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Point Cloud Projective Analysis for Part-based Grasp Planning

Riccardo Monica1, Jacopo Aleotti1

Abstract— This work presents an approach for part-based
grasp planning in point clouds. A complete pipeline is proposed
that allows a robot manipulator equipped with a range cam-
era to perform object detection, categorization, segmentation
into meaningful parts, and part-based semantic grasping. A
supervised image-space technique is adopted for point cloud
segmentation based on projective analysis. Projective analysis
generates a set of 2D projections from the input object point
cloud, labels each object projection by transferring knowledge
from existing labeled images, and then fuses the labels by back-
projection on the object point cloud. We introduce an algorithm
for point cloud categorization based on 2D projections. We
also propose a viewpoint aware algorithm that filters 2D
projections according to the scanning path of the robot. Object
categorization and segmentation experiments were carried out
with both synthetic and real datasets. Results indicate that the
proposed approach performs better than a CNN-based method
for a training set of limited size. Finally, we show part-based
grasping tasks in a real robotic setup.

I. INTRODUCTION

Semantic grasping is the problem of planning appropriate
robot grasps on an object in order to perform a task. One
way to select task-oriented grasps is to determine the object
category, and then to segment the object into a set of
meaningful parts. Given the object category it is possible
to label each part with semantic information (e.g. a handle).
Knowledge of part labels can finally be used to plan grasps
on the appropriate object part to perform the assigned task.

This work presents an approach for semantic part-based
object grasping based on point clouds. An advantage of
working on a point cloud is that object segmentation does
not need to model objects using polygon meshes. Moreover,
grasp planning is performed directly on the point cloud
representing the selected object part to be grasped. The
proposed method is based on a technique for object point
cloud segmentation that relies on projective analysis [1].
Projective analysis is an image-space supervised learning
approach that provides a semantic segmentation of a point
cloud into meaningful parts. Given an input object point
cloud, segmentation is carried out by first generating a set
of 2D projections (images) from multiple virtual viewpoints.
Each projection is then segmented by transferring labels from
the most similar images in the training set that belong to
the same category, using a Bi-class Symmetric Hausdorff
distance (BiSH). Finally, labeled images are projected back
in 3D space, and consistently merged together to obtain the
segmented point cloud. The main advantage of projective
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analysis is that it works in a low-dimensional 2D space and,
therefore, it is applicable for part-based grasping of partially
observed objects described by incomplete point clouds.

In summary, this paper provides the following technical
contributions. A complete pipeline is proposed for object
categorization, segmentation into parts, part labeling, and
part-based grasping using point clouds. The method was
evaluated on a real robot platform which consists of a
robot manipulator equipped with a parallel gripper and a
range camera in eye-in-hand configuration. We present a
novel point cloud categorization algorithm that exploits the
Bi-class Symmetric Hausdorff distance. We also propose
a viewpoint-aware algorithm for filtering out 2D object
projections that would result in incomplete images, due to
occlusion or non-optimal scan path. Experiments of object
categorization and segmentation have been carried out with
both complete synthetic data (without noise) and point clouds
from real scans (including incomplete scans). The proposed
method was compared against PointNet [2], a state of the
art deep learning model for point cloud classification and
part-based semantic segmentation. Results indicate that the
proposed approach performs better than the convolutional
neural network for a training set of limited size, which we
are more interested in, due the absence of large training sets
for 3D shape segmentation, and due to the effort involved in
finding similar objects to build a dataset from 3D scans. For
reproducibility we make our dataset as well as the source
code publicly available. Finally, we report experiments of
part-based grasp planning on the real robot.

II. RELATED WORK

The closest works to ours that perform object catego-
rization, segmentation, and part-based grasping are [3], [4],
[5]. In [3] a method for grasp planning across familiar
objects was presented. The approach was based on polygon
meshes rather than point clouds, and the object parts were
modeled as simple geometric primitives like planes, cylinders
and spheres. Antanas et al. [4] proposed a method for
semantic part-based grasping using point clouds, however,
they assumed that objects were symmetric and that object
parts belonged to five semantic labels (top, middle, bottom,
handle, usable). In [5] a method for object categorization and
grasping by part was presented, based on Reeb graph shape
segmentation of polygon meshes. The method did not exploit
low level geometrical features to distinguish between classes
with the same topology of connected object parts, therefore,
for example, it could not discern the differences between a
cup and a hammer, or between a table and a four-legged toy.



Fig. 1. Pipeline of the proposed approach for part-based grasp planning. The pipeline consists of 6 steps (from top left to bottom right).

A large body of previous works focused on detection of
grasp affordances. A grasp affordance is a way of grasping an
object to achieve a particular function (e.g. pouring, support,
or tool-use). These approaches are part-agnostic, in the sense
that they tackle the grasp planning problem by looking
for object properties that afford an assigned task, which is
chosen among a finite set of possible actions. In particular,
a first group of works investigated object categorization and
detection of grasp affordances [6], [7], [8], [9], [10], [11].
Some papers also included grasp synthesis in simulated
or real environments [9], [10], [11]. A second group of
works were also object agnostic, as they identified grasp
affordances by relying solely on low-level object features,
without performing object categorization. Several machine
learning algorithms have been adopted to this purpose, and
the methods also differ with respect to the input data. A point
cloud object representation was adopted in [12], [13], [14],
[15], [16], [17], while RGB-D data were used in [18], [19],
[20], [21], [11], [22]. Three dimensional data were extracted
for stereo vision by Kraft et al. [23], while the method in
[24] was evaluated using a synthetic 3D dataset. Finally, 2D
RGB images were considered in [25], [26]. In contrast to the
works based on detection of part affordances, the goal of our
method is to categorize an object, segment it into meaningful
parts and assign a semantic label to each part. The robot
can then grasp the most appropriate part of the object to
perform the desired task. Other previous works explored
geometric object segmentation strategies for grasp planning
without performing part labeling [27], [28], [29], [30], [31],
[32]. In [27], [28], [29], [30] methods were investigated for
transferring grasps across similar objects, while in [31], [32]
the authors proposed approaches to facilitate robot grasping
by segmenting objects using superquadrics or a box-based
representation. Finally, it is worth citing works that, although
did not perform robot grasp planning, focused on shape
segmentation to extract grasping areas [33], [34], [35].

III. METHOD

We consider a tabletop environment that contains multiple
objects of different categories. Let C be the finite set of possi-
ble object categories, and L be the set of all possible labels
of the object parts. The proposed grasp planning system,

shown in Fig. 1, receives as input a pair (c⋆, l⋆) composed
of an object category c⋆∈C and part l⋆∈L, meaning that the
robot task is to grasp an object of class c⋆ by its part l⋆ (e.g.
grasp a cup by the handle). The pipeline of the proposed
method consists of six main steps. In the first step the robot
manipulator performs a 3D scan of the environment, along
a predefined scan path fixed for all experiments, by using
an eye-in-hand depth sensor. The range images acquired in
the scan phase are used to generate an occupancy octree Ω
(OctoMap [36]) with resolution Roctree, as well as a surfel
map Σ using ElasticFusion [37]. A surfel map is a point
cloud where each surfel has attributes such as position, color,
normal and radius. In the object cluster extraction phase (step
2), clusters of points are extracted from point cloud Σ, so
that each cluster Ti represents one of the objects on the table.
To this purpose we adopt a standard approach that detects
the tabletop as the dominant plane using RANSAC plane
fitting, with a threshold thplane. After removing the points
in Σ that belong to the tabletop the remaining points are
partitioned into clusters Ti using Euclidean clustering, with
distance threshold thcl.

The following steps operate by projecting each point
cloud Ti onto a set of 2D images, as if observed from
different virtual camera viewpoints, located on the surface
of a sphere centered on the object. Object categorization
and segmentation are carried out by exploiting a dataset of
segmented point clouds, which is pre-processed as illustrated
in Section III-A. As object point cloud clusters may be
incomplete due to partial observation or occlusion, in the
viewpoint-aware filter phase (step 3) the virtual viewpoints
are filtered so that only the 2D projections compatible with
the robot scan path remain (Section III-B). Then, each object
cluster Ti is classified into its respective object category
cTi (step 4), and a target object Ti⋆ is selected to be
grasped, so that cTi⋆=c⋆. In order to categorize an object
a novel supervised algorithm is proposed that uses the Bi-
class Symmetric Hausdorff distance (Section III-C) [1]. It is
worth noting that the original work in [1] did not perform
object categorization. Also, in [1] shape segmentation was
evaluated only on complete point clouds. In the next phase
semantic part-based segmentation is performed on the target
cluster Ti⋆ (step 5), to assign a meaningful part label lj to



Fig. 2. Left: a segmented point cloud of the dataset (each part is displayed
with a different color), and a virtual camera pose Ak , located on the surface
of the sphere (parameterized by ϕk , θk) centered in s with radius ρproj.
Camera z-axis Aẑk points towards s. Right: three examples of generated
binary images GS

i,k and label images LS
i,k , for viewpoints A1, A2 and A3.

each point tj ∈ Ti⋆ . Part-based segmentation is performed
by applying the projective analysis approach in [1], named
BiSH-PA (Section III-D). For segmentation, only the objects
in the dataset of the same class cTi⋆ are considered. Finally,
in the grasp and motion planning phase (step 6, Section III-
E) a set of grasp candidates on the target part lj = l⋆ is
generated, and a collision free path for the robot is planned
to grasp the object by the target part.

A. Dataset pre-processing

The categorization and the BiSH-PA segmentation algo-
rithms require a dataset S= {Si} of complete object point
clouds Si, whose category cSi ∈C is known in advance. Each
point cloud of the dataset is annotated with a label mapping
Λi : Si → L so that Λi(si,j) is the part label li,j∈L
of point si,j∈Si. Dataset S is preprocessed by projecting
each point cloud Si∈S on 2D images from a set of virtual
viewpoints A= {A1 . . . AKvv}, of cardinality Kvv, uniformly
distributed on a sphere and centered at the point cloud
centroid s (Fig. 2, left). Images are obtained through a
perspective projection onto a square image of size wg pixels
and focal length fg. Each virtual camera pose Ak has the
principal axis Aẑk pointing towards s. Camera poses are pa-
rameterized using spherical coordinates, with azimuth angle
ϕk∈ [0, 2π], elevation θk∈ [−π/2, π/2], and radius ρproj. The
distance of the virtual camera to the object centroid ρproj
is computed so that all point cloud projections fit in the
image retaining a margin about equal to wg/10 pixels per
side, i.e. ρproj=1.2 ρmax 2fg/wg where ρmax is the maximum
distance of a point sj∈Si from s. Each projection Ak∈A of
a dataset point cloud i generates a binary image GS

i,k(u, v),
where pixel (u, v) is 0 if the object projects on (u, v), and
1 otherwise. Moreover, for each projection a label image
LS
i,k is created, where each pixel contains the part label

LS
i,k(u, v)=li,j of the point projected on (u, v) (Fig. 2, right).

B. Viewpoint-aware point cloud projections generation

In step 3 of the proposed pipeline, for each object point
cloud T a set of 2D images are generated from virtual
viewpoints Ak∈A, centered on centroid t of T (Fig. 3,

Fig. 3. Left: the virtual camera poses Ak∈A represented by red and
green arrows pointing towards object point cloud T . Virtual camera poses
represented by green arrows are compatible with at least one real robot
observation pose Pi. Right: Ak is compatible with Pi if OAk

is in the
yellow cone (approximate field of view of the robot), if there are no
occluding surfels, and if angle β between Aẑk and o⃗AP is small.

left). As the object point cloud T may be incomplete,
centroid t may not correspond to the actual object centroid.
Hence, projection distance ρproj is recomputed as explained in
Section III-A using T and t instead of Si and s. Moreover,
some virtual object projections in A could be incomplete,
and they could hinder the segmentation step, because the
BiSH-PA algorithm could match a partial object image with
a complete image of the object contained in the dataset.
Therefore, we introduce a viewpoint-aware filter that takes
advantage of the known robot scan path P to extract a subset
B ⊂ A of virtual view poses, which roughly correspond to
actual viewpoints of the eye-in-hand sensor (Fig. 3, right).

Scan P is defined as a set of real sensor viewpoint poses
Pi, where each pose is centered in OPi

with principal axis
P ẑi. The algorithm filters out each virtual view pose Ak that
is not compatible with any real robot observation pose Pi.
Let OAk

be the point on the sphere centered at the object
centroid with radius ρmax, and with the same azimuth ϕk and
elevation θk of Ak. Being ρmax approximately equal to the
object radius, if OAk

is within the field of view of a sensor
view pose Pi, and the orientation of the real sensor view
pose is similar to the orientation of the virtual view pose,
then Ak is considered compatible with Pi. Moreover, OAk

should be within the sensor range, and there should not be
any occluding surfels. In particular, let the observation ray
o⃗AP=OAk

−OPi
be the vector from OAk

to OPi
. Pose Ak is

compatible with Pi (and it is inserted in B) if the following
conditions hold:

1) OAk
is in the sensor field of view at Pi, i.e. angle α

between o⃗AP and Pẑi is lower than threshold αmax:

α = arccos
⟨o⃗AP ,

P ẑi⟩
∥o⃗AP∥

< αmax (1)

2) angle β between o⃗AP and the virtual camera principal
axis Aẑk is lower than a threshold βmax:

β = arccos
⟨o⃗AP ,

Aẑk⟩
∥o⃗AP∥

< βmax (2)

3) OAk
is within the sensor range: rrmin < ∥o⃗AP∥ < rrmax.



Fig. 4. BiSH-PA segmentation approach [1]: (a) unlabeled point cloud T ,
(b) projected binary images GT

k of T , (c) matching of each binary image to
a labeled image LS

i,k of an object of the same category in the dataset, (d)
label transfer, (e) backprojection and optimization on point cloud T . Each
part has a different color.

4) there are no occluding surfels in the full point cloud
Σ intersecting segment o⃗AP .

For each viewpoint Ak∈B point cloud T is projected to
generate the binary image GT

k , and an index image JT
k (u, v)

that contains the index j of the projected point tj∈T .

C. Object point cloud categorization

The categorization phase determines the category cT∈C of
an object point cloud T as the category of the dataset most
similar to T . Categorization exploits the Bi-class Symmet-
ric Hausdorff distance BiSH(Gk, G

′
k) between two binary

images Gk and G′
k [1]. The BiSH metric cuts both input

images into topologically homogeneous horizontal slabs and
it accounts for internal holes. Then, the optimal mapping
between the slabs of the two images is found. The value
of BiSH is computed as the sum of the Bi-class Symmetric
Hausdorff distance of each slab. On top of BiSH, we define
the Bi-class Symmetric Hausdorff distance BiSHs(G,G′)
between two sets of binary images G= {Gk}, G′= {G′

κ} as:

BiSHs(G,G′) =min

{ ∑
Gk∈G

min
G′

κ∈G′
BiSH(Gk, G

′
κ) ,

∑
G′

κ∈G′

min
Gk∈G

BiSH(Gk, G
′
κ)


(3)

Let Sc⊂S be the subset that contains all point clouds Si of
a single category cSi =c. Thus, the category cT of point cloud
T could be computed as

cT = argmin
c∈C

BiSHs(Gc,GB(T )) (4)

where Gc is the set that contains all the binary images
GS

i,k obtained from all the object point clouds Si∈Sc of a
single category c in the dataset, and GB(T ) is the set of
all the binary images of point cloud T from the filtered
viewpoint set B. However, (4) is computationally expensive,
as it requires computation of the BiSH distance between
each projection of T and all dataset images. Therefore,
categorization is performed on a reduced dataset of images
G′
c, by selecting Kproto prototypes point clouds from each

Fig. 5. Left: the point cloud Σ provided as input to GPD. Points on the
target part (the jug handle) are highlighted in red. One of the generated
grasp poses is displayed in blue. Right: the motion planning environment.
The objects Ti in the dashed yellow square are represented by meshes for
collision detection, and they have been removed from octree Ω.

TABLE I
EXPERIMENTAL PARAMETERS

Symbol Value Symbol Value
αmax π/6 βmax π/4
wg 256 pixels Kvv 40

Kproto 2 Roctree 2 cm
thcl 2 cm thplane 2 cm
rrmin 0.5 m rrmax 2 m

category subset Sc. Category prototypes are selected by
minimizing the intra-class BiSHs distance, using k-means.
Hence, category cT of T is determined as

cT = argmin
c∈C

BiSHs(G′
c,GB(T )) (5)

D. BiSH-PA algorithm for point cloud segmentation

After categorization, BiSH-PA segments an unlabeled
point cloud T (Fig. 4a) of known category cT using only
the point clouds in the dataset of the same category cSi =cT .
A label lj is assigned to each point tj∈T so that tj and si,j
are in the same part if lj=Λi(si,j), where si,j is a point in
the dataset and Λi(si,j) is the part label of si,j , as defined in
Section III-A. In particular, BiSH-PA [1] works as follows:

1) Matching: for each binary image GT
k of T , projected

from a filtered viewpoint Ak∈B, the most similar image
GS

i⋆,k⋆ is found among binary images Sc of the same
category in the dataset (Fig. 4c), using the BiSH distance,
i.e. GS

i⋆,k⋆=argminGS
i,k∈GcT

BiSH(GT
k , G

S
i,k)

2) Transfer of part labels: BiSH also provides an op-
timal pixel mapping (u′, v′)=M(u, v) between each image
GT

k (u, v) and the closest image GS
i⋆,k⋆ (u′, v′) in the dataset.

Hence, for each image GT
k a label image LT

k is generated
by transferring part labels from the label image LS

i⋆,k⋆ of the
dataset so that LT

k (u, v)=LS
i⋆,k⋆(M(u, v)) (Fig. 4d).

3) Backprojection: part labels are projected back on
T (Fig. 4e) from all the labeled images. Therefore, for
each point tj ∈ T , a set of potentially conflicting labels
λj=

{
LT
k (u, v) , ∀k, u, v

∣∣ j = JT
k (u, v)

}
may occur.

4) Optimization: graph cut optimization to select the part
label lj∈λj to be assigned to each point tj∈T .



Fig. 6. Annotated point clouds (RD dataset) with a different color for each
part.

Fig. 7. The RD dataset (34 objects, 4 categories).

E. Part-based grasp planning

In order to generate grasp poses for the target object Ti⋆ ,
on part l⋆, the Grasp Pose Detector (GPD) [38] was adopted.
GPD requires as input for collision checking the full point
cloud Σ of the environment. Moreover, input points from
the target part must be provided to be used in the grasp
generation process. Hence, we direct GPD grasp generation
toward the target object part by providing as input the points
with label l⋆ (Fig. 5, left). GPD outputs a set of grasp poses,
ordered by score. The MoveIt planner (Fig. 5, right) is used
to plan a robot path to reach the grasp poses. The collision
environment in MoveIt includes the object point clouds Ti

and the OctoMap occupancy octree Ω. Each surfel in Ti is
converted to a hexagon polygon with the same radius. Both
unknown and occupied voxels in Ω are considered obstacles
in MoveIt. Any voxel closer than 2Roctree to a point in Ti

is set to empty in Ω, to prevent MoveIt from reporting a
collision between the object point cloud and the occupancy
octree. Path planning is performed for each grasp pose, in
decreasing order of score as ranked by GPD, and the first
successful grasp is selected to be executed by the robot.

IV. RESULTS

The experimental setup consists of a 6-DOF robot ma-
nipulator (Comau SMART SiX) equipped with a parallel
gripper and an Orbbec Astra-S 3D camera mounted on
the end-effector. The robot forward kinematics was used
in ElasticFusion to track the pose of the camera. The
method was implemented using the ROS (Robot Operat-
ing System) framework, and it was evaluated on an Intel
i7-6700 @ 3.40GHz, with a GeForce GTX 980 Ti. The
BiSH-PA source code is available at http://rimlab.ce.
unipr.it/Software.html, under bish segmentation.
Fixed parameters are reported in Table I. Virtual camera
focal length fg was set equal to the image size wg. Two
datasets of complete point clouds segmented into parts were
considered for evaluation. Both datasets have a limited size

TABLE II
BISH-PA RESULTS FOR DIFFERENT PARAMETER SETS (PS) ON THE PSB

DATASET

ps wg Slabs Kvv Cat. (%) Segm. (%) Time
GS

i,k/G
T
k (s)

Π1 256 5/10 40 71.42 90.38 10
Π2 512 5/10 40 70.00 89.40 34
Π3 256 10/20 40 71.75 90.71 14
Π4 256 5/10 24 67.75 87.76 7
Π5 256 5/10 60 72.22 90.03 20

as explained in the introduction. The first dataset comprises
a total of 285 high quality models that belong to 15 ob-
ject categories from the Princeton Segmentation Benchmark
(PSB) [39]. As BiSH-PA operates on point clouds, each
vertex of the polygonal model was converted into a surfel
with the same normal, and radius 1 cm. The second dataset
(RD) contains lower quality models generated from 3D scans
of real objects using the robot setup. It contains a total of
34 objects, segmented into parts, divided into 4 categories:
jugs, cups, fourlegs and hammers (Fig. 6 and 7). The RD
dataset, annotated using the annotation tool [40], is available
at http://rimlab.ce.unipr.it/Software.html under
grasping rd dataset.

A. BiSH-PA evaluation

A first evaluation of BiSH-PA was carried out on the
PSB dataset using 4-fold cross-validation. Results of cat-
egorization accuracy (Cat.), segmentation accuracy (Seg.)
and computational time of a single point cloud (Time)
are reported in Table II. Classification accuracy is defined
as the percentage of correctly classified test point clouds,
while segmentation accuracy is the percentage of points of
correctly classified objects with part label equal to the ground
truth. Experiments were performed with different sets of the
following parameters: image size wg , number of horizontal
slabs for GS

i,k and GT
k , and number of virtual viewpoints

Kvv. The number of horizontal slabs of the dataset images
GS

i,k was set as half the number of slabs of the test images
GT

k , as suggested in [1]. Table II indicates that parameter
set Π1 achieved the best compromise between accuracy and
efficiency (about 10 s of computation time) and, therefore,
it was selected for all the experiments reported hereafter.
In particular, increasing the image resolution (from 256 to
512 pixels in parameter set Π2) increases the computation
time, but it does not improve neither segmentation nor
categorization. Moreover, an increased number of horizontal
image slabs provides only a slight improvement (parameter
set Π3). Finally, the reduction of viewpoints Kvv hampers
performance by about 3% (parameter set Π4), whereas
increasing Kvv has a limited affect on accuracy, but it results
in a higher computation time (parameter set Π5).

A second round of experiments was performed, on the
PSB and RD datasets, to compare BiSH-PA against PointNet
[2], a deep learning approach for point cloud categorization
and segmentation. For each dataset, evaluation was repeated



TABLE III
CATEGORIZATION AND SEGMENTATION ACCURACY FOR BISH-PA,

POINTNET AND POINTNET WITH TRANSFER LEARNING

Dataset Metric BiSH-PA PointNet PointNet-TL
PSB Cat. (%) 71.42 72.33 85.31
PSB Segm. (%) 90.38 79.02 88.16
RD Cat. (%) 100.00 61.00 40.00
RD Segm. (%) 93.12 48.69 39.95

Fig. 8. Example point clouds segmented by BiSH-PA (top row) and
PointNet (bottom row). BiSH-PA achieves a slightly better segmentation
quality than PointNet on synthetic models of the PSB dataset (airplane
model, left column), and a clearly better quality on real scans of the RD
dataset (fourleg and hammer models, center and right columns).

10 times using 4-fold cross-validation, and the results were
averaged. PointNet was trained for 500 epochs, with initial
learning rate 0.001. We also report results achieved by
PointNet trained with transfer learning (“PointNet-TL”) on
the default PointNet dataset (ModelNet40 [41]), that contains
synthetic 3D models without noise. Categorization and seg-
mentation accuracy are reported in Table III. Images of the
resulting segmentation are displayed in Fig. 8. On the PSB
dataset, BiSH-PA categorization accuracy is comparable to
PointNet, which is hampered by the small size of the dataset,
while PointNet-TL performed better due to transfer learning
on ModelNet40, however, a large dataset is needed to achieve
this result. BiSH-PA performed better than both PointNet
and PointNet-TL in terms of segmentation accuracy on the
PSB dataset. On the RD dataset, BiSH-PA outperformed
PointNet likely because of the small dataset size and due to
the lower quality of the point clouds, that are affected by the
sensor noise. Moreover, we can observe that BiSH-PA also
outperformed PointNet-TL as ModelNet40 contains synthetic
3D models without noise. Therefore, in real robot tasks
BiSH-PA is better suited than a state of the art CNN-based
algorithm like PointNet, when using a dataset of limited size.

B. Evaluation of the part-based grasping approach

The proposed viewpoint-aware filter was assessed in terms
of 3D scan completeness. A total of 24 part-based grasping
trials were performed, six for each object category. In each
trial the workspace contained two objects that were scanned
by the real robot along a pre-defined path, which allows a
complete reconstruction of the environment. After that, each
object point cloud cluster was categorized and segmented
into parts using the RD dataset minus the point clouds that
correspond to the objects currently in the workspace, to avoid

Fig. 9. Left: example scenario with two objects (a cup and a hammer).
The motion planning environment (center). The planned part-based grasp
of the hammer by its handle (right).

Fig. 10. Examples of virtual viewpoints for three levels of scan complete-
ness of a scanned fourleg object (25%, 75% and 100%, top to bottom).
Blue arrows are actual robot viewpoints Pi along the scan path, red and
green arrows are virtual camera poses pointing towards the object (set A).
Green arrows are the virtual viewpoints compatible with the robot scan path,
accepted by the viewpoint-aware filter (subset B). The right column shows
zoomed images. As the level of scan completeness increases, more virtual
viewpoints (green) are accepted by the viewpoint-aware filter.

bias. Then, a grasping task was planned in simulation (Fig.
9). The category c⋆ of the object to be grasped and the
target part label l⋆ were provided as input to the grasping
pipeline. Each trial was evaluated using four levels of 3D
scan completeness, that were generated by considering the
range data acquired along partial segments of the scan path
(25%, 50%, 75% and 100% of the scan path respectively),
as shown in Fig. 10. We defined a successful trial whenever
an object of the specified category c⋆ was grasped from the
target part l⋆, i.e. when the 3D model of the gripper collided
with points that belong to l⋆. As reported in Fig. 11, the num-
ber of successful trials increased with scan completeness.
Also, the success rate was higher when the viewpoint-aware
filter was applied on three object categories (jugs, cups and
fourlegs). Only three grasping failures occurred (two jugs
and one cup) when the viewpoint-aware filter was applied.
Grasping failures may occur for several reasons as reported in
Fig. 12. A grasp fails if the object is not observed, which can
happen when the scan path is incomplete, regardless of the
viewpoint filter. Similarly, grasping failures caused by errors
in object classification increase as the scan completeness
decreases, however, they are significantly more frequent
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Fig. 11. Successful grasps in simulation with respect to scan completeness.
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Fig. 12. Number of grasping failures when the viewpoint-aware filter is
enabled (left) and disabled (right) with respect to scan completeness.

when the proposed viewpoint-aware filter is disabled. Also,
failures may occur when the robot grasps the object from
the wrong part, due to incorrect object segmentation, and it
can be noticed that if the viewpoint-aware filter is active the
performance degrades more gracefully as scan completeness
decreases. Finally, failures may be generated in the grasp
planning phase, or when planning the motion of the robot
arm. Again, motion planning failures are more frequent when
the proposed viewpoint-aware filter is disabled, possibly due
to lower segmentation quality. Each unsuccessful trial was
stopped as soon as the first failure occurred.

Four successful grasping experiments executed on the real
robot are reported in Fig. 13. Results are also shown in the
accompanying video. After grasping the target object by the
selected part, the robot lifts the grasped object. Execution
time for each phase of the algorithm, averaged over the
four experiments, is reported in Table IV. On average, the
computational time required for planning each task is about
35 s. It can be noticed that the viewpoint-aware filter requires
a negligible amount of computation time (about 10 ms)
compared to the other steps. A semantic object-related task
was also performed in simulation, where the handle of the
jug is grasped, and then the jug’s neck is placed above the
cup bowl, properly oriented for pouring (Fig. 14).

V. CONCLUSION
In this work, an approach for semantic part-based object

grasping was presented based on projective analysis. The
method allows object categorization, segmentation, and grasp
planning without requiring any priors on part shapes. The
BiSH-PA algorithm showed better performance compared to
a CNN-based state of the art method based on a dataset of

Fig. 13. Four grasping experiments carried out using the proposed part-
based grasping pipeline: grasp the jug by the handle, grasp the cup by the
handle, grasp the fourleg by the head, grasp the hammer by the handle (top
to bottom). Images show the motion planning environment (left) and the
real experimental setup (right).

TABLE IV
AVERAGE EXECUTION TIME AND STANDARD DEVIATION

Phase Time (s)
Object cluster extraction 8.35± 1.34
Viewpoint-aware filter 0.01± 0.01
Classification and segmentation (BiSH-PA) 6.41± 1.25
Grasp planning (GPD) 11.14± 4.41
Motion planning (MoveIt) 10.58± 3.98
Robot movement 51.54± 4.27
Total 88.04± 1.92

limited size containing real 3D scans. In order to deal with
incomplete 3D scans a viewpoint-aware filter was proposed
that improves segmentation and reduces grasping failures.
The proposed method was evaluated in real-world scenarios.
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