive phases: the former 219 
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(training) involves the classifier training on the basis of data provided by the operator; the 220 

latter (classification) consists of classifying the entire dataset on the basis of the initial 221 

training. The training phase is computed on a controlled area, starting from data manually 222 

classified by the user. In this case, the manual classification for training was made on a 223 

portion of the entire orthophoto (among 25 m2). The selected area had homogeneous lighting, 224 

was well representative of the characteristics of the pavement and contained a significant 225 

sample of the laying pattern (with stone cubes and joints), as well as of the materials (stone 226 

cubes, sand, cement mortar) and distresses (mainly patches and missing cubes). The manual 227 

classification was made in QGIS by vector drawing of polygons representing the different 228 

materials on stone pavements. Macroclasses and the related classes have been identified and 229 

shown in Table 2 and Figure 5. 230 

Table 2 – Macroclasses and classes 231 

Macroclass Class 

Pavement Stone cubes 

 Patches 

Joints Empty joints 

 Joints with sand 

 Joints with cement mortar 

Other Heterogeneous material 

 Blurry areas 
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 232 

 233 

Figure 5 – Manual classification of a portion of orthophoto 234 

 235 

However, since the purpose of this study was the automatic identification of the laying pattern 236 

and thus the distinction between stone cubes and joints, only the two classes of stone cubes 237 

and joints were considered, without taking into account for the latter the material differences 238 

and looking only at their geometric characteristics. The manually classified dataset used as 239 

training input was the same for the two tested methodologies (SCP and CNN).  240 

2.4.Testing area and data evaluation 241 

After the classification phase, the output results were validated by comparison with a 242 

reference dataset in order to validate them and assess their accuracy. The validation was done 243 

on another portion of orthophoto (area 3 m2 circa), a sample of which is represented in Figure 244 

6. Also in this area a manual classification was done according to the same methodology 245 

described in the paragraph 2.3, but identifying only stone cubes and joints without other 246 

elements such as patches, in order to have a reference dataset. The manual classification, in 247 
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fact, is the most onerous methodology, but at the same time it is the most accurate and the 248 

most reliable reference for evaluating the accuracy of automatic algorithms. So, the objective 249 

of these tests is to obtain, with automatic algorithms, the closest results to the one provided by 250 

manual classification. 251 

 252 

Figure 6 - Training validation input: a) image to classify and b) reference raster image 253 

resulting from manual classification. 254 

 255 

For accuracy evaluation, reference was made to traditional metrics with four possible types of 256 

outcomes concerning the assessments of street segments given by the classification system: 257 

true positive (TP - the analyzed pixel belongs to stone cubes and the system correctly detects 258 

it), true negative (TN – the analyzed pixel does not belong to stone cubes and the system 259 

correctly detects it), false positive (FP – the analyzed pixel does not belong to stone cubes but 260 

the system classifies it as a stone cube) and false negative (FN – the analyzed pixel belongs to 261 

stone cubes but the system does not classify it as a stone cube). Based on these outcomes, the 262 

recall, selectivity, precision, accuracy, F-score and Matthews correlation coefficient (MCC) 263 

metrics have been calculated to evaluate the classification results. The recall measures the 264 

proportion of actual positives that are correctly identified as such (Eq. (3)), while the 265 
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selectivity measures the proportion of actual negatives that are correctly identified as such 266 

(Eq. (4)). 267 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
          (3) 268 

Selectivity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
           (4) 269 

The precision (Eq. (5)) is the proportion of predicted positive that are true positive: 270 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
          (5) 271 

The accuracy describes the percentage of the test data that are correctly classified (Eq. (6)): 272 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
       (6) 273 

In this case we have a binary classification and accuracy can also be calculated in terms of 274 

positives and negatives as in Eq. (7): 275 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
         (7) 276 

Accuracy works well only if there are equal number of samples belonging to each class; in 277 

this case the classes are unbalanced, and it is therefore necessary to analyze other parameters 278 

like F-score and Matthews correlation coefficient (MCC). 279 

The F1 score is the harmonic mean of the precision and recall (Eq.(8)): 280 

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
        (8) 281 

Finally, the MCC (Eq. (9)) is the most significant coefficient in a binary classification in 282 

which the classes are of very different size: 283 

𝑀𝐶𝐶 =
𝑇𝑃∙𝑇𝑁−𝐹𝑃∙𝐹𝑁

√(𝑇𝑃+𝐹𝑃)∙(𝑇𝑃+𝐹𝑁)∙(𝑇𝑁+𝐹𝑃)∙(𝑇𝑁+𝐹𝑁)
       (9) 284 

This coefficient considers true and false positives and negatives and is generally regarded as a 285 

balanced measure which can be used even if the classes are of very different sizes. The MCC 286 

is a correlation coefficient between the observed and predicted binary classifications; it 287 

returns a value between −1 and +1. A coefficient of +1 represents a perfect prediction, 0 no 288 
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better than random prediction and −1 indicates total disagreement between prediction and 289 

observation. 290 

2.5. Supervised automatic classification 291 

2.5.1. Semi-Automatic Classification Plugin 292 

The Semi-Automatic Classification Plugin (SCP) is a free open source plugin for QGIS that 293 

allows for the supervised classification (or semi-automatic classification) of remote sensing 294 

images. It provides several tools for raster processing (images download, preprocessing, post 295 

processing, raster calculation) to perform the land cover classification. A supervised 296 

classification is a machine learning technique that, in this case, allows the identification of 297 

materials in an image based on their spectral signatures. Each material has a unique signature, 298 

i.e. the reflectance as a function of wavelength [35] which can be used for material 299 

classification. To start the process, the user is required to select one or more training areas (or 300 

regions of interest, ROI) for each land cover class identified in the image. ROIs are polygons 301 

drawn on homogeneous areas of the image that include pixels belonging to the same class. 302 

The classifier then compares the spectral signatures of the train elements with those of the 303 

elements in the image to be classified. In this case study, the ROIs were identified during the 304 

previously described manual classification and the spectral signature of reference land cover 305 

classes are calculated considering the values of pixels inside each ROI belonging to the same 306 

class. The orthophoto to classify is an image in the visible field, i.e. for each pixel only the 307 

values concerning the RGB (Red, Green, Blue) bands are given. Since spectral signatures 308 

depend on the radiometric characteristics of the image, lighting conditions strongly influence 309 

spectral signatures identification, leading to the estimation of different signatures for the same 310 

material depending on shadow or sun exposure. Moreover, using only the three visible bands 311 

may lead to the misclassification of materials which are different but with similar radiometric 312 
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characteristics in the visible field. To cope with this issues, emerging UAV systems allow to 313 

acquire also the near infrared component (NIR) (for instance the Anafi drone by Parrot), 314 

which could lead to improved results. However, without the availability of NIR data in these 315 

tests and to make the classification more robust against changing lighting condition in the 316 

scene (i.e. shadows or direct sun-light exposed areas), different pre-processing strategies have 317 

been adopted to maximize the differences between the ground cover classes. As visible in 318 

Figure 4a, which shows two different sections of the road to classify, the orthophotos have 319 

different lighting characteristics along the road extension, with the presence of sunny and 320 

shaded areas. The training area was identified on a portion of orthophoto with diffuse 321 

illumination and without the presence of sharp shadows (Figure 7a) to reduce the effects of 322 

different lighting conditions on the spectral signature calculation. With regard to the test areas 323 

(Figure 7b), instead, a preprocessing stage was made to mitigate shadows effect and equalize 324 

the global luminosity of the image with the reference image used for training. The shadow 325 

correction algorithms available in the literature are many [36–39]. In this study a locally 326 

adaptive filter was used, which ensure that, within a specified sliding window, the mean 327 

values over the three RGB channels match the global mean value of the reference image. It 328 

reduces uneven lighting, increasing RGB values of darker parts and decreasing RGB values of 329 

brighter areas (Figure 7c). 330 

 331 
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 332 

Figure 7 – Image a) A portion of the training area used as reference image for equalization. 333 

Image b) A portion of test area where shadows are evident. Image c) The same portion of test 334 

area as image b after equalization process. 335 

 336 

The algorithm performance is strongly influenced by the sliding window size used. The 337 

window size determines algorithm sensibility and, consequently, its capability of removing 338 

even small shadows (such as people's silhouettes, poles, fences etc.). On the other hand (as 339 

shown in Figure 8), using small sized window increases algorithm sensibility but decreases 340 

the resulting image contrast. So, with such algorithms, the correct balancing between 341 

precision in shadow detection and image contrast have to be strongly considered, not to 342 

compromise the classification stage. A sliding window of 50x50 pixels was used in this tests, 343 

since it ensured the best balancing between shadow removal and image contrast. 344 
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 345 

Figure 8 – Comparison between equalized images obtained using different window sizes. 346 

Image a) Image is equalized using a window of 30x30 pix; Image b) Image is equalized using 347 

a window of 100x100 pix. 348 

 349 

In addition, the conversion of the RGB images into HSV (Hue, Saturation and Value) 350 

space was performed. HSV [40] is a transformation of the RGB color space that gives a better 351 

separation of chromaticity and intensity. Hue is basically the color expressed from red to 352 

magenta as a number from 0 to 360 degrees, saturation describes the amount of grey in a 353 

particular color, value works in conjunction with saturation and describes the brightness or 354 

intensity of the color. Shadows mainly affect the value component, while for the same 355 

material the hue value should be basically the same regardless the shadows [41]. Thus, the 356 

conversion in HSV space was applied both in combination and as an alternative to shadow 357 

correction by image equalization, in order to improve the results provided by the equalization 358 

algorithm (especially in areas with still remaining shadows) and to verify whether the 359 

independent analysis of hue and value components can exclude the shadows effect from the 360 

spectral signature calculation. 361 

In addition to lighting issues, the analyzed joints and stone cubes are composed by 362 

materials with similar radiometric characteristics, which makes it difficult to identify them 363 
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unambiguously. The spectral signatures identified by considering only the three RGB bands 364 

had large overlapping portions and therefore would not have ensured a correct identification 365 

of the laying pattern. The RGB orthophotos were pre-processed by performing a Principal 366 

Component Analysis (PCA) to cope with this issue. PCA is a method for reducing the 367 

dimensions of measured variables (in this case bands) to the principal components, providing 368 

a new set of bands which are uncorrelated. This involves a linear transformation of the 369 

variables that projects the original ones into a new Cartesian system in which the new variable 370 

with the greatest variance is projected on the first axis, the new variable, second for variance 371 

value, on the second axis and so on. The reduction of complexity is limited to analyzing the 372 

main variables, by variance, among the new variables [42]. The variable with the highest 373 

variance is therefore represented by PCA band 1 and, as can be seen from the Figure 9 it 374 

increases the color differences between stone cubes and joints, so that joints appear almost 375 

white (high grey scale values) and the stone cubes almost black (low values), therefore more 376 

recognizable. 377 

 378 

Figure 9 - PCA band 1 of a portion of pilot road section. 379 



21 

 

On the basis of the pre-processing operations carried out, the available bands were: R-380 

G-B, H-S-V and PCA1- PCA2- PCA3. Initially PCA band 1, H band and V band were 381 

analyzed individually, then orthophotos in RGB and HSV space were considered. Finally, an 382 

attempt was made to integrate the various bands, which, although not increasing the available 383 

data, could have improved the automatic recognition of the laying pattern. All the settings 384 

were applied both to original and equalized images. Table 3 summarizes the band sets (BSs) 385 

considered in the tests. 386 

Table 3 – Band sets used in the semi-automatic classification 387 

Band set name Number of bands Used bands 

BS1 1 PCA1 

BS2 1 H 

BS3 1 V 

BS4 3 R, G and B 

BS5 3 H, S and V 

BS6 4 R, G, B and PCA1 

BS7 4 R, G, B and H 

BS8 7 R, G, B, H, S, V and PCA1 

As far as the classification is concerned, for the first three BSs, which consist of a single band, 388 

the classification was made by setting a limit threshold that discriminates stone cubes and 389 

joints. For the other BSs, it was possible to use SCP automatic classification. SCP implements 390 

Land Cover Signature Classification (LCS) algorithm which allows the definition of spectral 391 

thresholds for each training input signature (a minimum value and a maximum value for each 392 

band). Spectral signatures of image pixels are compared to the training spectral signatures and 393 

a pixel belongs to a class if its spectral signature is completely contained in the spectral region 394 

defined by that class. Otherwise, if a pixel falls inside overlapping regions or outside any 395 

spectral region it will be not classified. To this issue LCS can be coupled with additional 396 

algorithms that determine how to classify ambiguous pixels. SCP implements three additional 397 

algorithms (Minimum Distance, Maximum Likelihood, Spectral Angle Mapping), which were 398 

all tested to achieve the best classification result. Minimum Distance (MD) algorithm 399 
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calculates the Euclidean distance between spectral signatures of image pixels and training 400 

spectral signatures. Therefore, the distance is calculated for every pixel in the image, 401 

assigning the class of the spectral signature that is closer, according to a defined threshold. 402 

Maximum Likelihood (ML) algorithm calculates the probability distributions for the classes, 403 

estimating if a pixel belongs to a land cover class. In order to use this algorithm, a sufficient 404 

number of pixels is required for each training area allowing for the calculation of the 405 

covariance matrix. Finally, Spectral Angle Mapping (SA) algorithm calculates the spectral 406 

angle between spectral signatures of image pixels and training spectral signatures.  407 

2.5.2. Neural Network 408 

Most of the limitations of the previously described semi-automatic classification can be 409 

overcome by a convolutional neural network (CNN). Shadows and other lighting issues 410 

strongly affect the output of the previous technique since it is uniquely based on an evaluation 411 

of radiometric features on a per-pixel base. On the contrary, a CNN is capable of taking into 412 

consideration radiometric changes between adjacent pixels and of highlighting with (usually) 413 

greater flexibility features in a picture on the basis of its relevant shape, rather than solely on 414 

its color (or radiometric) features. In the experimentation, at this stage, the development of a 415 

new CNN architecture specifically tailored for classifying and detecting stone pavement 416 

pattern was considered unnecessary, since very reliable and consolidated solutions for pattern 417 

recognition and detection are already available. In particular, U-Net architecture [43], 418 

although being initially applied for biomedical tissue segmentation, has proven to be easily 419 

adaptable to a wide range of pattern segmentation problems and, at the time of writing, is 420 

probably the best performing architecture as far as the training input dataset is based on just 421 

few images, and localization (assigning every single pixel to a specific class/label) rather than 422 

classification is required. Differently from other approaches [44], where a sliding window is 423 
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moved around the image and classified assigning the resulting class to the central pixel of the 424 

window itself for localization, in a U-Net CNN all the pixels of a tile of the image are 425 

classified adopting a two processing stages strictly concatenated: the first, that acts as an 426 

encoder, where the input image (tile) is subsequently simplified into a feature representation 427 

(through convolutions and max-pooling) and where the actual classification of information 428 

occurs, and the second, that acts as a decoder, where the discriminative features extracted in 429 

the previous stage are semantically projected onto the pixel space, upsampling (via transposed 430 

convolution) the condensed feature map up to the original resolution of the input image. In 431 

other words, during the encoding path, like in a traditional CNN, through the repeated 432 

application of convolution (and pooling) stages, the sparse information of the input image is 433 

condensed in downsampled feature maps. During the decoding (upsampling) stages, the 434 

feature maps expands and is concatenated with the correspondingly cropped feature map from 435 

the encoding path, in order to provide a classification on a per-pixel basis of the original input 436 

image. 437 

As in any other classification procedure, using a neural network, the process consists 438 

of two phases: the first phase consists of network training, while the second phase consists of 439 

the prediction of objects in an image based on training data. Classification tests through the 440 

CNN have been carried out from the RGB orthophotos on which the already described 441 

manual classification has been made. From the distribution of material classes, it appeared 442 

that the data were imbalanced, i.e. there were too few examples of specific classes for training 443 

the CNN. Thus, all materials that do not constitute stone cubes were grouped into a single 444 

class resulting in a binary classification problem. The training dataset consists of areas of the 445 

source image (tiles), whose size (in pixels) is crucial for the success of the training and, 446 

consequently, of the classification, as in each of them is good to see an adequate number of 447 

items to be classified. An example is represented by the presence in each patch of a paved part 448 
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(cubes) and a proportion of joints so that the CNN is able to get the greatest number of 449 

information from every patch. As a preliminary step different tile size were considered, trying 450 

to figure out the best size for training the network. Figure 10 shows examples of tiles with 451 

different dimensions (in pixels). Smaller tiles (32x32 pixel which is approximately the size of 452 

a single stone block at the actual orthophoto scale) allows, for the same training area, to 453 

obtain a greater number of training samples. However, in most cases, such a small tile does 454 

not provide enough significant content for the CNN to discriminate between the classes and 455 

might lead to unsatisfactory results. On the contrary, larger patches provide more context for 456 

better accuracy, but at the cost of leaving less available training samples [45]. Therefore, it 457 

was decided to perform three different analyses in which the orthophoto was portioned in 458 

patches each having dimensions of 256x256, 128x128 and 64x64 pixels, respectively. 459 

 460 

Figure 10 – Patches of different size 461 

 462 

A preliminary series of tests, whose results are not reported here for brevity, showed that data 463 

augmentation do not provide significant benefits (and in some circumstances actually lowered 464 

the CNN accuracy). It should be noted that, in this particular context, the size and orientation 465 

of the stone blocks are almost constant throughout the analyzed area: considering rotated or 466 

scaled training input, which usually should improve the generalization process of the neural 467 

network, in this case conducted to a lower performance of the system. Also, considering 468 

overlapping tiles, in order to increase the number of training data, have not improved 469 

significantly the final accuracy of the classification and simply made the training process 470 
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lengthier. The neural network was implemented using Keras libraries and for each 471 

configuration set (with different tile size) four consecutive training cycles, each one 472 

considering 50 training epochs, were considered.  473 

3. Results and discussions 474 

3.1.Semi-Automatic Classification Plugin 475 

The results obtained with the use of thresholds (BS1 to BS3) and supervised classification 476 

through SCP (BS4 to BS8) are listed in Table 4, while Figure 11 and Figure 12 show the 477 

graphical representation of the numerical evaluation results. For the supervised classification 478 

through SCP, only the results obtained from the combined use of LCS and the other 479 

classification algorithms (MD, ML, SA) are reported in Table 4 because, given the high 480 

overlap between the spectral signatures highlighted above, the simple use of LCS excluded 481 

most pixels from the classification. In the results evaluation, the focus will be mainly on 482 

accuracy values, F1 score and MCC parameter. 483 
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 484 

Figure 11 - Graphical representation of the numerical evaluation results of semi-automatic 485 

classification with single bands applied to non-equalized and equalized images. 486 
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 487 

Figure 12 - Graphical representation of the numerical evaluation results of semi-automatic 488 

classification with different multi-band sets applied to non- equalized and equalized images. 489 
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Table 4 – Overall performances of semi-automatic classification with different band sets and 490 

classification algorithms 491 

 Band 

set 

 

Threshold/ 

Algorithm 

Recall Selectivity Precision Accuracy F1 MCC 

N
o

n
-e

q
u

al
iz

ed
 i

m
ag

es
 

BS1 
(PCA1) 

285 0.464 0.914 0.960 0.547 0.625 0.301 

BS2 
(H) 

210 0.874 0.106 0.811 0.731 0.841 -0.025 

BS3 
(V) 

105 0.344 0.956 0.971 0.457 0.508 0.257 

BS4 
(RGB) 

LCS+MD 0.361 0.948 0.968 0.470 0.526 0.261 

LCS+ML 0.199 0.991 0.990 0.346 0.332 0.200 

LCS+SA 0.487 0.529 0.819 0.495 0.611 0.012 

BS5 
(HSV) 

LCS+MD 0.518 0.922 0.967 0.593 0.674 0.345 

LCS+ML 0.095 0.991 0.979 0.262 0.174 0.124 

LCS+SA 0.348 0.807 0.888 0.433 0.500 0.129 

BS6 
(RGB-

PCA1) 

LCS+MD 0.963 0.560 0.906 0.888 0.934 0.598 

LCS+ML 0.975 0.022 0.814 0.798 0.887 -0.008 

LCS+SA 0.956 0.641 0.921 0.897 0.938 0.640 

BS7 
(RGB 

H) 

LCS+MD 0.353 0.970 0.981 0.467 0.519 0.276 

LCS+ML 0.260 0.986 0.988 0.395 0.412 0.233 

LCS+SA 0.339 0.694 0.829 0.405 0.481 0.027 

BS8 
(RGB 

HSV 
PCA1) 

LCS+MD 0.955 0.698 0.933 0.907 0.943 0.681 

LCS+ML 0.975 0.022 0.814 0.798 0.887 -0.008 

LCS+SA 0.968 0.513 0.897 0.883 0.931 0.572 

 

        

E
q

u
al

iz
ed

 i
m

ag
es

 

BS1 
(PCA1) 

285 0.993 0.533 0.903 0.908 0.946 0.668 

BS2 
(H) 

210 0.974 0.013 0.812 0.795 0.886 -0.033 

BS3 
(V) 

105 0.983 0.767 0.949 0.943 0.965 0.802 

BS4 
(RGB) 

LCS+MD 0.991 0.617 0.919 0.921 0.953 0.721 

LCS+ML 0.975 0.563 0.907 0.899 0.940 0.633 

LCS+SA 0.579 0.420 0.814 0.550 0.677 -0.001 

BS5 
(HSV) 

LCS+MD 0.962 0.708 0.935 0.915 0.949 0.708 

LCS+ML 0.975 0.586 0.912 0.903 0.942 0.650 

LCS+SA 0.992 0.342 0.869 0.872 0.926 0.510 

BS6 
(RGB-

PCA1) 

LCS+MD 0.768 0.081 0.786 0.640 0.777 -0.146 

LCS+ML 0.768 0.005 0.772 0.627 0.770 -0.225 

LCS+SA 0.768 0.101 0.789 0.644 0.778 -0.126 

BS7 
(RGB 

H) 

LCS+MD 0.988 0.653 0.926 0.926 0.956 0.740 

LCS+ML 0.954 0.468 0.887 0.864 0.920 0.498 

LCS+SA 0.966 0.430 0.881 0.866 0.922 0.496 

BS8 
(RGB 

HSV 
PCA1) 

LCS+MD 0.768 0.121 0.793 0.648 0.780 -0.105 

LCS+ML 0.768 0.005 0.772 0.627 0.770 -0.225 

LCS+SA 0.768 0.077 0.785 0.640 0.776 -0.150 

 492 
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As can be seen from Figure 11 and Figure 12, the best results are provided by using pre-493 

equalized images where shadows have been mitigated. In the most of analyses performed on 494 

equalized images, the laying pattern is recognizable over the entire image. The V band (BS3), 495 

expressing the brightness relative to the same lighting conditions, is able to well highlight the 496 

intensity differences between stone cubes and joints and, using equalized image, provided the 497 

best statistical scores (accuracy 94.3%, F1 96.5 and MCC 80.2%). Instead, when using not 498 

equalized images, only the part in light (with illumination more similar to the training area) is 499 

correctly classified (Figure 11), reaching in that portion the 86.5% of accuracy, while globally 500 

the accuracy is 45.7%. The same behavior is given by band 1 (BS1) obtained from the 501 

principal component analysis, although with slightly lower accuracy than BS3. BS1 allows to 502 

correctly classify 90.8% of pixels in the pre-equalized images, while in the images with 503 

shadows the local accuracy in the areas in light is 90.8% and globally decreases to 54.7%. 504 

Unlike expected, the use of the H band alone does not give so good results. This may be due 505 

to the fact that, under reflections, the hues of stone cubes and joints are very similar. As far as 506 

the band sets with multiple bands are concerned, RGB band set (BS4) provides accuracies 507 

higher than 90% using pre-equalized images, while it is not able to classify correctly the 508 

image affected by shadows. The conversion to HSV space (BS5 and BS7) does not give very 509 

significant improvements compared to the use of RGB in equalized images. In non-equalized 510 

images, however, it does not overcome the shadow problem and the accuracies obtained are 511 

very low. On the other hand, the integration with the PCA1 component (BS6 and BS8), 512 

proves to be effective to un-correlate the parameters and overcome the problem of different 513 

lighting when applied to non-equalized images. In fact, the BS6 and BS8 are the ones that 514 

provide the best results, limited to non-equalized images, reaching accuracy percentages of 515 

about 90%. Looking at the graphical representations of the results in Figure 12, it can be seen 516 

that only these two band sets are not affected by the presence of shadows. In the other cases 517 
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(in particular BS4 LCS+MD, BS4 LCS+SA, BS5 LCS+SA and BS7 LCS+SA) only the 518 

portion in light or shadow (alternatively) is correctly classified. In contrast, by applying BS6 519 

and BS8 configurations to the equalized images, the results are reversed by inverting the 520 

pixels classified as stone cubes and as joints. 521 

As for the algorithms used, considering the high overlap between spectral signatures, 522 

the simple use of LCS proved to be ineffective. For BS4, BS5 and BS7 almost all pixels fall 523 

into overlapping areas; for BS6 and BS8, when using non-equalized images, the areas in light 524 

are not classified and those in shadow are considered overlapping areas, while, when using 525 

equalized images, some classified pixels appear, but they are largely wrongly classified. 526 

Maximum Distance algorithm provides overall the best results and correctly classifies pixels 527 

with radiometric values falling in the overlapping zones between spectral signatures. Using 528 

non-equalized images, Maximum Likelihood algorithm does not correctly distinguish classes 529 

and classifies everything either as stone cubes or as joints. This algorithm provides the highest 530 

number of omissions or commissions, as demonstrated by the values of recall (the proportion 531 

of stone cubes that are correctly identified as such) and selectivity (the portion of pavement 532 

not made of stone cubes that is correctly identified as such) that have opposite values (high 533 

recall and low selectivity or vice versa). For instance, BS4 LCS+ML and BS5 LCS+ML have 534 

the highest values of precision, but very low recall score, which result in almost the entire 535 

area classified as joints while the stone cubes are not identified. For BS6 LCS+ML and BS8 536 

LCS+ML the behavior is the opposite. With equalized images, instead, the difference between 537 

the algorithms is not so clear, although the best results are provided by Maximum Distance 538 

algorithm. Observing the other statistical parameters, both the F1 score and the MCC 539 

parameter confirm the trend showed by accuracy and reach the best results using BS3 applied 540 

to equalized images. 541 
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3.2.Neural Network 542 

The best performing training were obviously obtained considering a greater number of training 543 

epochs. The produced output during classification is a raster image, the same size as the original 544 

tested orthophoto, whose pixels have a probability value associated, ranging between 0.0 and 545 

1.0, that represents the likelihood, according to the CNN network, the element is respectively a 546 

joint or a stone cube. In other words, a value of 0.0 means that, according the CNN classifier, 547 

the pixel should be classified as a joint, while a value of 1.0 represent, most likely, a stone cube. 548 

Since every pixel might have an intermediate value between 0 and 1 a constant threshold value 549 

set to be 0.5 was considered for discriminate between the two classes. Some authors [46] 550 

suggest to consider, during the CNN training stage, also the threshold as hyper-parameter to 551 

further improve the network performance. However, in our tests, such additional optimization 552 

was not required since the two classes were strongly separated at the end of the prediction 553 

process. As can be seen in Table 5, the best accuracy is obtained (as the reader can easily guess) 554 

at the fourth training cycle (i.e. after 200 training epochs) regardless the patch size. However, 555 

analyzing intermediate results, i.e. the performance of the classifier with less training epochs 556 

(every training cycle added 50 training epochs in the procedure so, after training cycle 1, 2, 3 557 

and 4 the U-Net network was trained considering respectively 50, 100, 150 and 200 epochs) 558 

can be interesting to highlight a faster or slower performance of the network toward optimal 559 

results. As can be seen in Table 5, in all cases the accuracy is higher than 0.90 and increases as 560 

the tile size decreases. This indicates that the 64x64 pixel patches (which correspond to areas 561 

of 128x128 mm) are large enough to cover a larger surface area and at the same time contain 562 

sufficient information about both joints and stone cubes. Analyzing the recall and the 563 

selectivity, the best results are obtained with 128x128 pixels patches. The same result is 564 

obtained also for the precision. In statistical analysis of binary classification, the F1 score, which 565 

is a measure of a test's accuracy, makes it possible to consider simultaneously the precision and 566 
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the recall. Considering this parameter, the best performance is obtained at the fourth training 567 

cycle for each patch size: in all cases this parameter is higher than 0.94 and increases as the 568 

patch size decreases. However, all the considered parameters are representative of the analysis 569 

only if the analyzed classes have similar dimensions, i.e. only if they are balanced. In this case 570 

the pixel labelled as stone cubes are about four times than those labelled as joints. For this 571 

reason, it was decided to analyze the MCC parameter. Also in this case the best performance is 572 

obtained at the fourth training cycle for each patch size and increase as the patch size decrease. 573 

This indicates that the 64x64 pixel patches contain sufficient information about both joints and 574 

stone cubes. However, although this analysis has shown good results on stone pavement made 575 

of 6/8 class stone cubes, patches of such sizes may not be suitable for the analysis of stone 576 

pavement made of elements of different sizes. For example, with orthophoto of equal resolution, 577 

if 10/12 class stone cubes were used 64x64 pixel patches might not be sufficient to contain 578 

enough information about both joints and stone cubes. Thus, the choice of the patches size 579 

should be deepened by varying the stone elements size used. 580 

Table 5 - Overall performances of CNN classification with different patches size and training 581 

cycles 582 

Patches size Training cycle Accuracy Recall Selectivity Precision F1 MCC 

256x256 1 0.840 0.960 0.352 0.858 0.906 0.411 

2 0.832 0.857 0.731 0.928 0.891 0.535 

3 0.804 0.820 0.739 0.927 0.870 0.490 

4 0.908 0.980 0.614 0.912 0.945 0.687 

128x128 1 0.827 0.991 0.162 0.828 0.902 0.313 

2 0.846 0.817 0.967 0.990 0.895 0.659 

3 0.925 0.932 0.900 0.974 0.952 0.783 

4 0.942 0.942 0.938 0.984 0.963 0.831 

64x64 1 0.950 0.966 0.881 0.971 0.969 0.842 

2 0.948 0.957 0.910 0.977 0.967 0.842 

3 0.933 0.937 0.916 0.979 0.957 0.805 

4 0.954 0.967 0.899 0.975 0.971 0.856 

 583 

Figure 13 shows the graphical representation of the numerical evaluation results. As 584 

can be seen, when 256x256 pixel patches are used in the checks carried out for all four 585 



33 

 

training cycles, CNN is not able to adequately distinguish the two classification elements: in 586 

particular, there is a difficulty in recognizing the stone cubes in sunny areas (256x256 patch 587 

size in training cycle 2 and 3). As far as 128x128 patches are concerned, already from the 588 

second training cycle the CNN has been able to distinguish adequately the joints from the 589 

stone cubes. Finally, considering the training done with the 64x64 pixel patches (ca. twice the 590 

size of a single stone block), a very good result was obtained already after the first training 591 

cycle.  592 

 593 
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 594 

Figure 13 – Graphical representation of the numerical evaluation results of CNN classification 595 

with different patches size and training cycles. 596 

Considering the results obtained after the fourth training cycle with the 64x64 pixels 597 

patches, and comparing the values of the coefficients shown in the table with the graphical 598 

representation of the numerical evaluation results, it can be noted that despite the number of 599 

pixels recognized as belonging to the “joints” class is less than 90% of the pixels actually 600 

belonging to that class, the location of the element “joint” inside the pavement is correct. For 601 
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that reason, the automatic classification using a convolutional neural network on images 602 

obtained from unmanned aerial vehicle has proven to be an excellent alternative to the 603 

traditional manual inspection and can be implemented for other types of stone block 604 

pavements, also with the aim of distress identification. 605 

4. Conclusions 606 

This study investigated the possibility of using different methodologies for the automatic 607 

detection of a stone pavement’s pattern based on UAV photogrammetry and the possibility of 608 

inserting them into an urban pavement management system. The analysis was carried out on 609 

stone pavement consisting of small, cubic, Trentino’s porphyric elements, commercially in 610 

6/8 class placed in an overlapping arcs laying pattern. For the automatic detection, two 611 

approaches were used: supervised classification through semi-automatic classification plugin 612 

(SCP) and convolutional neural network (CNN). The SCP was applied to eight different band 613 

sets, combination of the 7 available bands (R, G, B, PCAband1, H, S and V), with or without 614 

radiometric equalization to reduce different illumination condition of the tested scenes (e.g. 615 

areas with shadows vs areas with direct sun light exposure), and different algorithms (land 616 

cover signature, minimum distance, maximum likelihood and spectral angle mapping). 617 

Convolutional neural network was tested with patches of different size (256x256, 128x128 618 

and 64x64 pixels) and four consecutive training cycles.  619 

Based on these investigations, the following conclusions can be made: 620 

 The results obtained with SCP have shown that the best accuracy, as well as the best 621 

MCC, were provided applying the classification process to pre-equalized images, 622 

where lighting conditions are balanced with the reference image used for training and 623 

where sharp shadows are mitigated. The locally adaptive filter used in these tests has 624 

proven to be effective, but its performance is strongly influenced by the sliding 625 

window size used. In addition, since the algorithm levels the RGB values to match a 626 
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reference image, the equalization is only effective if the whole scene consists of 627 

elements with the same characteristics as the reference image (e.g. only stone 628 

pavements). On the contrary, if extraneous elements are visible (e.g. patches of 629 

incongruous materials, fences etc.) the algorithm tends to equalize even the RGB 630 

values of those elements, introducing ambiguities in the final classification. This issue 631 

could be fixed using more sophisticated shadow removal algorithms, which, however, 632 

would probably require a more demanding parameter tuning.  633 

 Performing a principal component analysis of RGB images was useful for un-634 

correlating parameters and maximize the differences between different types of 635 

pavements regarding illumination conditions. 636 

 The best accuracy, as well as the best MCC, for the supervised classification through 637 

SCP was obtained for the BS3 (V band only) applied to equalized images. In this type 638 

of pavements, the V band, representing the brightness relative to the same lighting 639 

conditions, is able to highlight more the intensity differences between stone cubes and 640 

joints. 641 

 The results obtained with the U-Net CNN have shown that the best accuracy and MCC 642 

value were obtained with a tile size which is approximately twice the size of a single 643 

stone block (64 x 64 pixel). In this case the CNN reached accuracy and MCC values 644 

greater than 0.95 and 0.85 respectively. At the same time, the same 64x64 pixel tile 645 

size, allowed obtaining very good results also at the end of the first (50 epochs only) 646 

training cycle. 647 

 However, although this analysis has shown good results on stone pavement made of 648 

6/8 class stone cubes, patches of such sizes may not be suitable for the analysis of 649 

stone pavement made of elements of different sizes or joints with different width. For 650 
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this reason, the choice of the patches size should be considered carefully, especially if 651 

varying stone or joint elements are present. 652 

 U-Net CNN classification has proven not to be affected by the influence of lighting 653 

conditions and shadows, so it does not require image pre-processing through 654 

equalization, principal component analysis or conversion to HSV space. In this way, 655 

potential alterations of the original data due to the pre-processing phase are excluded. 656 

In light of the above, CNN classification, as far as these experiences are considered, proved to 657 

be a more flexible and efficient approach: it surely requires a carefully planned and probably 658 

more time consuming training stage but, in the end, provides not only better results but also, 659 

and more importantly, a higher level of reliability. To obtain comparable results with the other 660 

technique (e.g. accuracy of 94.3% obtained with V equalized band analysis versus a CNN 661 

accuracy of 95.4%) the user should tune a lot of different parameters and choose carefully the 662 

best (more representative) image band. On the contrary CNN, even with the use of less 663 

efficient patch sizes and without any equalization or image pre-processing stage, provides 664 

quite satisfactory results. In conclusion, the automatic classification using a U-Net CNN on 665 

images obtained from UAV has proven to be an excellent alternative to the traditional manual 666 

inspection and can be implemented for other types of stone pavements, also with the aim of 667 

distress identification. 668 

Acknowledgments 669 

This research was developed within the Projects of National Interest – PRIN 2017 “Stone 670 

pavements. History, conservation, valorisation and design” (20174JW7ZL) financed by the 671 

Ministry of Education, University and Research (MIUR) of the Italian Government.  672 



38 

 

References 673 

[1] M.R. Jelokhani-Niaraki, A.A. Alesheikh, A. Alimohammadi, A. Sadeghi-Niaraki, K. 674 

Kim, An approach for automatic updating of GIS road segments for a pavement 675 

management system (PMS), Journal of Spatial Science. 56 (2011) pp. 253–267. 676 

https://doi.org/10.1080/14498596.2011.623346. 677 

[2] V. Donev, M. Hoffmann, Optimisation of pavement maintenance and rehabilitation 678 

activities, timing and work zones for short survey sections and multiple distress types, 679 

International Journal of Pavement Engineering. 21 (2020) pp. 583–607. 680 

https://doi.org/10.1080/10298436.2018.1502433. 681 

[3] K.A. Abaza, S.A. Ashur, I.A. Al-Khatib, Integrated pavement management system 682 

with a Markovian prediction model, Journal of Transportation Engineering. 130 (2004) 683 

pp. 24–33. https://doi.org/10.1061/(ASCE)0733-947X(2004)130:1(24). 684 

[4] G. Loprencipe, A. Pantuso, P. Di Mascio, Sustainable Pavement Management System 685 

in Urban Areas Considering the Vehicle Operating Costs, Sustainability (Switzerland). 686 

9 (2017). https://doi.org/10.3390/su9030453. 687 

[5] M.V. Corazza, P. Di Mascio, L. Moretti, Managing sidewalk pavement maintenance: A 688 

case study to increase pedestrian safety, Journal of Traffic and Transportation 689 

Engineering (English Edition). 3 (2016) pp. 203–214. 690 

https://doi.org/10.1016/j.jtte.2016.04.001. 691 

[6] W.D. Cottrell, S. Bryan, B.R. Chilukuri, V. Kalyani, A. Stevanovic, J. Wu, 692 

Transportation Infrastructure Maintenance Management: Case Study of a Small Urban 693 

City, Journal of Infrastructure Systems. 15 (2009) pp. 120–132. 694 

https://doi.org/10.1061/(ASCE)1076-0342(2009)15:2(120). 695 

[7] A. Osorio, A. Chamorro, S. Tighe, C. Videla, Calibration and Validation of Condition 696 

Indicator for Managing Urban Pavement Networks, Transportation Research Record: 697 



39 

 

Journal of the Transportation Research Board. 2455 (2014) pp. 28–36. 698 

https://doi.org/10.3141/2455-04. 699 

[8] Y.U. Shah, S.S. Jain, M. Parida, Evaluation of prioritization methods for effective 700 

pavement maintenance of urban roads, International Journal of Pavement Engineering. 701 

15 (2014) pp. 238–250. https://doi.org/10.1080/10298436.2012.657798. 702 

[9] M.Y. Shahin, Pavement management for airports, roads, and parking lots: Second 703 

edition, 2005, ISBN 9780387234649. https://doi.org/10.1007/b101538. 704 

[10] P. Zoccali, G. Loprencipe, A. Galoni, Sampietrini stone pavements: distress analysis 705 

using pavement condition index method, Applied Sciences. 7 (2017). 706 

https://doi.org/10.3390/app7070669. 707 

[11] E. Garilli, F. Autelitano, F. Giuliani, A study for the understanding of the Roman 708 

pavement design criteria, Journal of Cultural Heritage. 25 (2017) pp. pp.87-93. 709 

https://doi.org/10.1016/j.culher.2017.01.002. 710 

[12] E. Garilli, F. Giuliani, Stone pavement materials and construction methods in Europe 711 

and North America between the 19th and 20th century, International Journal of 712 

Architectural Heritage. 13 (2019) pp. 742–768. 713 

https://doi.org/10.1080/15583058.2018.1470269. 714 

[13] F. Autelitano, E. Garilli, F. Giuliani, Criteria for the selection and design of joints for 715 

street pavements in natural stone, Construction and Building Materials. 259 (2020). 716 

https://doi.org/10.1016/j.conbuildmat.2020.119722. 717 

[14] F. Dutruel, J. Dardare, Contribution to the study of structural behaviour of a concrete 718 

block pavement., in: Proceeding of Second International Conference on Concrete 719 

Block Paving, Delft, 1984: pp. 29–39. 720 

[15] E. Garilli, F. Autelitano, R. Roncella, F. Giuliani, The influence of laying patterns on 721 

the behaviour of historic stone pavements subjected to horizontal loads, Construction 722 



40 

 

and Building Materials. 258 (2020). 723 

https://doi.org/10.1016/j.conbuildmat.2020.119657. 724 

[16] Associates Applied Research, Interlocking concrete pavement distress manual: tools 725 

for condition assessment, performance modeling and pavement management for a long 726 

service life, Toronto, 2007. 727 

[17] T.B.J. Coenen, A. Golroo, A review on automated pavement distress detection 728 

methods, Cogent Engineering. 4 (2017). 729 

https://doi.org/10.1080/23311916.2017.1374822. 730 

[18] Y. Tan, Y. Li, UAV photogrammetry-based 3D road distress detection, ISPRS 731 

International Journal of Geo-Information. 8 (2019). 732 

https://doi.org/10.3390/ijgi8090409. 733 

[19] J. Landa, D. Prochazka, Automatic Road Inventory Using LiDAR, Procedia Economics 734 

and Finance. 12 (2014) pp. 363–370. https://doi.org/10.1016/s2212-5671(14)00356-6. 735 

[20] A. Mancini, E.S. Malinverni, E. Frontoni, P. Zingaretti, Road pavement crack 736 

automatic detection by MMS images, in: 2013 21st Mediterranean Conference on 737 

Control and Automation, MED 2013 - Conference Proceedings, 2013: pp. 1589–1596. 738 

https://doi.org/10.1109/MED.2013.6608934. 739 

[21] S. Mathavan, M. Rahman, K. Kamal, Use of a Self-Organizing Map for Crack 740 

Detection in Highly Textured Pavement Images, Journal of Infrastructure Systems. 21 741 

(2015). https://doi.org/10.1061/(ASCE)IS.1943-555X.0000237. 742 

[22] S. Mathavan, M.M. Rahman, M. Stonecliffe-Janes, K. Kamal, Pavement raveling 743 

detection and measurement from synchronized intensity and range images, 2014, ISBN 744 

9780309295444. https://doi.org/10.3141/2457-01. 745 

[23] C. Koch, I. Brilakis, Pothole detection in asphalt pavement images, Advanced 746 

Engineering Informatics. 25 (2011) pp. 507–515. 747 



41 

 

https://doi.org/10.1016/j.aei.2011.01.002. 748 

[24] L. Huidrom, L.K. Das, S.K. Sud, Method for Automated Assessment of Potholes, 749 

Cracks and Patches from Road Surface Video Clips, Procedia - Social and Behavioral 750 

Sciences. 104 (2013) pp. 312–321. https://doi.org/10.1016/j.sbspro.2013.11.124. 751 

[25] H. Maeda, Y. Sekimoto, T. Seto, T. Kashiyama, H. Omata, Road Damage Detection 752 

and Classification Using Deep Neural Networks with Smartphone Images, Computer-753 

Aided Civil and Infrastructure Engineering. 33 (2018) pp. 1127–1141. 754 

https://doi.org/10.1111/mice.12387. 755 

[26] S. Agnisarman, S. Lopes, K. Chalil Madathil, K. Piratla, A. Gramopadhye, A survey of 756 

automation-enabled human-in-the-loop systems for infrastructure visual inspection, 757 

Automation in Construction. 97 (2019) pp. 52–76. 758 

https://doi.org/10.1016/j.autcon.2018.10.019. 759 

[27] S. Jiang, J. Zhang, Real-time crack assessment using deep neural networks with wall-760 

climbing unmanned aerial system, Computer-Aided Civil and Infrastructure 761 

Engineering. 35 (2020) pp. 549–564. https://doi.org/10.1111/mice.12519. 762 

[28] J.M. Vazquez-Nicolas, E. Zamora, I. González-Hernández, R. Lozano, H. Sossa, 763 

PD+SMC Quadrotor Control for Altitude and Crack Recognition Using Deep 764 

Learning, International Journal of Control, Automation and Systems. 18 (2020) pp. 765 

834–844. https://doi.org/10.1007/s12555-018-0852-9. 766 

[29] T. Ghosh Mondal, M.R. Jahanshahi, R.-T. Wu, Z.Y. Wu, Deep learning-based multi-767 

class damage detection for autonomous post-disaster reconnaissance, Structural Control 768 

and Health Monitoring. 27 (2020) pp. 1–7. https://doi.org/10.1002/stc.2507. 769 

[30] W. Wu, M.A. Qurishee, J. Owino, I. Fomunung, M. Onyango, B. Atolagbe, Coupling 770 

Deep Learning and UAV for Infrastructure Condition Assessment Automation, in: 771 

2018 IEEE International Smart Cities Conference, ISC2 2018, 2019. 772 



42 

 

https://doi.org/10.1109/ISC2.2018.8656971. 773 

[31] L. Congedo, Semi-Automatic Classification Plugin Documentation, (n.d.). 774 

https://semiautomaticclassificationmanual-v5.readthedocs.io/it/latest/# (accessed July 775 

29, 2020). 776 

[32] Qgis.org, Welcome to the QGIS project!, (n.d.). https://qgis.org/en/site/ (accessed July 777 

29, 2020). 778 

[33] J.C. Leachtenauer, R.G. Driggers, Surveillance and Reconnaissance Imaging Systems-779 

Modeling and Performance Prediction, Artch House, Boston, MA, USA, 2001, ISBN 780 

978-1630812331. 781 

[34] K. Kraus, I.A. Harley, S. Kyle, Photogrammetry, De Gruyter, 2007, ISBN 782 

9783110892871. https://doi.org/10.1515/9783110892871. 783 

[35] V. Ihlen, Landsat 7 (L7) Data Users Handbook, Sioux Falls, South Dakota, USA, 2019. 784 

[36] V. Jain, A. Khunteta, Shadow removal for umbrageous information recovery in aerial 785 

images, in: 2017 International Conference on Computer, Communications and 786 

Electronics, COMPTELIX 2017, 2017: pp. 536–540. 787 

https://doi.org/10.1109/COMPTELIX.2017.8004028. 788 

[37] S. Luo, H. Shen, H. Li, Y. Chen, Shadow removal based on separated illumination 789 

correction for urban aerial remote sensing images, Signal Processing. 165 (2019) pp. 790 

197–208. https://doi.org/10.1016/j.sigpro.2019.06.039. 791 

[38] N. Mo, R. Zhu, L. Yan, Z. Zhao, Deshadowing of Urban Airborne Imagery Based on 792 

Object-Oriented Automatic Shadow Detection and Regional Matching Compensation, 793 

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 794 

11 (2018) pp. 585–605. https://doi.org/10.1109/JSTARS.2017.2787116. 795 

[39] P.M. Dare, Shadow analysis in high-resolution satellite imagery of urban areas, 796 

Photogrammetric Engineering and Remote Sensing. 71 (2005) pp. 169–177. 797 



43 

 

https://doi.org/10.14358/PERS.71.2.169. 798 

[40] A.R. Smith, Color gamut transform pairs, in: Proceedings of the 5th Annual 799 

Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1978, 800 

1978: pp. 12–19. https://doi.org/10.1145/800248.807361. 801 

[41] E. Grilli, F. Remondino, Classification of 3D digital heritage, Remote Sensing. 11 802 

(2019). https://doi.org/10.3390/RS11070847. 803 

[42] I.T. Jolliffe, Principal Component Analysis, Springer Verlag, New york, 1986, ISBN 804 

978-0-387-95442-4. https://doi.org/doi:10.1007/b98835. 805 

[43] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical 806 

image segmentation, 2015, ISBN 9783319245737. https://doi.org/10.1007/978-3-319-807 

24574-4_28. 808 

[44] D.C. Cireşan, A. Giusti, L.M. Gambardella, J. Schmidhuber, Deep neural networks 809 

segment neuronal membranes in electron microscopy images, in: Advances in Neural 810 

Information Processing Systems, 2012: pp. 2843–2851. 811 

[45] A. Riid, R. Lõuk, R. Pihlak, A. Tepljakov, K. Vassiljeva, Pavement distress detection 812 

with deep learning using the orthoframes acquired by a mobile mapping system, 813 

Applied Sciences (Switzerland). 9 (2019). https://doi.org/10.3390/app9224829. 814 

[46] T. Fawcett, ROC graphs: Notes and practical considerations for researchers, Machine 815 

Learning. 31 (2004) pp. 1–38. 816 

 817 



Single band classification

Band set: BS1 (PCA1) BS2 (H) BS3 (V)

N
on

-e
qu

al
iz

ed
Im

ag
es

Eq
ua

liz
ed

Im
ag

es

Class Overlap Unclassified Stone cubes Joints

Figure 11



Multi-band classification
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