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Abstract 13 

The use of functional traits (FTs) can provide quantitative information to explain macrophyte 14 

ecology more effectively than traditional taxonomic-based methods. This research aims to 15 

elucidate the trait-based approaches used in recent macrophyte studies to outline their 16 

applications, shortcomings, and future challenges. A systematic literature review focused on 17 

macrophytes and FTs was carried out on Scopus database (last accessed May 2020). The latest 18 

520 papers published from 2010 to 2020, which represent 70% of the whole literature selected 19 

since 1969, were carefully screened. Reviewed studies mainly investigated: 1) the role of FTs in 20 

shaping communities; 2) the responses of macrophytes to environmental gradients; 3) the 21 

application of FTs in monitoring anthropic pressures; and 4) the reasons for success of invasive 22 

species. Studied areas were concentrated in Europe (41%) and Asia (32%), overlooking other 23 

important biodiversity hotspots, and only 6.2% of the world macrophytes species were 24 

investigated in dedicated single species studies. The FTs most commonly used include leaf 25 

economic and morphological traits, and we noticed a lack of attention on root traits and in 26 

general on spatial traits patterns, as well as a relatively poor understanding of how FTs mediate 27 

biotic interactions. High-throughput techniques, such as remote sensing, allow to map fine-scale 28 

variability of selected traits within and across systems, helping to clarify multiple links of FTs 29 

with ecological drivers and processes. We advise to promote investigations on root traits, and to 30 

push forward the integration of multiple approaches to better clarify the role of macrophytes at 31 

multiple scales. 32 

 33 

Keywords: macrophytes, anthropic pressures, leaf economics, root traits, remote sensing, 34 

aquatic environments  35 



3 
 

1. Introduction 36 

The concept of functional traits is a relatively recent research approach that is rapidly 37 

establishing in ecology and is taking the place of purely taxonomic studies because of its high 38 

potential in exploring multi-scale environmental issues. Functional traits are defined as any 39 

morphological or phenological characteristic that is measurable at the individual level (Díaz et 40 

al., 1998; Cornelissen et al., 2003; Pérez-Harguindeguy et al., 2013), and can mirror the 41 

relationships of a species to its habitat conditions, thus revealing the interactions of the plant with 42 

the environment (Fu et al., 2015). Moreover, a supplementary advantage of functional trait-based 43 

studies is that findings can be compared among different regions, since the different specific 44 

community composition does not represent a barrier anymore, thus allowing investigations at 45 

wider scales (Schoelynck and Struyf, 2016; Iversen et al., 2019). 46 

 47 

The use of functional traits is of particular interest for aquatic ecosystems, which are 48 

environments of major concern when considering the threats posed by anthropic pollution, 49 

habitat degradation (land use change), and the introduction of non-native species, leading to a 50 

change in the community composition in terms of reduced biodiversity and functional 51 

homogenization (Bresciani et al., 2012; Phillips et al., 2016; Cantonati et al., 2020; Lindholm et 52 

al., 2020). The concern for biodiversity conservation is a critical concern for aquatic plants 53 

(O’Hare et al., 2018), which show a high diversity in sub-tropical to low tropical latitudes 54 

(Murphy et al., 2019), and in lowlands with higher water availability at the regional scale, 55 

coinciding with the strongest presence of anthropic activities (Bolpagni et al., 2018; Guareschi et 56 

al., 2020). 57 

 58 

Aquatic plants are crucial in maintaining water transparency by absorbing nutrients from the 59 

water column and from the sediment, thus competing with phytoplankton for both nutrients and 60 

light (Scheffer, 1999), by releasing allelopathic substances that can inhibit the growth of 61 

phytoplankton (Hilt and Gross, 2008) and by favoring sediment stability and reducing 62 

resuspension (Van Donk and Van de Bund, 2002). Besides, macrophytes can influence 63 

hydrologic features of the water body, especially in lotic systems, by reducing water velocity and 64 

enhancing sedimentation of suspended particles (Rolland et al., 2015). They can also influence 65 

the chemical processes in the rhizosphere by releasing oxygen and other exudates from the roots 66 



4 
 

(Soana and Bartoli, 2013). Moreover, their presence creates structure in the water column and 67 

offer habitat for zooplankton and fish (Schriver et al., 1995; Perrow et al., 1999) and finally, 68 

aquatic plants represent an important food source for a range of different organisms, as 69 

invertebrates, amphibians, fish, birds and mammals (Wood et al., 2017). Because of all these 70 

reasons, the presence of macrophytes promotes complex feedbacks that help maintaining the 71 

ecosystem stability (Bakker et al., 2013), but at the same time they can also trigger dystrophic 72 

events (Bolpagni et al., 2007) As the multiple pivotal roles of macrophytes in influencing the 73 

structure and the dynamics of the ecosystem have been widely recognized in the literature (e.g., 74 

Ozimek et al., 1990; Scheffer et al., 1993; Van Donk and Van de Bund, 2002), a deeper 75 

understanding in their functionality and interactions with the other components of aquatic 76 

systems should be a prerequisite for developing effective management actions.  77 

 78 

The study of aquatic and terrestrial plants has long been based on a taxonomic approach in order 79 

to detect changes in the community species composition, using indexes like species richness or 80 

beta diversity (McGill, et al., 2006; Lindholm et al., 2020). However, researchers have recently 81 

documented the use of functional traits for investigating important topics like the mechanisms 82 

explaining the structuring of the community (Van Gerven et al., 2015; Eckert et al., 2016; 83 

García-Girón et al., 2019a), the response of species and communities to environmental gradients 84 

(Zhang et al., 2018; Sebilian Wittyngham et al., 2019), the influence of anthropic activities and 85 

climate change (Huang et al., 2017; Yu et al., 2018), the design of effective restoration actions 86 

(Pereira et al., 2017; Pietrini et al., 2019), the spread of invasive species (Thiébaut et al., 2016; 87 

Villa et al., 2017), and the role of traits in determining biotic interactions (Grutters et al., 2016; 88 

Sun et al. 2018). The implementation of trait-based approaches has resulted in an increasingly 89 

abundant literature and in the institution of online databases containing plant functional traits 90 

values accessible to the scientific community (e.g., www.try-db.org, www.leda-traitbase.org, 91 

www.icestes.github.io). Nevertheless, a systematic and general synthesis on the use of functional 92 

traits in aquatic macrophytes studies is still missing. Given the high interest on these studies and 93 

the wide spectrum of application fields, we intend to answer the need of scrutiny for which 94 

functional traits, species and topics have been investigated so far in the context of aquatic 95 

macrophytes (Pan et al., 2019). We believe that this review has become necessary in order to 96 

evaluate what fields have been exhaustively researched and what other fields deserve further 97 

http://www.try-db.org/
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insight and to promote the standardization of procedures so that comparisons among studies are 98 

facilitated. For this reason, we aim to propose a research agenda highlighting the most critical 99 

aspects regarding trait-based approaches tackled so far and indicating what should be the next 100 

steps in this field.  101 

 102 

2. Research strategy and analysis of articles 103 

The systematic paper research was carried out on the Scopus database (www.scopus.com; last 104 

access 15th May 2020), addressing the words that identify aquatic plants and confining the 105 

research to functional traits. The string used was: TITLE-ABS-KEY (“aquatic plant*” OR 106 

macrophyte* OR hydrophyte* OR helophyte* OR pleustophyte* OR “water plant*”) AND 107 

TITLE-ABS-KEY (trait* OR “functional trait*”). We are aware that by using only the word 108 

“trait” we omitted a number of studies that investigated plant characteristics or attributes, though 109 

not explicitly referred to as “functional traits” (e.g., Fornoff and Gross, 2014; Marzocchi et al., 110 

2019). However, we intended to delineate our research to studies that refer to a specific and 111 

homogeneous field of research (trait-oriented), adopting a consistent use of terminology. A total 112 

of 738 papers resulted from the research, published from 1969 onwards. Only papers published 113 

between 2010 and 2020 were taken into consideration for this review, in order to focus on recent 114 

developments and current trends on the topic of functional traits applied to macrophytes, for a 115 

total of 520 papers (equal to 70% of the selected papers). The papers were examined to check for 116 

relevance following the “matrix method” approach by Klopper et al. (2007). This method 117 

involves the creation of a matrix that summarizes the information found in the papers using a 118 

series of parameters of interest. The research was open to any macrophyte growth form and 119 

aquatic habitat, including estuarine and marine ecosystems.  120 

 121 

Papers were considered relevant if they included the measurement of functional traits on one or 122 

more macrophyte species (primary studies) or the use of already measured traits from the 123 

literature (secondary studies) in order to address any ecological question. During the elaboration 124 

of results, we made no distinction between these two types of studies. Previous reviews on 125 

specific traits or topics related to macrophyte functional traits were also included, however none 126 

of these offered a wide-ranging overview as the present review. The TRY database list for 127 

functional traits (www.try-db.org) was consulted to check for consistency of the traits considered 128 
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by the papers. The matrix of revision contained 10 parameters: Geographic distribution, Habitat 129 

type, Study type, Macrophyte type, Name of the species, Species number, Functional trait 130 

category, Shoot/root functional traits, Environmental variables, and Main topic, as listed in 131 

Table 1.  132 

 133 

The first feature Geographic distribution is informative of the place where the study was 134 

conducted at the macro-spatial scale (e.g., continent), for both field investigations and/or 135 

laboratory experiments. Habitat type refers to where macrophytes were either measured in the 136 

field or collected for further analyses or experiments in the laboratory. Here we distinguished 137 

between i) lentic environments like lakes, ponds, and wetlands, including the small-standing 138 

water ecosystems sensu Bolpagni et al. (2019) that are characterized by a larger variability in the 139 

water regime as ephemeral systems, ii) lotic environments, including rivers, streams and canals, 140 

and iii) marine environments. The tag Any was assigned to studies not restricted to a single 141 

habitat type and can include more than one habitat where the target macrophyte species were 142 

present and investigated. The parameter Macrophyte type includes the three main growth forms, 143 

i.e. submerged, free-floating, and emergent (Fu et al., 2019a; García-Girón et al., 2019b); rooted 144 

emergent (e.g., Nelumbo nucifera) and rooted floating leaved (e.g., Nuphar lutea, Nymphaea 145 

alba) were grouped together because often there was no clear distinction in some of the papers 146 

examined. The tag Any was given to papers analyzing the whole community including more than 147 

one macrophyte growth form present in the study area. Under Study type, field/lab refers to 148 

whether traits were measured from samples of plants grown under natural conditions (field) or 149 

grown in manipulated conditions (laboratory). Reviews were listed separately (e.g., Colmer et 150 

al., 2011; Heino et al., 2015). For Species number we chose three categories defined based on 151 

preliminary check of the selected papers, in order to distinguish those papers addressing specific 152 

questions to single or very few species (tag 1to3), papers considering a limited number of species 153 

(4to6) and lastly papers studying more than 6 species (tag >6), which may be representative of 154 

the whole community.  155 

 156 

The Functional traits considered by the papers where classified into 10 categories: Growth form, 157 

when this was considered as a variable relevant for the issue investigated; Morphology, including 158 

measures of the size and plant structure (e.g., height, stem diameter, root length); Productivity, 159 
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related to fresh and dry weight and biomass allocation, together with growth rates measured on a 160 

biomass basis; Physiology includes traits related to physiological processes like photosynthesis, 161 

respiration and enzyme activity (pigment content is also included in this group); Biochemistry 162 

refers to the elemental composition of tissues, namely content of C, N,  P or other elements; the 163 

traits included in Reproduction concern any feature related to vegetative or sexual reproduction 164 

(e.g., number of flowers, seed size, number of vegetative propagules); Ecological preferences 165 

take into consideration indexes like the Ellenberg indicator values applied to identify the plant 166 

niche along environmental gradients (Ellenberg et al., 2003); the category Biomechanical traits 167 

includes plant features linked to the resistance to mechanical stress, like wind, waves or water 168 

flow velocity. Typical measured traits are flexural rigidity and flexural strain (Łoboda et al., 169 

2018, 2019). Biotic interactions identify traits related to the nutrient uptake strategy facilitated 170 

by other organisms, which may be mycorrhizal fungi or bacteria (see Cornelissen et al., 2003). In 171 

this category we did not include traits that can determine other types of interactions, such as the 172 

elemental composition of tissues or the dry matter content, which are already mentioned in 173 

previous groups. The last category (Other) includes all other traits.  174 

 175 

Shoot or root FTs points out whether the papers dealt with only aboveground or belowground 176 

traits or with both types: belowground traits were those measured specifically on roots or 177 

rhizomes, while aboveground traits were those measured on stems, leaves and reproductive 178 

organs. As for pleustophytes, when biomass was provided, it was considered a shoot trait unless 179 

a distinction between shoot and root biomass was made. Papers were also scanned for Main 180 

environmental variables that were measured and related to the functional traits. They were in 181 

turn classified into: Water, including physical and chemical parameters of the water column like 182 

temperature, pH or nutrient concentration; Sediment characteristics such as granulometry or 183 

organic matter content; Climate, concerning meteorological variables together with changes in 184 

the atmospheric composition (e.g., increased CO2); Anthropic refers to the influence of anthropic 185 

activities, for example land use and pollution; the tag Depth/light addresses specifically the effect 186 

of a reduction of available radiation both because of shading or increased water depth, while 187 

Hydrology/topography includes the information on the hydrologic regime or physical habitat 188 

characteristics. Papers were finally assigned to one or more of the seven Main topic categories: 189 

Environmental gradients groups papers addressing how community or species traits vary with 190 



8 
 

relation to one or more environmental variable; Community structure studies include questions 191 

on the mechanisms that rule the interactions among plant species and how different species 192 

occupy space within the community; Anthropic pressure refers to the studies that investigate the 193 

effect of pollution, habitat degradation and climate change on plant traits; the topic Biotic 194 

interactions explores the effect of plant traits on other organisms both above and belowground, 195 

including phytoplankton, bacteria and fungi, as well as interactions with herbivores; Invasiveness 196 

clearly refers to studies investigating relationships between traits and potential invasiveness and 197 

management implications; Species characteristics is a broad category that was assigned to 198 

studies investigating relationships among functional traits of single or few species, without the 199 

aim of finding any relation with other variables. The last topic (Other) includes all other 200 

questions. 201 

 202 

3. General findings 203 

The first functional trait-based studies on macrophytes were published in the late 1960s and the 204 

trend is so far considerably increasing, with the majority of the papers being published in the last 205 

ten years (520 out of 738, equal to 70% of total publications; Fig. 1). In this review, the papers 206 

published between 2010 and 2020 were screened for relevance. Of these, 296 papers were 207 

considered relevant and included in this study (40% of initial set of papers; Tables S1, S2). Most 208 

of the studies were carried out in Europe (41.4% of the total amount of papers considered) and 209 

Asia (31.5%), followed by North and South America, and only very little attention was given to 210 

this topic in Oceania and Africa (Fig. 2a). As for the habitat type, lakes are the most investigated 211 

(30%), but also lotic environments and wetlands received considerable attention (21.1% and 212 

20%, respectively) (Fig. 2b). Authors dedicated most of their attention specifically to submerged 213 

(39.0%) and emergent macrophytes (29.9%) rather than free-floating ones (8.8%). However, 214 

there is a noticeable number of papers (71 papers, 22.3%), which dealt with all three growth 215 

forms (Fig. 3a). Studies were equally divided into field and lab studies (44% and 42.3%, 216 

respectively) and 16 studies used a combined approach of controlled and field experiments (Fig. 217 

3b). Within the period considered in this study, 24 review papers concerning some delineated 218 

aspects of functional traits were published (ID number highlighted in bold in Table S3). 219 

However, the aim of these papers was not to provide a general framework as in this review. 220 
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Besides, considering the number of species studied in each paper, the vast majority of the studies 221 

focused on 1 to 3 species (57.3%), and about a third (32.5%) on more than 6 species. 222 

 223 

The most investigated functional traits categories are Morphology (27.7% of the papers), 224 

Productivity (22.6%), Reproduction (13.7%) and Physiology (12.2%; Fig. 4a). Traits are 225 

measured in most cases on the aboveground portion of the plant (57.4%) and often also on 226 

belowground organs (38.4%). Only 12 studies focused exclusively on Root traits. Among the 227 

environmental variables related to macrophyte traits, Water parameters are the most frequently 228 

studied (34.2%), followed by Depth and Light (17.7%), Hydrology and Topography parameters 229 

(15.2%) and sediment characteristics (14.1%) (Fig. 4b). As for the main topics, Environmental 230 

gradients have received by far the greatest attention (30.4%); other importantly explored topics 231 

are related to Anthropic activities, namely anthropic pressure (18.2%) and Invasiveness (14.7%). 232 

 233 

4. Analysis of current research trends  234 

4.1 Geographic distribution 235 

Europe is the continent showing the greatest number of studies on macrophyte functional traits 236 

(Fig. 2a). Research groups are well spread around the countries and we can list examples from all 237 

Europe (e.g., Mermillod-Blondin and Lemoine (2010) in France; Anjum et al. (2013) in 238 

Portugal; Villa et al. (2017) in Italy; Lindholm et al. (2020) in Finland). The same cannot be said 239 

for Asia, the second continent for number of studies, where China accounts for most of the 240 

publications and very few studies have been carried out outside China (e.g., Kato and Kadono 241 

(2011) and Amano et al. (2012) in Japan; Bashir Shah et al. (2014) in India). The other 242 

continents lay far below in the list, but we noted emerging studies in the Brazilian wetlands 243 

present along the Amazon basin (e.g., Delatorre et al., 2019; Catian et al., 2018). Studies 244 

conducted in Oceania mainly concern the topic of invasive species, for example the research on 245 

effective management actions (Eller et al., 2015; Ellawala Kankanamge et al., 2019) or the 246 

impact of disturbance due to anthropic activities on native and invasive species (Mouton et al., 247 

2019). Similar topics related to invasiveness can be found also in African studies (Venter et al., 248 

2017), together with studies investigating community assembly rules in South African wetlands 249 

(Sieben and Le Roux, 2017).  250 

 251 
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4.2 Habitat type 252 

Lakes result as the most studied habitat, which in part mirrors the wide number of studies 253 

conducted in Chinese lakes (e.g., Xing et al., 2016; Wang et al., 2017; Fu et al., 2018; Su et al., 254 

2019; Fig. 2b). Here, shallow lakes have been chosen to investigate the effect of water depth on 255 

macrophyte population stability and traits intraspecific variability (Fu et al., 2018; Zhou et al., 256 

2019) and wind disturbance combined with eutrophication effects on traits (Zhu et al., 2018a), or 257 

the drivers influencing functional diversity in different macrophyte communities (Fu et al., 258 

2019a,b). After lakes, lotic environments and wetlands are roughly equally studied. In both 259 

environments, aspects related to the hydrologic regime are particularly investigated, namely the 260 

effects of water level changes and water flow disturbance on biomechanical or life history traits 261 

(e.g., Colmer et al., 2011; Miler et al., 2014) or the relationship between sediment properties and 262 

plant performance (Sutton-Grier and Megonigal, 2011). Papers belonging to the category Any 263 

habitat include some reviews (e.g., the review by Schultz and Dibble, 2012), focusing on how 264 

invasive macrophytes may influence fish and macroinvertebrates communities, the paper by 265 

Eckert et al. (2016) on the consequences of clonal and sexual reproduction for aquatic plants, or 266 

the review by Schoelynck and Struyf (2016) exploring the role of silicon as a trait for aquatic 267 

vegetation, and many studies on single species, in which samples are collected for trait 268 

measurements in several environments where the species of interest was found (e.g., Efremov et 269 

al., 2015; Kwong et al., 2017). 270 

 271 

4.3 Macrophyte type 272 

All macrophyte growth forms (e.g., Korol and Ahn, 2016; Dong et al., 2017; Huang et al., 2018) 273 

have been well represented in the trait-based studies we analyzed, except for a lower number of 274 

studies regarding free floating species, a result that could be expected due to the relatively lower 275 

number of species included in this group (Chambers et al., 2008; Fig. 3a). These species have 276 

mainly been used to investigate responses to water contamination and possible uses of these 277 

plants in phytoremediation (Mesa et al., 2017; Pietrini et al., 2019) or aspects related to the 278 

dispersal and proliferation of highly invasive species like Eichhornia crassipes or Pistia 279 

stratiotes (Gao et al., 2012; Fan et al., 2013; Venter et al., 2017). On the other hand, submerged 280 

macrophytes represent the most studied growth form. They have been investigated for a variety 281 

of purposes, and in particular they were selected to investigate the responses to and effects on 282 
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sediment properties (Lemoine et al., 2012; Zhu et al., 2012), or to explore the use of different 283 

forms of inorganic carbon to support underwater photosynthesis (Hussner and Jahns, 2014; Eller 284 

et al., 2015). Emergent macrophytes have also been widely explored, especially with a focus on 285 

trait plasticity in relation to water parameters and water level fluctuation (Demetrio et al., 2014; 286 

Stander et al., 2018) and responses to disturbance by wind or water flow (Cao et al., 2016; Wang 287 

et al., 2010). 288 

 289 

4.4 Study type 290 

Studies carried out under natural conditions or under controlled conditions (field and laboratory 291 

studies) are equally abundant in this research, however laboratory studies include almost 292 

exclusively papers considering only few species (Fig. 3b), and often try to explain the adaptation 293 

(i.e., intraspecific trait variability) of a species trait to changes in a certain environmental 294 

condition determined by biotic or abiotic factors (Nuttens et al., 2016; Silveira and Thiébaut, 295 

2017; Thouvenot et al., 2017). Field studies tend to bypass intraspecific variability, and more 296 

often aim at detecting changes in the community trait composition, thus determined by a 297 

different species composition and relative abundance rather than due to variability at the species 298 

level (Fu et al., 2014a; Lindholm et al., 2020). 16 studies have used a dual approach to compare 299 

results obtained in the two experimental conditions or combine information from different kinds 300 

of experiments. For example, Kordyum et al. (2017) compared the aerenchyma formation and 301 

enzyme biosynthesis in two emergent species (Sium latifolium and S. sisaroideum), under natural 302 

and experimental conditions, and Paz et al. (2019) analyzed palatability traits to herbivores for 303 

three macrophyte species (Egeria densa, Gymnocoronis spilanthoides, Ludwigia peploides) in 304 

the laboratory, and later transplanted them in the field to assess actual consumption under natural 305 

conditions. Among the 24 reviews scrutinized, the topic of invasive species is very common: 306 

traits were used to explain the effects of invasive species on the ecosystem and on interactions 307 

among the components (Strayer, 2010) or for the redaction of risk assessments based on 308 

functional traits (Gordon et al., 2012; Azan et al., 2015). Other topics debated in these reviews 309 

are linked to specific questions such as the response of aquatic vegetation to abiotic factors 310 

(Bornette and Puijalon 2011), the role of silica in aquatic plants (Schoelynck and Struyf, 2016) 311 

or effects of water level fluctuations (Carmignani and Roy, 2017). Root functional traits were 312 

taken into consideration in 11 out of 24 review papers: Fusconi and Mucciarelli (2017) explored 313 
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arbuscular mycorrhiza, while the most extensive review we found on root functional traits is by 314 

Ali et al. (2019), focusing on nutrients and heavy metal abatement. 315 

 316 

4.5 Trait category 317 

We observed that Morphology and Productivity traits are the most investigated among the 318 

analyzed papers and show an increasing trend in the last four years (Fig. 4a). Many of these traits 319 

are considered “soft traits”, relatively cheap and easy to measure in the field, such as leaf area or 320 

plant height (Cornelissen et al., 2003), which make them a good choice for field studies at the 321 

community level, and are also available for many species in online databases. They are often 322 

used to compute indices that synthetize functional characteristics within a community, such as 323 

the “functional trait diversity” index (FDQ) and functional beta diversity, the “community 324 

weighted means” index (CWM), the SESMPD, namely the standardized effect size of abundance-325 

weighted mean pairwise distances between species for each trait (Fu et al., 2014a, 2019b; Lukács 326 

et al., 2019). These metrics all take into consideration both trait values and species abundance 327 

within the community. In this sense, researchers are not interested in catching the trait variability 328 

at the species level, rather they use traits as an indication of the mean species characteristics, thus 329 

revealing the function of the species at the community scale: at this scale intraspecific variability 330 

is believed to have a negligible influence (e.g., Fu et al., 2014a; García-Girón et al., 2019b). 331 

Morphology and Productivity traits often appear together in studies, because they include traits 332 

describing the leaf and plant economic spectrum, along with elemental composition (e.g. 333 

Specific Leaf Area, Leaf Area, Leaf Dry Matter Content, Leaf Nitrogen Content, Specific Root 334 

Length, Leaf Area Index) (e.g., Pierce et al., 2012; Li et al., 2019a). The economic spectrum is 335 

considered explicative of existing trade-offs between, for example, growth and tissue 336 

construction; its strength may vary along an environmental gradient and in turn it influences the 337 

ecosystem functions (Díaz et al., 2004, 2016). These trait categories have been applied to the 338 

most disparate research purposes other than the insight into community assembly rules and 339 

community responses to environmental conditions, such as in the response to anthropic activities 340 

like the introduction of invasive species and pollution. For instance, Chmura and Molenda 341 

(2012) evaluated the phenology and growth response of three emergent species (Phragmites 342 

australis, Scirpus sylvaticus, and Typha latifolia) to thermally polluted water, and Thiébaut et al. 343 

(2017) used these morphology and productivity traits, along with tissues elemental composition, 344 
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to assess palatability to gammarid herbivores in two invasive species, Elodea canadensis and E. 345 

nuttallii. Such studies addressing more specific ecological questions often take into consideration 346 

also the trait plasticity, as mentioned above, in order to understand what are the factors that 347 

determine the variability at the species level (e.g., Xie and Yu, 2011b; Glover et al., 2015). 348 

Reproduction traits have been widely used to investigate dispersal abilities, how they are affected 349 

by environmental conditions and how they influence the community structure (Qian et al., 2014). 350 

In this context, Chmara et al. (2015) found a strong relationship between traits (including 351 

Reproduction and Morphology traits) and the acidity gradient, demonstrating the importance of 352 

carbon availability in determining aquatic plants performance. Reproduction and growth-related 353 

traits have also been used to detect differences in growth strategies and resource allocation 354 

between sexes in the dioecious species Vallisneria spinulosa (Li et al., 2019b). Physiology traits 355 

are very often measured in what we defined laboratory studies, because they are often more 356 

expensive and time-consuming to measure directly in the field (e.g., Saha et al., 2016; Tang et 357 

al., 2018). Besides, physiology-related measurements are very sensitive to changes in 358 

environmental conditions, which can be difficult to control when in the field and bias the 359 

response of plants to defined treatments, e.g., photosynthesis efficiency under different levels of 360 

CO2 (Hyldgaard and Brix, 2012). Again, a widespread purpose for the use of these traits was the 361 

assessment of effects of pollution and climate change: photosynthetic and enzymatic responses to 362 

specific pollutants like cadmium (Huang et al., 2017; Liu et al., 2017), copper (Roubeau Dumont 363 

et al., 2019), herbicides (Nuttens et al., 2016) and perfluoroalkyl substances (Pietrini et al., 2019) 364 

were investigated. Physiology traits and especially photosynthesis-related traits and allelopathic 365 

activity have been used to understand the advantages of invasive species that lead to their 366 

successful competition against natives, in the context of increasing temperatures and CO2 367 

availability (Thouvenot et al., 2015; Gillard et al., 2017). To this regard, the recent development 368 

of innovative instruments (i.e., more portable and less expensive) for measuring chlorophyll 369 

fluorescence (Kuhlgert et al., 2016; Chen et al., 2019; Gomez-Sanchez et al., 2019) should 370 

enable the collection of larger amount of data on some synthetic metric of physiological 371 

performance (e.g., photosynthetic yield) allowing for the extent of physiology traits studies.  372 

Interactions with herbivores were often studied using a combination of traits that describe the 373 

palatability of a species: usually these traits include the elemental composition of tissues, the 374 

phenolic content, and the Plant Dry Matter Content or Leaf Dry Matter Content, in order to 375 
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detect differences in the response to herbivores between native and invasive species and outline a 376 

possible management solution against invasive species, and understand the reasons for their 377 

successful competition (Grutters et al., 2016; Thiébaut et al., 2017), or to determine the effects of 378 

the introduction of invasive herbivores, so that the choice of poorly palatable species in 379 

restoration action can prevent the spread of herbivores (Yam et al., 2016). Similarly, relations 380 

with herbivores and palatability traits are used to identify the most suitable (e.g., less palatable) 381 

species to introduce in constructed wetlands and other restoration actions (Paz et al., 2019). On 382 

the other hand, the least investigated traits directly describing Biotic interactions in terms of 383 

relations with bacteria and fungi as an uptake strategy. We found only four papers focusing on 384 

this subject, of which three are reviews that discuss the role and importance of traits describing 385 

the interactions with bacteria (Bornette and Puijalon, 2011) or mycorrhiza (Fusconi and 386 

Mucciarelli, 2018; Ali et al., 2019). The only study we found that experimentally measured 387 

bacterial associations is by Rejmánková et al. (2011), who attempted to explore plant strategies 388 

for phosphorus uptake and related phosphatase activity to bacteria associated to roots. In general, 389 

as we mentioned above, root traits have been quite understudied. Within our research there are 390 

several papers (n = 111) that deal with combined shoot and root traits, however, most of the time 391 

they principally concern root biomass, to calculate the root-shoot ratio (e.g., Fu et al., 2013; 392 

Hussner and Jahns, 2014; Dong et al., 2017).  393 

 394 

4.6 Multi-scale trait patterns 395 

Exploring plant functional variability at different scales in both spatial (from community to 396 

ecosystem, up to landscape) and temporal (from daily to seasonal dynamics, up to long-term 397 

changes) dimensions requires an approach that is at the same time effective and feasible 398 

(Abelleira Martinez et al., 2016; Anderson, 2018). Remote sensing provides high-throughput 399 

data and techniques that can be translated into quantitative metrics related to vegetation features 400 

and overcome logistic and economic constraints of directly measuring most of the plant species 401 

inhabiting all biomes (Jetz et al., 2016; Gamon et al., 2019). Remote sensing applications to trait-402 

based vegetation studies have shown an increasing trend during the last couple of decades 403 

(Homolová et al., 2013; Wang and Gamon, 2019), with a particular focus on terrestrial plant 404 

communities, especially in forest and grassland ecosystems (e.g., Asner et al., 2015; Schneider et 405 



15 
 

al., 2017; Schweiger et al., 2018), but some studies on aquatic plants have recently emerged, 406 

implementing and extending in situ measurements (Villa et al., 2014, 2017). 407 

In our research, we found 9 papers applying remote sensing techniques to macrophyte studies, 408 

focusing in particular on floating and emergent growth forms. Interactions between light and 409 

plant canopy elements, in particular reflectance and transmittance due to leaves, shape vegetation 410 

spectral response; these interactions result in a strong link between anatomical and biochemical 411 

properties (Leaf Pigments Content, Specific Leaf Area, Leaf Tissue Density) and optical 412 

properties (Klančnik et al., 2014; Klančnik and Gaberščik, 2016), which in turn can be exploited 413 

to model the performance and productivity of macrophytes stands (Liu et al., 2011). For 414 

example, Wang et al. (2012) used indices obtained from multispectral remote sensing data 415 

(Normalized Difference Vegetation Index and Vegetation-Water Index) to classify vegetation 416 

functional types in relation to water level dynamics. An approach based on remote sensing has 417 

found application also in the determination of traits favoring invasion success: Santos et al. 418 

(2012) used airborne imaging data to compare pigments and light use efficiency of native and 419 

non-native submerged species, and Tóth et al. (2019) characterized morphological and 420 

physiological traits with leaf reflectance for autochthonous and allochthonous emergent species. 421 

The contribution of remote sensing data in this context allows for a larger scale sampling and a 422 

prompter evaluation of seasonal variability of the macrophytes stands (Tóth et al., 2019). 423 

Reflectance and transmittance spectra of floating-leaved species were also measured as specific 424 

traits that influence light availability in the water column and then alter the environmental 425 

conditions underneath the water surface, and these properties can be explained by species 426 

exhibiting different morphological and biochemical leaf traits (Klančnik et al., 2018). 427 

 428 

4.7 Species covered 429 

The papers included in our review have applied functional traits to a total amount of 1124 430 

aquatic taxa, which were in most cases identified to the species level, but for few studies the 431 

identification reached only the genus level (e.g., Molnár et al., 2015; Cao et al., 2016; 432 

Cornacchia et al., 2019). Some papers included also terrestrial species (Zhang et al., 2017; Dalle 433 

Fratte et al., 2019), but they were not considered in the evaluation of the diversity of species 434 

studied in this review. The world macrophyte species diversity has been estimated to count on 435 

3457 species (Murphy et al., 2019), so our study revealed that in the last ten years about one 436 
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third of the total macrophyte diversity has been explored in terms of functional traits. However, 437 

if we consider only the two categories of papers that focused on up to six species, the taxa 438 

investigated are only 213. This suggests that specific ecological questions have been asked only 439 

on a very limited portion of the total macrophyte diversity, while most of the diversity is 440 

explored in the context of vast community studies (e.g., Monção et al., 2012; Török et al., 2013), 441 

in which mainly “soft traits” are used (e.g., morphology traits), even if it is “hard traits” (e.g., 442 

physiology traits) that could be more explicative of plant functionality (sensu Hodgson et al., 443 

1999; Cornelissen et al., 2003), although more difficult and expensive to measure. According to 444 

our results, the ten most studied species are: Myriophyllum spicatum (63 papers), Ceratophyllum 445 

demersum (52 papers), Potamogeton crispus (41 papers), Stuckenia pectinata (40 papers), P. 446 

australis (39 papers), E. canadensis (35 papers), Potamogeton perfoliatus (31 papers), Lemna 447 

minor (30 papers), Hydrilla verticillata (28 papers) and Persicaria amphibia (28 papers). 448 

Common applications of traits for these species include the research of features determining 449 

plant palatability, physiological adaptations in response to eutrophication and the presence of 450 

contaminants, and plant adaptations to hydrological stress (Table 1, Table S4). Most of these 451 

species were well represented both in community studies and in specialized experimental studies: 452 

for M. spicatum see Thouvenot et al. (2019) and Fu et al. (2020); for C. demersum see Fu et al. 453 

(2017) and Sun et al. (2018); for P. australis see Yam et al. (2016) and Sikorska et al. (2017). 454 

However, species belonging to the genus Potamogeton, including S. pectinata, although widely 455 

spread across aquatic plant communities, were very poorly represented in the latter category of 456 

studies (3, 2, and 1 papers, respectively; Amano et al., 2012; Gillard et al., 2017; Riis et al., 457 

2018; Zhu et al., 2018a; Zhang et al., 2019; Pätzig et al., 2020), indicating a need for further 458 

examination of their functionality.  459 

 460 

4.8 Connections among topics 461 

If we consider how papers are connected with each other in terms of the examined categories and 462 

topics, it is quite difficult to observe distinct clusters of narrative trends: most subjects are quite 463 

evenly linked with each other (Fig. 5). However, it is still possible to detect at least one strong 464 

narrative trend, which, to some extent, had already emerged in the above discussed paragraphs: 465 

studies that investigate the topic of environmental gradients mainly use morphology and 466 

productivity traits measured in field, with a notable portion of laboratory studies on submerged 467 
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species (and less frequently on emergent ones), and relate these traits to water parameters 468 

especially in lakes, covering sites located in Asia and Europe. This pattern is consistent with the 469 

most studied features observed for each category (Figs. 2 to 4). The works of a group of 470 

scientists of the Chinese Academy of Sciences from Wuhan and Beijing are emblematic of this 471 

trend (e.g., Fu et al., 2013; Zhu et al., 2018a,b; Su et al., 2019). For example, Su et al. (2019) 472 

investigated how plant size and biomass of submerged species could establish feedbacks 473 

determining water transparency in subtropical shallow lakes. In this case, they found that small, 474 

bottom dwelling macrophytes were more effective in maintaining water transparency because 475 

they impeded more efficiently sediment resuspension, and released more oxygen to the water 476 

column, thus probably contributing to phosphorus immobilization. Overall, the pattern of 477 

connections among features shows that the topic of environmental gradients has been 478 

exhaustively explored and linked to nearly all the subjects we considered in this review (Fig. 5). 479 

Other topics do not show the same amount of coverage: for instance, “anthropic pressure” and 480 

“invasiveness” are strongly linked only to water parameters, among all environmental variables. 481 

Nevertheless, sediment or hydrology characteristics, have been demonstrated to be fundamental 482 

in determining the variability of root (Ali et al., 2019) and shoot traits (Zhu et al., 2018a), and 483 

therefore plant function in the ecosystem, especially in the context of invasive species (Venter et 484 

al., 2017). On the other hand, we mentioned root traits received far less attention than shoot 485 

traits, and we therefore suggest implementing the integration between root traits and sediment 486 

characteristics in future studies. At the same time, the topic of invasiveness has been studied 487 

mainly from the point of view of morphology and productivity traits, setting aside reproduction 488 

traits. Although vegetative propagation seems to be the main mechanism of spreading of aquatic 489 

invasive species (Bashir Shah et al., 2014; Urban and Dwyer, 2016), sexual reproduction may 490 

also be important in spreading dynamics. This could either lead to loss of genetic diversity, due 491 

to hybridization with native species, or higher vigor to hybrids in case of hybridization with non-492 

natives, as observed for Ludwigia spp. in Brazil (Thouvenot et al., 2013b). Moreover, Kwong et 493 

al. (2017) found that fruit weight and fruit number in Sagittaria platyphylla was higher in 494 

introduced ranges than in native habitats, due to the absence of specialist herbivores. This work 495 

suggests the importance of evaluating the effects of biotic interactions on various traits 496 

categories and not only on biochemistry and productivity, as in most papers analyzed here (e.g., 497 

Grutters et al., 2016; Jiménez-Ramos et al., 2018). Reproduction traits resulted the third most 498 
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studied trait category, however it does not keep the same position as for number of links, being 499 

related mainly only to the topics of environmental gradients and anthropic pressure (Fig. 5). 500 

Finally, we observed that the two continents that count the highest number of papers are not 501 

equally connected to all the subjects considered in this review: on one side Asian studies mostly 502 

stick to the most common pattern of lake studies on plant responses to water parameters, and on 503 

the other European studies basically encompass all the other subjects; the rest of continents are 504 

extremely underrepresented.  505 

 506 

5. A research agenda 507 

What emerges from this systematic review is that the use of functional traits in aquatic botany 508 

studies enormously increased in recent years (almost doubling in the last 5 years compared to the 509 

period 1969-2014). Indeed, researchers have long been dealing with macrophytes functional 510 

characteristics: see for example the works on the macrophyte productivity by Hogeland and 511 

Killingbeck (1985) or plant strategies by Murphy et al. (1990). However, only recently this 512 

research field has benefited from a standardization of measurements and a sharing of the 513 

information collected in online databases. Although so far, studies have been very heterogeneous 514 

in their purposes and methods, highlighting the vast range of the research fields that can be 515 

investigated using a functional trait approach, here we tried to offer a unified perspective. This 516 

allows researchers to identify a few aspects that can be represent a starting point for future 517 

developments in studying traits applied to macrophytes: 518 

 519 

i. In the papers examined in this review, sediment characteristics have been associated to 520 

traits almost as often as other parameters like hydrology or water depth and light 521 

availability, confirming the importance of substrate type influencing plant traits (Xie and 522 

Yu, 2011a; Anjum et al., 2015) and performance (Bolpagni and Pino, 2017). Roots of 523 

aquatic plants colonize the sediment and so they represent the plant interface between the 524 

water column and the rhizosphere, and although aquatic plants are able to absorb 525 

nutrients from shoots as well, roots are not only passive organs in charge of ensuring 526 

anchorage to the substrate, but they have an active role in determining plant performance 527 

(Huang et al., 2018; Moe et al., 2019). However, we noticed a consistent lack of interest 528 

towards root traits, except for root biomass and number (e.g., Glover et al., 2015; Silveira 529 
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and Thiébaut, 2017), whereas much less attention has been given to anatomy and 530 

physiology traits such as root lacunal volume and different tissues proportions, elemental 531 

composition, exudates and uptake strategies, which could reveal crucial implications for a 532 

deeper understanding of macrophytes functions (Kordyum et al., 2017; Ali et al., 2019). 533 

Again, we believe that traits related to root biotic interactions (we refer to bacterial and 534 

mycorrhizal associations) should receive further attention, because of their potential in 535 

influencing plant functioning (Rejmánková et al., 2011; Fusconi and Mucciarelli, 2019). 536 

It has been demonstrated that structural and physiological root traits play an important 537 

role in influencing other levels of biotic interactions, so their collection should be 538 

implemented: for example, root density was related to plant ability to regrow after 539 

herbivores damage (Wood et al., 2018). Therefore, we would like to stress the need of 540 

further collection and processing of macrophytes root traits and the study of the 541 

relationships with sediment characteristics, in view of a change of perspectives, which 542 

will see plant roots as major actors of life dynamics and not only as shoot subordinates.  543 

 544 

ii. A main goal for future studies in this field will be to effectively capture the complexity 545 

that is intrinsic in natural systems dynamics, especially in aquatic ecosystems. The 546 

environmental heterogeneity characterizing macrophytes habitat, connected with their 547 

high phenotypic plasticity (Vivian-Smith, 1997), results in fine-scale patchiness of 548 

aquatic plant communities, and disentangling trait variability among and within species in 549 

more than few ecosystems would require an amount of data impossible to collect in the 550 

field using traditional data collection techniques. Integrating remote sensing into the 551 

functional measurements and monitoring pipeline can enable the effective upscaling of 552 

some relevant community traits (Anderson, 2018), especially for emergent or floating-553 

leaved species, thus helping to study the spatial variability of functional traits across 554 

systems, and its links with ecological processes (Funk et al., 2017). Furthermore, for 555 

submerged macrophytes acoustic systems (i.e., side-scan sonar, echo sounders, and 556 

multibeam sonar) can expand the range of application of optical methods providing high-557 

resolution, 3D data to delineate the underwater patterns of macrophytes (Bučas et al., 558 

2016; Mizuno et al., 2018). The multiple roles of macrophytes are well known and they 559 

state that macrophytes, as primary producers, do not live in isolation but they constantly 560 
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interact with the other biotic and abiotic components (O’Hare et al., 2018). It will be 561 

essential to deepen our understanding of these interactions by applying traits-oriented 562 

frameworks, e.g., the Biodiversity-Ecosystem Functioning approach (Tilman and 563 

Dowing, 1994), in order to have a more complete view of ecosystems functioning, 564 

avoiding separating different compartments during the assessment. 565 

 566 

iii. Invasive species represent one of the main threats to biodiversity and ecosystem 567 

functioning that aquatic habitats are facing in recent years (Strayer, 2010; Bolpagni et al., 568 

2015; Rumlerová et al., 2016). Biological invasions correspond indeed to one of the most 569 

investigated topics among the papers we analyzed; however, we noticed some research 570 

gaps in this field, related to the type of traits studied and the environmental parameters 571 

associated. We promote the extension of these studies to other functional traits besides 572 

morphology, productivity and elemental composition, since there is evidence that also 573 

physiological and reproduction traits play an important role in non-native species 574 

establishment and colonization success (Kwong et al., 2017; Tóth et al., 2019). Moreover, 575 

the role of traits in invasive species has seldom been associated to environmental 576 

variables other than water chemical and physical parameters, although other parameters 577 

have been demonstrated relevant effects, such as light availability, in driving competition 578 

with native species, especially in the first phases of establishment (Ellawala Kankanamge 579 

et al., 2019), and hydrology parameters, in determining important consequences in 580 

propagule dispersion and plant resistance to variable water regimes (Urban and Dwyer, 581 

2016; Zhang et al., 2016). Remotely sensed data, allowing quantitative, standardized 582 

measures of specific traits (Tóth et al., 2019), can make the allochthonous vs. 583 

autochthonous species comparison feasible across scales and sites, thus facilitating the 584 

assessment of environmental drivers for invasiveness (Rocchini et al., 2015; Niphadkar 585 

and Nagendra, 2016), at least for floating and emergent plants. We also encourage the 586 

investigation of invasive species and their biotic interactions, focusing in detail on the 587 

effects of specialist herbivores rather than generalists and on their foraging strategy (e.g., 588 

foraging on meristems and flowering organs rather than on mature leaves), which could 589 

be more effective in the control of invasive alien aquatic plants (Grutters et al., 2016). 590 

 591 
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iv. One of the main purposes of trait-based studies should be to allow for comparisons at 592 

multiple scales, as wide as possible. However, our review highlights how most of the 593 

recent research in the context of aquatic macrophytes has been carried out in Europe and 594 

China, while entire continents like Africa and Oceania have been almost neglected. 595 

Besides, very little attention has been given to some important hotspots of macrophyte 596 

biodiversity, like Brazil, which alone hosts more than one fifth of the global macrophyte 597 

species pool (Murphy et al., 2019). The same study from Murphy et al. (2019) divided the 598 

globe into squares of 10x10° latitude x longitude in order to evaluate global macrophyte 599 

diversity, and it states the urgency of not neglecting any part of the world, since all the 600 

squares contained at least 55 different species. It is then clear how global research on 601 

macrophyte functional traits is omitting some of the regions hosting the highest diversity. 602 

In this context, collaboration within the scientific community is essential in order to share 603 

the expertise and reach a faster advance in macrophyte functional traits research. The 604 

pledge of favoring a wider and immediate collaboration has already been launched in the 605 

context of carbon emissions from inland aquatic habitats (Marcé et al., 2019), and we 606 

believe that this concept is particularly fitting our field as well. Moreover, mapping data 607 

retrieved from remote sensing can increase the resolution of current knowledge we have 608 

on plant diversity, by improving the spatial scale of analysis where trait data available are 609 

already abundant, and providing a mean to fill gaps where species or traits data are scarce 610 

(Jetz et al., 2016). 611 

 612 
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Figures 1338 

Figure legends 1339 

 1340 

Figure 1. Publication trend of the 738 macrophyte trait-based studies.   1341 

 1342 

Figure 2. The number of papers conducted in different continents (Geographic distribution, A), 1343 

South America (SAm), North America (NAm), and Global Studies (Global), and Habitat type 1344 

(B). Stacked bars show the repartition in years of publication.  1345 

 1346 

Figure 3. The number of papers focusing on different macrophyte Growth forms (A) and Study 1347 

type (B). Study types include field studies (field), controlled-conditions experiments (lab), 1348 

combined approaches (lab and field) and reviews. 1349 

 1350 

Figure 4. Categories of functional traits that have been measured by the authors or acquired from 1351 

the literature and used to reach the aim of the study (A) and main topics investigated (B). The 1352 

categories of functional traits are: Morphology (Mor), Productivity (Pro), Reproduction (Rep), 1353 

Physiology (Phys), Biochemistry (BioC), Growth form (GroF), Ecological preferences (EcoP), 1354 

Biomechanical traits (Mec), Other (OthFT) and Biotic interactions (Bint). Main topics are: 1355 

Environmental gradients (EnvG), Anthropic pressure (AntPr), Invasiveness (Inv), Community 1356 

structure (ComS), Biotic interactions (BioI), Specific characteristics (SpCh) and Other topics 1357 

(OthTop). 1358 

 1359 

Figure 5. Diagram illustrating the major links among the features considered in this review. Arc 1360 

width is representative of the strength of the link between two nodes, i.e., the number of papers 1361 

including both nodes in the study, and circle size is proportional to how many connections the 1362 

node installs with other nodes. For clarity links weaker than 15 (less than 15 studies showing that 1363 

connection) are omitted, just as nodes not showing links of this strength.  1364 


