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Resilient food supply chain design: 
Modelling framework and 
metaheuristic solution approach 

 

 

Abstract 

This paper addresses the Resilient Food Supply Chain Design (RFSCD) problem, which is the problem 

of designing a food supply chain that is resilient enough to ensure business operations continuity in the 

event of risks or disruptions. Based on a graph theory representation of the food supply chain, this paper 

proposes a bi-objective mixed-integer programming formulation for this problem. The objectives are to 

(1) maximize the total profit over a one-year time span and (2) minimize the total lead time of the product 

along the supply chain. To solve the model, an Ant Colony Optimization (ACO) algorithm is presented. 

The developed model is suitable for adoption for the design of a multi-product resilient FSC that makes 

use of a multiple sourcing policy to deal with unexpected fluctuations of market demand and disruptions 

in raw materials supply. The adapted ACO algorithm is tested on a case study, referring to the SC of 

readymade UHT tomato sauce, which is particularly vulnerable to such risks. 

 

Keywords: Supply Chain Management; Food Supply Chain Design; Resilient Supply Chain Design; 

Multiple-sourcing policy; Multi-objective optimization; Ant Colony Optimization. 

1 Introduction 

The growing complexity of modern supply chains (SCs), together with increasing pressure on efficiency 

and delivery time, has resulted in increased vulnerabilities. Companies increasingly rely on complex 

networks of suppliers and partners to deliver product in the right quantities, at the right place, at (just) 

the right time in a market that is at the same time, however, increasingly fickle. The global SC 

complexity, the low stock levels, and the limited use of redundancies required to achieve the efficiency 

targets, do nothing but increase the degree of exposure to a wide range of uncertainties related to risks 

and SC disruptions (e.g. Lee, Padmanabhan & Whang 1997; Fisher 1997).  

It has been shown that companies that have experienced a disruption have achieved a shareholder 

return that is approximately 30% lower than its competitors (Hendricks & Singhal 2005). Such 

disruptions can occur in different parts of the supply chain but are often due to problems with the 

sourcing of critical materials. A well-known example is the reliance on a limited supplier base in the 

automotive industry, which became apparent after the 2011 Japan earthquake, when many automotive 
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companies experienced supply disruptions (e.g. Matsuo 2015). Next to materials not being available, 

disruptions can also be caused by quality problems, especially in industries like the food industry, where 

the dispersion of quality problems throughout the chain can lead to major health concerns and expensive 

product recalls. Well-known examples are the 2008 melamine contamination in the Chinese dairy 

industry, leading to more than 300,000 victims (e.g. Marucheck et al. 2011), as well as the 2009 

salmonella contamination in peanut butter that lead to a recall involving 361 companies and 3,913 

products (Andrews 2012; CDC 2009). 

Since there are so many disruption risks that may threaten SC operations, being able to develop 

resilience may be a real competitive advantage. In this context, companies are incentivized to invest in 

their future by designing resilient supply chains, dedicating effort and resources in business continuity 

plans to face the economic and environmental turbulence. Christopher & Peck (2004) defined the 

resilience of a SC as "the ability of a SC to both respond quickly to disruptions and unforeseen events 

and to recover operational capability after disruptions occur", thus referring to the ability of a SC to 

return to its original state or continue operations within a disrupted SC. As such, resilience should be 

considered in supply chain design (SCD): selecting the right resources to carry out SC operations, also 

when experiencing disruptions, is crucial (Coutu 2002; Schmitt & Singh 2012). 

This paper specifically focuses on food supply chains (FSCs), i.e. SCs that operates in the food 

industry and extend from individual farmers and/or breeders to the final consumers, covering the entire 

"farm to fork" process. The design of these FSCs depends on many product characteristics, as well as 

size and market power of the FSC members (Maloni & Brown 2006). A high density of embedded 

players and relationships between them adds complexity to FSC network analysis and design problems. 

Also, many challenges related to food quality, food safety, and sustainability add additional complexities 

(e.g. Akkerman et al. 2010; Wang et al., 2019). Unfortunately, the growing complexity of modern FSCs 

usually runs in parallel with an increasing vulnerability. 

For FSCs, researchers have noted several trends related to increased risk and resilience problems. 

In general, the increasing world population and its urbanization has increased the attention in securing 

food supply (e.g. Tendall et al, 2015; Wang, 2019). In reaction to these discussions on achieving food 

security on a regional, national, or even global level, food supply chain management has increasingly 

emphasized resilience (e.g. Zhao et al., 2017; Stone & Rahimifard, 2018). In parallel, the food industry 

has also witnessed the adoption of lean and just-in-time practices and related decreases in inventory 

levels. This however increases the impact of possible disruptions. This is even more the case in an 

industry where inventory buffering is already limited due to product perishability. Furthermore, there is 

a reduction in control over the different processing stages due to the globalization of SCs and a related 

difficulty in allocating resources for risk mitigation based on the probabilities that the risk will 

materialize (Roth et al. 2008). Therefore, modern FSCs are among the most vulnerable and fragile, since 

any disruption occurrence would rapidly interrupt the operations of the entire network. In addition, any 
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risk that may occur especially in critical food materials supply could have terrible consequences on 

health and safety aspects and arguably affect final customers even more than the FSC itself.  

Despite the importance of these issues for FSCs, there are no existing studies in the literature that 

specifically deal with resilient FSC design (RFSCD). This paper therefore aims to provide a modelling 

and solution approach to support RFSCD decision making. More specifically, the contributions of this 

paper are (1) the introduction of a generic graph representation of the RFSCD problem, (2) the 

formulation of the RFSCD as a bi-objective optimization model, and (3) the development of a 

metaheuristic approach based on adapted ant colony optimization (ACO) to solve the RFSCD problem. 

This modelling framework and solution approach were chosen because of its intuitive nature and the 

characteristic of ACO that makes explicit use of elements of previous solutions in developing new ones 

(Maniezzo et al. 2004). This feature can be useful when dealing with resilience, as the purpose of 

RFSCD is to reconfigure the system in the case of disruption without worsening the system’s 

performance compared to the original configuration. Moreover, several studies have highlighted the 

effectiveness of ACO algorithms in solving multi-objective optimization problems in general (e.g. 

Chaharsooghi & Kermani 2008) and problems where path between nodes in a graph should be delineated 

in particular (e.g. De Santis et al. 2018). 

This paper illustrates and tests the proposed approach in a case study of a supply chain for 

readymade UHT tomato sauce. The application shows that the proposed algorithm is effective in 

supporting RFSCD, as it is able to identify an efficient configuration of the system in the case of 

disruption.  

The remainder of this paper is organized as follows. Section 2 reviews the literature related to 

resilient SC design and optimization problems. Section 3 describes the problem setting in more detail, 

followed by the graph representation, optimization model, and ACO-based algorithm in Section 4. 

Section 5 details the application of the algorithm in a case study on UHT readymade tomato sauce SC. 

Finally, Section 6 concludes by summarizing the main finding of the study, discussing the main 

implications and outlining future research directions. 

2 Related literature 

Several streams of literature are relevant in relation to the topic of this paper. First, there is extensive 

literature on the concepts of risk and resilience, based on which different risk categories are briefly 

discussed. Subsequently, the main developments in the SCD literature related to modelling approaches 

and solution methods are discussed. 

2.1 Risk and resilience 

There are various interpretations of the concept of risk in literature. This paper links the concept to 

that of SC vulnerability: a SC is said to be "at risk" (and therefore "vulnerable") when it is “likely to be 
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lost or damaged” because of uncertain events, causing serious economic losses (Christopher & Peck 

2004). 

SC risks can be categorized into many different ways and from different perspectives. Referring to 

the framework of Mason-Jones & Towill (1998), Christopher & Peck (2004) distinguish between 

internal and external risks. For the external risk, they further distinguish demand risks, supply risks, and 

environmental risks. Here the first two are present within supply chains, and the third is present outside 

the supply chain (e.g. socio-political, economic, or weather-related events). In relation to SCD, the 

impact of external risks on the supply chain network structures is often a key challenge. 

Looking at their nature, uncertainties and risks in the SC may occur in three broad forms, known as 

deviations, disruptions, and disasters (Gaonkar & Viswanadham 2004). A deviation is assumed to occur 

when one or more parameters (such as cost, demand, lead-time, etc.) within the SC system stray from 

their expected or mean value, without any change to the underlying SC structure. A disruption occurs 

when the structure of the SC system is radically transformed, due to unexpected events caused by human 

or natural factors; resulting in the unavailability of certain production, warehousing and distribution 

facilities or transportation options. Finally, a disaster is defined as a temporary irrecoverable shut-down 

of the SC network due to unforeseen catastrophic system-wide disruptions. Among these three forms, 

SC practitioners and researchers have mostly studied SC deviations and disruptions. 

2.2 Food supply chain design  

When using mathematical programming, the SCD problem is typically represented by mathematical 

models based on facility location and allocation decisions. The advantage of using mathematical 

modelling is the possibility to find the optimum solution to the problem; conversely, the main 

disadvantage is that for larger problems, the computation time increases rapidly (in the worst case, 

exponentially) with the problem size. Many approaches exist in the literature, and for a more 

comprehensive overview of research in this direction, interested readers are referred to Melo et al. (2009) 

and to more recent SCD reviews focused on disruptions by Snyder et al. (2016) and on including 

uncertainties by Govindan et al. (2017). As this paper focuses on food supply chains, the remainder of 

this section specifically discusses strategic SCD approaches in food contexts. 

An overview of food SCD approaches was presented some years ago by Akkerman et al. (2010). 

For strategic SCD problems, they mostly find mathematical programming approaches, complemented 

with some simulation studies and heuristic approaches. Since the publication of their overview, food 

SCD has received significant attention. To elaborate on recent developments, Table 1 provides an 

overview of relevant recent research. As can be seen in the table, most of the recent literature has 

continued to use mathematical programming approaches, sometimes in combination with 

(meta)heuristic solution approaches to be able to deal with larger problem instances. A more detailed 
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discussion on solution approaches and the use of metaheuristics is included in the next section of this 

paper. 

Demonstrated by Table 1, a clear development is that many of the recent approaches focus on 

multiple objectives. In most cases, this is due to the increasing relevance of sustainability indicators. In 

most of these studies, environmental performance measures (e.g. emissions) are considered in addition 

to the traditional economic performance measures (e.g. costs). In a limited number of studies, food 

quality aspects or social indicators are also considered. Resilience is however hardly addressed. The 

only exception is part of the work presented by Validi et al. (2014). In their scenario analysis, these 

authors discuss the costs of opening additional (redundant) transportation links in their distributon 

network, which is argued to represent an increased network resilience. Outside of this implicit 

consideration of resilience, none of the supply chain design approaches in the literature explicitly 

consider resilience, despite its increasing relevance. 



6 

 

Table 1: Overview of recent literature on food supply chain design. 

Reference Product Method Objectives Objectives / features 

Khamjan et al. 

(2013) 

Sugar cane MIP + 

decomposition 

heuristic 

Single Cost minimization including investment, transportation, as well as yield losses. Applied in case study 

in Thailand. 

Soysal et al. 

(2014) 

Beef MIP Multiple Multi-objective approach (economic and environmental). General approach with case application 

focusing on interactions between costs and emissions. 

Validi et al. 

(2014) 

Dairy MIP + 

metaheuristic 

Multiple Multi-objective approach (economic and environmental). Focus on distribution routes and vehicle 

choice. Some consideration of resilience in scenario analysis. 

Van der Vorst et 

al. (2014) 

General Discrete event 

simulation 

Multiple Development of generic simulation environment with case illustration. Focus on including food quality 

in supply chain simulation modelling. 

Etemadnia et al. 

(2015) 

Fruit and 

vegetables 

MIP + heuristic Single Cost minimization in a national supply chain to distribute food and vegetables. Emphasis on hub 

locations and transportation modes, as well as localization of food supply. 

An and Ouyang 

(2016) 

Grain MIP + game 

theory 

Single Bi-level robust optimization approach considering profit maximization and uncertain crop yields. 

Interaction between food company and farmers captured in Stackelberg game. 

Mohammed and 

Wang 

(2017a;2017b) 

Meat MIP Multiple Multi-objective approach (two transport aspects and delivery time) considering uncertainty in a variety 

of parameters. 

De Keizer et al. 

(2017) 

General MIP Single Profit-maximization approach with allocation of storage and processing activities in a network. 

Emphasis on product quality deterioration. General approach with case illustration. 

Soto-Silva et al. 

(2017) 

Apple MIP Multiple Combination of model for purchasing and model for storage and transportation, leading to bi-objective 

model (two different cost functions).  

Musavi and 

Bozorgi-Amiri 

(2017) 

General MIP + 

metaheuristic 

Multiple Multi-objective approach (economic, environmental, and quality indicators) to a location-routing 

problem. Development of genetic algorithm to solve the problem. 

Miranda-

Ackerman et al. 

(2017) 

Orange 

juice 

MIP + 

metaheuristic + 

MCDM 

Multiple Multi-objective approach (economic and environmental objectives) solved with genetic algorithm. 

Subsequent use of multi-criteria decision making (MCDM) to select between Pareto-optimal solutions. 

Varsei and 

Polyakovskiy 

(2017) 

Wine MIP Multiple Multi-objective approach (economic, environmental, and social objectives) solved with augmented 

epsilon constraint method. Emphasis on analyzing interactions between the objectives. 

Mogale et al. 

(2017a;2017b;201

8) 

Grain MINLP + 

metaheuristic 

Single Cost minimization in a national supply chain to distribute grain. Emphasis on food security and seasonal 

production. 

Allaoui et al. 

(2018) 

General MCDM + MIP Multiple Multi-criteria decision making (MCDM) to select supply chain partners, followed by multi-objective 

optimization for network design (various economic, environmental, and social objectives). 
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Martins et al. 

(2019) 

General MIP Multiple Lexicographic multi-objective approach (economic, environmental, and social objectives) for food bank 

networks. Emphasis on capacity decisions. 
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2.3 Solution approaches 

As an alternative to mathematical programming approaches, metaheuristics are often developed to solve 

SCD problems. Recent work also found that the use of metaheuristics is significantly growing in time, 

especially for complex SCD problems, for which analytic models could be ineffective (Mogale et al., 

2017a). This section therefore gives an overview of relevant solution approaches.  

Compared to the traditional optimization methodologies, metaheuristics do not guarantee that a 

globally optimal solution can be reached, but they allow for reasonable solutions within acceptable time. 

However, many logistics and SC problems are too large or too complex for traditional optimization 

methods to guarantee an optimal solution, while metaheuristics are often able to find near-optimal 

solutions in a reasonable amount of time. In addition to size and complexity arguments, metaheuristics 

provide a robust method that can be adapted to problems with different solution characteristics. This 

feature can be very helpful to face SC problems, constraints, and conditions that may change frequently. 

The structure of metaheuristic algorithms also makes them easy to update and re-run when changes 

occur (Lourenço 2005). However, also metaheuristics have their disadvantages. Establishing control or 

tuning parameters can increase the difficulty of metaheuristic algorithms, because the choice does not 

depend on a specific method, and sometimes various attempts have to be made using different parameter 

values. In the context of SCs, metaheuristics are however used for many typical problems, such as 

vehicle routing (Shyu, Lin & Yin 2004; Reimann & Laumanns 2006; Reimann & Ulrich 2006, Tang et 

al. 2014, Panicker et al., 2013), production planning (Bautista & Pereira 2007), job sequencing 

(McMullen, 2001) and product design (Albritton & McMullen, 2007); moreover, they have shown a 

great effectiveness of solving SCD problems. 

A widely used metaheuristic is the genetic algorithm (GA). For instance, Altiparmak et al. (2006) 

proposed a solution procedure based on a GA to find the set of Pareto-optimal solutions for multi-

objective SCD problem. They designed a four-echelon SC (suppliers, plants, warehouses, and 

customers) trying to optimize simultaneously the costs, the orders fulfilment within the due dates, and 

the capacity utilization for plants and warehouses. Costa et al. (2010) also used a GA with a new 

chromosome encoding and a complementary decoding procedure, able to overcome the drawbacks and 

thus improve the efficiency and effectiveness of three-stage SCs. They minimized the total logistic cost 

resulting from the transportation of goods and the location and opening of the facilities. Pinto (2004) 

used a multi-objective GA to solve a Pareto optimality problem of designing a single-product three-

stages SC; the study makes use of the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) 

developed by Deb et al. (2002). Another example is the work by Serrano et al. (2007), who propose an 

NSGA-II algorithm to mitigate the SC risks and to design a SC that is resilient enough to respond to a 

specific disruption in production.  
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In addition to GAs, other metaheuristics have also been applied to SCD. For instance, Cardona-

Valdès et al. (2014) applied a bi-objective tabu-search algorithm for the design of a two-echelon 

production-distribution network with multiple manufacturing plants, distribution centres, and a set of 

candidate warehouses. Chibeles-Martins et al. (2014) explored alternative strategies for the local search 

mechanism of a bi-objective simulated annealing algorithm. Swarm intelligence algorithms have also 

been applied to the general SCD problem, showing good effectiveness. For instance, Silva et al. (2004) 

considered an SC composed of three sub-systems: a logistic sub-system, a supplying sub-system and a 

distribution sub-system. The authors adopted an ant colony optimization (ACO) algorithm that showed 

a great effectiveness in finding a satisfactory SC configuration. Moncayo-Martinez and Zhang (2011) 

proposed an algorithm based on Pareto ant colony optimization (P-ACO) as an effective metaheuristic 

method for solving multi-objective SCD problems. More recently, Moncayo-Martinez (2015) presented 

an improved ACO-based algorithm, called rank-based ant system to solve a bi-objective SCD problem. 

As this summary shows, metaheuristic algorithms (and swarm-based algorithms in particular) 

appear as a class of suitable tools to solve SC design problems; they have been used in several studies 

reviewed. ACO algorithms, in particular, emerged as one of the best-suited metaheuristics to multi-

objective optimization and SCD problems. However, despite this fact, none of the studies reviewed has 

also taken into account resilience aspects, in terms of the disruption risks that may occur in a SC. 

Consequently, there are no existing studies that provide an effective swarm-based algorithm suitable to 

be adopted to design a resilient FSC, which is therefore the focus of this study. Hence, this paper extends 

the use of swarm intelligence algorithms to the issue of resilient FSCD in which disruptions might occur. 

This paper also aims to contribute to the literature by proposing a model suitable to be used in the case 

of a multi-echelon, multi-product FSC, subject to different supply disruption scenarios and demand 

variability. 

3 Resilient food supply chain design 

The purpose of RFSCD is to find an effective and efficient design of an FSC, while ensuring resilience 

to maintain operational continuity in major supply disruptions scenarios and in presence of demand 

variability. An FSC consists of a large number of players that are connected to and embedded in the 

network around them. Starting from raw materials suppliers, food products flow through different 

processing and distribution stages or activities. Also, these activities can often be performed by different 

actors or in different ways, leading to a selection process with different options for each activity at the 

core of the RFSCD problem.  

Furthermore, an aspect related to the resilience of supply is that suppliers can often be categorized 

based on their criticality. This paper distinguishes between critical and non-critical supply. A critical 

supply relates to the major raw materials, i.e. food ingredients whose quality directly affects final food 
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product quality, whereas non-critical supply relates to minor raw materials or services, which have less 

impact on the final food product quality (e.g. additives, packaging, or logistics support services). Finally, 

for the critical supply, a further distinction is made between high-quality and low-quality suppliers. 

An FSC is defined univocally by the set of its activities, by the (supply-demand) relationships 

between them, and by the specific food product or food product mix offered to internal and/or external 

markets. Therefore, the essential data required to describe an FSC consist of four elements, namely: 

 The food products type and characteristics; 

 the number and the type of players (activities) and their criticality; 

 the supply-demand relationships between these activities; 

 the number of options available to perform each activity. 

 

More specifically, FSC activities can be organized into 3 groups (illustrated in Figure 1): 

1. A food supply stage, which includes all suppliers (here, options represent different suppliers that 

can supply the same component/raw material); 

2. A food processing stage, which includes all the processing plants and transformation activities 

(here, options represent different manufacturing plants or different production lines in which an 

intermediate or final food product could be processed); 

3. A food distribution stage, which includes distribution centres, retailers, and delivery activities 

(here, options represent different ways of delivering a food product to distribution centers, 

retailers, retailer, and other marketplaces). 

 

The determination of the best SCD implies the selection of supply options, processing options, and 

delivery options across the FSC to optimize the performance of the network. The resilience of the SCD 

has to be included in the selection of options, in which the quality differentiation for the options of 

critical supply activities also adds a quality dimension to the trade-off between risks and supply chain 

performance. In this paper, two common objective functions are used simultaneously: total costs and 

total lead time, allowing for a comprehensive evaluation of the SC performance. 
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Figure 1: An illustrative FSC. 

4 Modelling framework and solution approach 

In this section, the modelling approach is described, starting with the graph representation of the RFSCD 

problem in Section 4.1, followed by the formulation of a bi-objective non-linear optimization model in 

Section 4.2. Afterwards, Section 4.3 outlines the adapted ACO algorithm proposed to solve the problem. 

4.1 Graph representation 

To be able to describe the SCD problem and the solution approach formally, the FSC is represented in 

the form of a two-level weighted graph. Graph theory is a common representation in SCD problems 

(Moncayo-Martìnez & Zhang, 2013; Mogale et al., 2017a) and in ACO-based algorithms in particular, 

as in the original formulation of the ACO algorithm ants are modelled as entities that move from one 

node to another through arcs that connect those nodes (Dorigo & Stützle, 2004).  

According to the notation Table 1, primary activity nodes correspond to a specific FSC activity 𝑣𝑖
𝑟 ∈ 𝑉, 

where 𝑖 represents the activity and 𝑟 the activity type, which can encompass three subsets of activities 

(supply activities, processing activities, and distribution activities). 

Table 1: Notation used in the graph representation. 

Superscripts Description 

𝑟 activity type (𝑟 = 𝑠 for supply, 𝑟 = 𝑝 for production, 𝑟 = 𝑑 for delivery) 

𝐶𝑅,𝑁𝐶𝑅 critical, non-critical 

𝐻𝑄, 𝐿𝑄 high-quality, low-quality 
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Subscripts Description 

𝑖 FSC activity (𝑖 = 1,…𝑁), 𝑁 = 𝑁𝑠 + 𝑁𝑝 + 𝑁𝑑, 𝑁𝑟𝑁 ∀𝑟, 𝑁𝑟
𝐶𝑅 + 𝑁𝑟

𝑁𝐶𝑅 = 𝑁𝑟  ∀𝑟 

𝑗 option of an activity (𝑗 = 1… 𝐽𝑖) 

Parameter Description 

𝑉 Set of primary activity-nodes of the FSC, with subsets 𝑉𝑟𝑉 ∀𝑟 and 𝑉𝑠 + 𝑉𝑝 + 𝑉𝑑 = 𝑉 

𝑣𝑖
𝑟 ∈ 𝑉 Primary activity node representing the 𝑖𝑡ℎ activity type 𝑟 

𝑊𝑖 Set of nodes including all options to perform the 𝑖𝑡ℎ  activity, 𝑊𝑖
𝐻𝑄
𝑊𝑖  , 𝑊𝑖

𝐿𝑄
𝑊𝑖  and 𝑊𝑖 =

𝑊𝑖
𝐻𝑄 +𝑊𝑖

𝐿𝑄
 

𝑤𝑖𝑗
𝑟 ∈ 𝑊𝑖 Secondary activity node representing the 𝑗𝑡ℎ option to perform the 𝑖𝑡ℎ activity type 𝑟 

𝐶𝐴𝑃𝑚𝑎𝑥𝑖𝑗
𝑟  Maximum capacity of 𝑤𝑖𝑗

𝑟  [kg/month]  

𝐶𝐴𝑃𝑖𝑗𝑡
𝑟  Capacity of 𝑤𝑖𝑗

𝑟  at time t [kg/month] 

𝑐𝑖𝑗
𝑟  Cost of the 𝑗𝑡ℎ option for the 𝑖𝑡ℎ activity type 𝑟 [€/kg] 

𝑡𝑖𝑗
𝑟  Lead time of 𝑗𝑡ℎ option for the 𝑖𝑡ℎ activity type 𝑟 [days] 

𝜋𝑖𝑗
𝑠  Disruption probability of 𝑗𝑡ℎ option for the 𝑖𝑡ℎ supply activity [%] 

𝐴 Set of arcs, i.e. possible supply-demand relationships between activity-nodes, consisting of node 

pairs (𝑣𝑖
𝑟 , 𝑣𝑖′

𝑟) ∈ 𝑉 with possible combinations 𝑖 ∈ 𝐼𝑠 ∧ 𝑖
′ ∈ 𝐼𝑝 , 𝑖 ∈ 𝐼𝑝 ∧ 𝑖

′ ∈ 𝐼𝑝 , 𝑖 ∈ 𝐼𝑝 ∧ 𝑖
′ ∈ 𝐼𝑑 

 

Then, since each primary activity-node 𝑣𝑖
𝑟 has 𝑗 ∈ 𝐽𝑖  options to be performed, secondary activity 

nodes 𝑤𝑖𝑗
𝑟  are introduced to represent these options, combined in a set 𝑊𝑖 of all options available for 

activity 𝑖. To distinguish the high-quality options from the low-quality options for the critical supply 

activities, subsets 𝑊𝑖
𝐻𝑄   𝑊𝑖 and 𝑊𝑖

𝐿𝑄   𝑊𝑖 are used. 

The set of arcs in the graph representation shows the supply-demand relationships among the 

activity-nodes. There can be relationships between supply and processing activities, between two 

processing activities, and between processing and distribution activities.  

To illustrate the graph representation, Figure 2 shows a scheme of an FSC network. This example 

contains four critical primary activity nodes representing supply, each containing some high-quality and 

low-quality options represented with the secondary activity nodes. The example further contains three 

non-critical primary activity nodes for supply activities, four for processing activities, and four for 

distribution activities. Each primary activity node also has two or three secondary activity nodes 

representing the different options available to perform these activities. 

Finally, weights are associated to each of the secondary activity nodes of the graph to describe the 

characteristics of the specific activity option that is represented. More specifically, each node 𝑤𝑖𝑗
𝑟  has its 

own activation and utilization cost 𝑐𝑖𝑗, a processing lead time 𝑡𝑖𝑗  and a maximum production capacity 

𝐶𝐴𝑃𝑖𝑗. Moreover, in order to be able to evaluate different supply disruption scenarios, each secondary 

supply activity node 𝑣𝑖𝑗
𝑠  has a disruption probability value 𝜋𝑖𝑗 that must be estimated from historical 

disruption data. This paper does not further elaborate on this, but it should be noted that it might be 

useful to use conservative (i.e. not too low) estimates of the disruption probabilities. 
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4.2 Mathematical model formulation 

To formulate the mathematical model, the additional notation outlined in Table 2 is used. The model 

aims to capture the RFSCD problem described above and is based on the assumptions described below. 

1. The market demand must be fully satisfied in each period 𝑡 over a one-year time horizon; 

2. Food products are distributed to different markets from delivery nodes, while the other primary 

activity nodes have internal customers only; 

3. The selling price for the 𝑘𝑡ℎ product is known and depends on the quality level of the critical 

raw materials supplied; 

4. The demand for the 𝑘𝑡ℎ product is normally distributed across the different periods and i.i.d. 

The average demand value is assumed fixed at each period 𝑡 to account for 𝜇𝑘𝑡 ≡ 𝐷𝑘𝑡; 

5. For any period 𝑡, the average demand value at each internal primary activity node is the sum of 

the average demand values of its downstream activity nodes;  

6. Every secondary activity node (i.e. every option) has a fixed maximum production capacity; 

𝑤 , 
𝑠

𝑤 , 
𝑠

𝑤 , 
𝑠

𝑤 , 
𝑠

𝑤 , 
𝑠

𝑤 , 
𝑠

𝑤 , 
𝑠

𝑤 , 
𝑠

𝑤 , 
𝑠

𝑤 , 
𝑠

𝑤 , 
𝑠

𝑤 , 
𝑠

𝑤 , 
𝑠

𝑤 , 
𝑠

𝑤 , 
𝑠

𝑤 , 
𝑝

𝑤 , 
𝑝

𝑤 , 
𝑝

𝑤 , 
𝑝

𝑤 , 
𝑝

𝑤 , 
𝑠

𝑤 , 
𝑠

𝑤  , 
𝑝

𝑤  , 
𝑝

𝑤 , 
𝑠

𝑤 , 
𝑠

𝑤 , 
𝑠

𝑤  , 
𝑝

𝑤  , 
𝑝

𝑤  , 
𝑝

𝑤  , 
𝑝

𝑤  , 
𝑝

𝑤  , 
𝑝

𝑤  , 
𝑝

𝑤  , 
𝑝

𝑤  , 
𝑝

𝑤  , 
𝑝

𝑤  , 
𝑝

Critical supply High-quality supply Low-quality supply

Secondary activity
nodes (set of options)

Primary activity node

Figure 2: An example of a FSC representation by graph. 
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7. A multiple sourcing policy is assumed. In any period 𝑡, if the best available option selected to 

perform a primary activity is not able to satisfy the total demand at that primary activity node, 

a further activity option must be added. This operation is repeated until the demand is fully 

satisfied; 

8. Lead times are deterministic; 

9. The total lead time (𝑇𝐿𝑇) of the supply chain is obtained as the maximum time-to-market of the 

product.  

 

Table 2: Notation used in the mathematical model formulation. 

Index, 

parameter, 

or variable 

Description 

𝑘 Food products (𝑘 = 1,…𝐾) 

𝑡  Time horizon (𝑡 = 1,… 𝑇) 
𝜀 Weighting objective factor assigned to Total Profit  (0 < 𝜀 ≤ 1) 
𝜔 Weighting objective factor assigned to Total Lead Time (0 < 𝜔 ≤ 1; 𝜔 = 1 − 𝜀) 
𝑝(𝑦𝑖𝑗

𝑟 )𝑘 Sales price of the 𝑘𝑡ℎproduct using 𝑤𝑖𝑗
𝑟  option  

𝑝𝑘
𝐻𝑄

 Sales price of the 𝑘𝑡ℎ product type HQ [€/kg] 

𝑝𝑘
𝐿𝑄

 Sales price of the 𝑘𝑡ℎ product type LQ [€/kg] 

𝐷𝑖𝑘𝑡
𝑑  Average demand value of the 𝑘𝑡ℎ  product at the 𝑖𝑡ℎ  delivery activity at time 𝑡 

[kg/month] 

𝜇𝑖𝑗𝑘𝑡  Quota of the 𝑘𝑡ℎ product demand satisfied by 𝑤𝑖𝑗
𝑟  at time 𝑡 [kg/month] 

𝐿𝑇𝑖𝑗  Lead time of option 𝑗𝑡ℎof activity 𝑖𝑡ℎ [days] 

𝐿𝑇𝑖𝑗
𝑑 Lead time of option 𝑗𝑡ℎof delivery activity 𝑖𝑡ℎ [days] 

𝑦𝑖𝑗
𝑟  Binary decision variable assigned to 𝑤𝑖𝑗

𝑟  

𝐿𝐿𝑇𝐿𝑇 Lower limit of the total lead time  

𝑈𝐿𝑇𝑃 Upper limit of the total profit  

 

Taking into account the assumptions above, the RFSCD problem can be formulated as a bi-objective 

non-linear mixed-integer model, with two conflicting objectives. Indeed, in presence of supply 

disruption, the supply chain must be able to reconfigure its structure by resorting to alternative suppliers, 

with the purpose of minimising the additional lead time this reconfiguration could involve. At the same 

time, the recourse to alternative suppliers should ensure that the market demand is fully satisfied and 

that the maximum supply chain profit can be generated.  

In line with these considerations, a bi-objective optimization problem, with objective functions 

𝑧 and 𝑧 , can be formulated in terms of the total profit (𝑇𝑃) and the total lead time (𝑇𝐿𝑇) of the supply 

chain, as follows: 

{
𝑚𝑖𝑛 𝑧 = 𝑚𝑖𝑛 𝑇𝐿𝑇 
𝑚𝑎𝑥 𝑧 = 𝑚𝑎𝑥 𝑇𝑃 

 (1) 

where: 

𝑇𝑃 = ∑ ∑ ∑ 𝑝(𝑦𝑖𝑗)𝑘 
𝑇
𝑡= 

𝑁𝑑
𝑖= 

𝐾
𝑘= 𝐷𝑖𝑘𝑡

𝑑 −∑ ∑ ∑ ∑ ∑ 𝜇𝑖𝑗𝑘𝑡 ∙ 𝑐𝑖𝑗
𝑟 ∙ 𝑦𝑖𝑗

𝑟𝐽𝑖
𝑗= 

𝑁
𝑖= 

𝑇
𝑡= 

𝐾
𝑘= 𝑟  (1a) 

𝑇𝐿𝑇 = ∑ 𝑚𝑎𝑥
𝑗∈𝐽𝑖

( 𝐿𝑇𝑖𝑗 ∙ 𝑦𝑖𝑗
𝑟𝑁

𝑖= ) (1b) 
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subject to: 

∑ 𝜇𝑖𝑗𝑘𝑡 ∙ 𝑦𝑖𝑗
𝑑 = 𝐷𝑖𝑘𝑡

𝑑                                                            ∀𝑘, 𝑡
𝐽𝑖
𝑗=  (2) 

∑ 𝜇𝑖𝑗𝑘𝑡 ∙ 𝑦𝑖𝑗
𝑟 = ∑ ∑ 𝜇𝑖′𝑗′𝑘𝑡 ∙ 𝑦𝑖′𝑗′

𝑟              ∀𝑘, 𝑡, 𝑟;  𝑖 = 1…𝑁𝑠 ∧ 𝑖
′ = 1…𝑁𝑝

𝐽𝑖
𝑗′= 𝑖′:∃(𝑖,𝑖′)∈𝐴

𝐽𝑖
𝑗=  (3) 

∑ 𝜇𝑖𝑗𝑘𝑡 ∙ 𝑦𝑖𝑗
𝑟 ≤ 𝐶𝐴𝑃𝑚𝑎𝑥𝑖𝑗

𝑟                                                ∀𝑖, 𝑗, 𝑟𝐾
𝑘=  (4) 

𝑝(𝑦𝑖𝑗
𝑟 )

𝑘
= {𝑝𝑘 

′ < 𝑝𝑘  𝑖𝑓 ∑ ∑ 𝑦𝑖𝑗  ≥ 1
𝐽𝑖
𝐿𝑄

    𝑗= 

𝑁𝑠
𝐶𝑅

𝑖= 

𝑝𝑘 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
             ∀𝑘, 𝑟    (5) 

𝑦𝑖𝑗
𝑟 = {

1 𝑖𝑓 𝑤𝑖𝑗
𝑟  𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                              ∀𝑖, 𝑟, 𝑗 = 1,… 𝐽𝑖 (6) 

It should be mentioned that selecting option node 𝑤𝑖𝑗
𝑟  does not necessarily mean that 𝑤𝑖𝑗

𝑟  is 

activated at its maximum capacity, in line with the fact that more options can be activated in the same 

node (see assumption #7 above). In this formulation, 𝑇𝑃 is computed as the difference between the total 

revenue from the sale of the finished product (𝑇𝑅) and the cost of goods sold (𝐶𝑂𝐺𝑆) by the FSC over 

the time horizon (eq.1a). In turn, 𝑇𝑅  equals to the sum of the price 𝑝(𝑦
𝑖𝑗
𝑟 )𝑘  of each product 𝑘𝑡ℎ 

multiplied by its average demand 𝐷𝑖𝑘𝑡
𝑑  seen at each period 𝑡 at each delivery activity-node. Note that the 

selling price 𝑝(𝑦
𝑖𝑗
𝑟 )𝑘 for the 𝑘𝑡ℎ food product is expressed as a function of the selected options type at 

each critical supplying activity-node, as shown in constraint (5). To be more precise, the 𝑘𝑡ℎ product 

price equals 𝑝𝑘 (the c price level) if all the selected options at any critical supplying activity are of 𝐻𝑄 

type, while it scores 𝑝′𝑘 < 𝑝𝑘 (the low-quality price level) if even one selected critical option-supplier 

is of 𝐿𝑄 type. The COGS in eq.1a is expressed as the fraction of the 𝑘𝑡ℎ product demand per unit time 

satisfied by the 𝑗𝑡ℎ option of the 𝑖𝑡ℎ activity and the cost of the 𝑗𝑡ℎ option at the 𝑖𝑡ℎ activity. 𝑦𝑖𝑗
𝑟  is a 

decision variable that scores 1 if option 𝑗  is selected to perform the activity 𝑖  and 0 otherwise, as 

expressed in constraint (6).  

Constraint (2) ensures that, for each period 𝑡, the market demand is fully satisfied at all delivery 

nodes. Constraint (3) ensures that the average demand per unit time at any activity-node is obtained as 

the sum of average demands per unit time of the downstream activities linked to it. Constraint (4) ensures 

that the demand value satisfied by every selected option for all the activity nodes does not exceed the 

maximum production capacities.  

𝑇𝐿𝑇 (eq.1b) is the computed by adding up the maximum lead time of each node, in line with the 

fact that an activity at a particular node cannot start until all required inputs are available at the node 

(i.e. until all preceding activities are completed). 

Using an alternative formulation, the bi-objective optimization problem can be integrated into a 

single-objective problem using the weighted-sum method, obtaining the following expression: 

𝑚𝑖𝑛 𝑧 =  𝑚𝑖𝑛{𝜀 ∙ (𝑒𝑇𝑃) + 𝜔 ∙ (𝑒𝑇𝐿𝑇)} (1*) 

where: 
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𝑒𝑇𝐿𝑇 =
|𝑇𝐿𝑇−𝐿𝐿𝑇𝐿𝑇|

𝐿𝐿𝑇𝐿𝑇
∙ 100 (1a*) 

𝑒𝑇𝑃 =
|𝑇𝑃−𝑈𝐿𝑇𝑃|

𝑈𝐿𝑇𝑃
∙ 100 (1b*) 

Constraints (2)-(6) still hold true in this formulation of the problem. The objective function (1*) is 

expressed as the weighted sum of the total profit and the total lead time through the weighting factors 𝜀 

and 𝜔 . Since 𝑇𝑃  and 𝑇𝐿𝑇  are two inhomogeneous quantities, they are normalized into percentage 

values (𝑒𝑇𝐿𝑇 and 𝑒𝑇𝑃) as expressed in (1a*) and (1b*). These terms defines the distance between the 

results returned of the FSCD (𝑇𝑃 and 𝑇𝐿𝑇) and their upper and lower limits, representing the situation 

of an FSC operating without disruptions. To be more precise, the 𝐿𝐿𝑇𝐿𝑇 can be computed by adding up 

the minimum lead time of each node, while the 𝑈𝐿𝑇𝑃 is the profit resulting if the supply chain is able to 

fully satisfy the market demand with high-quality products.  

The alternative formulation is useful to derive a synthetic index to evaluate the effectiveness of the 

solution found; moreover, it allows a different importance to be assigned to the two objectives, thus 

enabling some sensitivity analyses (cf. section 5.3). Finally, using a single objective is mandatory when 

solving the problem using linear programming solver; hence, this formulation will be employed to 

compare the results of the proposed algorithm with those returned by a linear programming solver. 

4.3 Adapted ACO algorithm 

As discussed earlier, SCD problems tend to lead to large and complex mathematical models, and 

heuristic procedures are often used to be able to provide decision support approaches that give 

reasonable solutions within limited time. Furthermore, the choice of developing an ACO-based 

algorithm reflects the fact that resilient SC characteristics of self-adaptation and self-coordination are 

well captured by the self-organization features of ant colonies. 

In this section, the adapted ACO algorithm developed to solve the RFSCD problem is described. 

Table 3 contains the additional notation we will use to describe the algorithm. 

 

Table 3: Nomenclature used in the adapted ACO algorithm to solve the RFSCD problem. 

Parameter 
Description  

𝑝 ant colonies (𝑝 = 1,…𝑃) 

𝑞 ants in a colony (𝑞 = 1,…𝑄) 

𝛼 relative importance of the pheromone trail 

𝛽 relative importance of the distance 

𝜌 pheromone evaporation rate (0 < 𝜌 < 1) 

𝜏𝑖𝑗
𝑟  Intensity of the pheromone deposited over the 𝑗𝑡ℎ option of the 𝑖𝑡ℎ activity type 𝑟 

∆𝜏𝑖𝑗
𝑟  Pheromone increment deposited over the 𝑗𝑡ℎ option of the 𝑖𝑡ℎ activity type 𝑟 

PM Pheromone Matrix 

𝜂𝑖𝑗 Heuristic value  

𝐹𝑆𝐶𝐷𝑝𝑞 FSCD generated by the 𝑞𝑡ℎ ant of the 𝑝𝑡ℎ colony 

𝑇𝑃𝑝𝑞  Value of Total Profit at the FSCD generated by the 𝑞𝑡ℎ ant of the 𝑝𝑡ℎ colony [€] 
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𝑇𝐿𝑇𝑝𝑞 Value of Total Lead Time at the FSCD generated by the 𝑞𝑡ℎ ant of the 𝑝𝑡ℎ colony [days] 

𝑁𝑤𝑖𝑗
𝑟  Neighbourhood of feasible choices while the current ant is at 𝑤𝑖𝑗

𝑟  

𝑃𝑤𝑖𝑗
𝑟  Probabilistic decision rule to select the 𝑗𝑡ℎ option of the 𝑖𝑡ℎ activity type 𝑟 [%] 

 

The adapted ACO algorithm starts with the determination of the number of ant colonies 𝑃, each 

consisting of 𝑄 ants. Each artificial ant, one after another, tours the entire network producing a FSC 

design (𝐹𝑆𝐶𝐷𝑝𝑞) which is essentially an ordered sequence of option choices made at the activities; 

formally:  

 𝐹𝑆𝐶𝐷𝑝𝑞 =

= {𝑜𝑝𝑡𝑖𝑜𝑛𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑜𝑟 𝑠𝑢𝑝𝑝𝑙𝑦 𝑛𝑜𝑑𝑒𝑠}𝑝𝑞 ∪ {𝑜𝑝𝑡𝑖𝑜𝑛𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑛𝑜𝑑𝑒𝑠}𝑝𝑞

∪ {𝑜𝑝𝑡𝑖𝑜𝑛𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑜𝑟 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑛𝑜𝑑𝑒𝑠}𝑝𝑞

= {(𝑤  
𝑠 𝑦  , 𝑤  

𝑠 𝑦  , …𝑤 𝐽1
𝑠 𝑦 𝐽1), (𝑤  

𝑠 𝑦  , 𝑤  
𝑠 𝑦  , …𝑤 𝐽2

𝑠 𝑦 𝐽2), … (𝑤𝑁𝑠 
𝑠 𝑦𝑁𝑠 , 𝑤𝑁𝑠 

𝑠 𝑦𝑁𝑠 , …𝑤𝑁𝑠𝐽𝑁𝑠

𝑠 𝑦𝑁𝑠𝐽𝑁𝑠)}
𝑝𝑞

∪ {(𝑤  
𝑝
𝑦  , 𝑤  

𝑝
𝑦  , …𝑤 𝐽1

𝑝
𝑦 𝐽1), (𝑤  

𝑝
𝑦  , 𝑤  

𝑝
𝑦  , …𝑤 𝐽2

𝑝
𝑦 𝐽2), … (𝑤𝑁𝑝 

𝑝
𝑦𝑁𝑝 , 𝑤𝑁𝑝 

𝑝
𝑦𝑁𝑝 , …𝑤𝑁𝑝𝐽𝑁𝑝

𝑝
𝑦𝑁𝑝𝐽𝑁𝑝)}

𝑝𝑞

∪ {(𝑤  
𝑑 𝑦  , 𝑤  

𝑑 𝑦  , …𝑤 𝐽1
𝑑 𝑦 𝐽1), (𝑤  

𝑑 𝑦  , 𝑤  
𝑑 𝑦  , …𝑤 𝐽2

𝑑 𝑦 𝐽2), … (𝑤
𝑁𝑑 
𝑑 𝑦𝑁𝑑 , 𝑤𝑁𝑝 

𝑑 𝑦𝑁𝑑 , …𝑤
𝑁𝑑𝐽

𝑁𝑑

𝑑 𝑦𝑁𝑑𝐽
𝑁𝑑
)}

𝑝𝑞

 

 (7) 

where (𝑤  
𝑟 𝑦  , 𝑤  

𝑟 𝑦  , …𝑤 𝐽1
𝑟 𝑦 𝐽1)𝑝𝑞

 denotes, e.g., the ordered subset of secondary activity nodes 

selected by ant 𝑞 of colony 𝑝 to perform the first activity type 𝑟. 

For artificial ants, the pheromone (𝜏) must be deposited over the graph which represent the problem. 

In order to do this, the pheromone matrix (𝑃𝑀) is created. The pheromone 𝜏 represents the desirability 

of the ants to choose each option at each of the FSC activity-node. The 𝑃𝑀 is defined as follows. 

𝑃𝑀 = {𝜏𝑖𝑗
𝑟 } = {

𝜏  
𝑟 𝜏  

𝑟 … 𝜏 𝐽1
𝑟

𝜏  
𝑟 𝜏  

𝑟 … 𝜏 𝐽2
𝑟

…𝜏𝑁𝑟 
𝑟 𝜏𝑁𝑟 

𝑟 𝜏𝑁𝑟𝐽𝑁𝑟

𝑟
} (8) 

where 𝜏𝑖𝑗
𝑟  is the pheromone quantity on option node 𝑤𝑖𝑗

𝑟 . 

To mimic the pheromone deposition and evaporation, the values of elements in the 𝑃𝑀 are updated, 

either through an evaporation process at specific points of time, or through enhancement by ants based on 

the performances (𝑇𝑃 and 𝑇𝐿𝑇) of the FSCD produced by each ant. This process of reinforcing and 

evaporating pheromones over the 𝑃𝑀 is known as pheromone matrix update and is described in (9): 

𝜏𝑖𝑗
𝑟 = {

𝜏𝑖𝑗
𝑟+∆𝜏𝑖𝑗

𝑟 + (1 − 𝜌)𝜏𝑖𝑗
𝑟         𝑖𝑓 𝑜𝑝𝑡𝑖𝑜𝑛 𝑤𝑖𝑗

𝑟  𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑣𝑖
𝑟

(1 − 𝜌)𝜏𝑖𝑗
𝑟                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                          

 (9) 

𝜌 in eq.10 is an evaporation factor in the range [0,1]. For the purpose of this study, ∆𝜏𝑖𝑗
𝑟  is computed 

as a function of the objectives to be optimized, as expressed in (10). 

∆𝜏𝑖𝑗
𝑟 =

 

𝑄
(𝑒

−
1

𝜀𝑒𝑇𝑃,𝑝𝑞 + 𝑒−
𝑒𝑇𝐿𝑇,𝑝𝑞

𝜔 ) ∀𝑤𝑖𝑗
𝑟 ∈ 𝐹𝑆𝐶𝐷𝑝𝑞  (10) 
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where 𝑄 is the number of ants in a colony, 𝜀 and 𝜔 are the weights of the two objectives and 𝑒𝑇𝑃,𝑝𝑞 

and𝑒𝑇𝐿𝑇,𝑝𝑞 represent the normalized 𝑇𝑃 and 𝑇𝐿𝑇 of the 𝐹𝑆𝐶𝐷𝑝𝑞, calculated using (1a*) and (1b*). 

An important task of every ant while it is on an option node 𝑤𝑖𝑗
𝑟  is to create its neighbourhood (𝑁𝑤𝑖𝑗

𝑟 ), 

which is defined as the set of all the possible options the ant can select to correctly perform the 𝑖𝑡ℎ activity. 

Formally, we can describe this neighbourhood as follows: 

𝑁𝑤𝑖𝑗
𝑟 = {𝑤𝑖𝑗

𝑟 |𝑤𝑖𝑗
𝑟 ∈ 𝑊𝑖 ; 𝑤𝑖𝑗

𝑟 ∉ 𝐹𝑆𝐶𝐷𝑝𝑞;  𝑤𝑖𝑗
𝑟  𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝐸𝑞𝑠. 2 − 6} (11) 

Once the ant has created the node’s neighbourhood, it selects an option node at each activity node 

of the FSC through a probabilistic decision rule, which states that the probability that the ant will choose 

the option 𝑤𝑖𝑗
𝑟  to perform the primary activity 𝑣𝑖

𝑟 is calculated by: 

𝑃𝑤𝑖𝑗
𝑟 = 

[𝜏𝑖𝑗
𝑟 ]𝛼[𝜂𝑖𝑗

𝑟 ]𝛽

∑ [𝜏𝑖𝑗
𝑟 ]𝛼[𝜂𝑖𝑗

𝑟 ]𝛽𝑤𝑖𝑗
𝑟 ∈𝑁

𝑤𝑖𝑗
𝑟

          ∀𝑤𝑖𝑗
𝑟 ∈ 𝑁𝑤𝑖𝑗

𝑟  (12) 

Here, 𝜂𝑖𝑗 is a heuristic value computed using (13); 𝛼 and 𝛽 are typical ACO parameters with values 

[0,1] and denote, respectively, the ants’ ability to select an option with high pheromone concentration 

and the ants’ ability to select an option with the shortest lead time and lowest cost. 

𝜂𝑖𝑗
𝑟 =

𝜀

𝑐𝑖𝑗
𝑟 +

𝜔

𝑡𝑖𝑗
𝑟  (13) 

If the problem is formulated as a bi-objective one (eq.1), 𝜀 and 𝜔 are set at 0.5 to apply the above 

formula. The approach uses 𝑃 colonies each consisting of 𝑄 ants, which tour one after another the nodes 

of the FSC graph, choosing the appropriate option nodes for each activity-node based on the decision 

probability rule in (12). For any ant on node 𝑖, the choice is made according to this probability rule, 

based upon both the 𝜏𝑖𝑗
𝑟  values (8) and the objectives and constraints of the problem (1)-(6). 

To simulate possible FSC disruptions scenarios in raw materials supply, a random value 𝑅𝑉𝑖𝑗𝑡
𝑠  is 

associated with each supply option 𝑤𝑖𝑗
𝑠  at time 𝑡. At each iteration, if the random value is less than the 

supply probability disruption 𝜋𝑖𝑗
𝑠  of 𝑤𝑖𝑗

𝑠 , then the maximum production capacity will change randomly 

as follows: 

𝐶𝐴𝑃𝑖𝑗𝑡
𝑠 = 𝑟𝑛𝑑(0: 1) ∙ 𝐶𝐴𝑃𝑚𝑎𝑥𝑖𝑗

𝑠 𝑖𝑓 𝑅𝑉𝑖𝑗𝑡
𝑠 < 𝜋𝑖𝑗

𝑠

𝐶𝐴𝑃𝑖𝑗𝑡
𝑠 = 𝐶𝐴𝑃𝑚𝑎𝑥𝑖𝑗

𝑠 𝑖𝑓 𝑅𝑉𝑖𝑗𝑡
𝑠 ≥ 𝜋𝑖𝑗

𝑠  (14) 

In case 𝑅𝑉𝑖𝑗𝑡
𝑠 < 𝜋𝑖𝑗

𝑠 , the capacity of 𝑤𝑖𝑗
𝑠  will be restored gradually in the subsequent iterations; more 

precisely, at time 𝑡 + 1, the capacity will be updated according to: 

𝐶𝐴𝑃𝑖𝑗𝑡+ 
𝑠 = 𝐶𝐴𝑃𝑖𝑗𝑡

𝑠 + [𝐶𝐴𝑃𝑖𝑗𝑡
𝑠 − 𝐶𝐴𝑃𝑖𝑗𝑡

𝑠 ∙ 𝑟𝑛𝑑(0: 1)] ∙
 

𝑡
 (15) 

If the production capacity of the selected option is not sufficient to satisfy the activity demand, the 

ant will select a further feasible option for that activity, to ensure operations continuity. In such 

condition, the first selected option would be used with its maximum production capacity, and the new 

one would satisfy the residual demand. This multiple sourcing policy is adopted also to face market 

demand fluctuations over the time horizon. 



19 

 

The combination of options resulting when all nodes have been toured by the 𝑞𝑡ℎ ant of the 𝑝𝑡ℎ 

colony represents an FSCD, whose performance in terms of 𝑇𝑃 and 𝑇𝐿𝑇 are calculated in (1c) and (1d). 

The set of FSCDs generated by all ants in the 𝑝𝑡ℎ colony is then analysed according to normalized 

performances to identify the best 𝐹𝑆𝐶𝐷𝑝𝑞, i.e. the 𝐹𝑆𝐶𝐷𝑝𝑞∗ that minimize the objective function in (1). 

Then, the particular ant 𝑞∗of the 𝑝𝑡ℎ colony that has generated the 𝐹𝑆𝐶𝐷𝑝𝑞∗ leaves its pheromone over 

the graph, triggering the pheromone update process in (10) and (11). 

The next colony is then used to tour the network using the PM resulting from the previous colony. 

All these operations are repeated until the last colony has completed the tour; then, the last generated 

𝐹𝑆𝐶𝐷𝑝𝑞∗ will be taken as the final solution of the RFSCD problem. A detailed flowchart of the algorithm 

is shown in Figure 3, and the proposed algorithm is shown in pseudo-code in the Appendix 1. 

 

 

Figure 3: Flowchart of the adapted ACO algorithm to solve the RFSCD problem. 
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5 Application and experimental results 

5.1 Case description and graph representation 

A readymade UHT tomato sauce FSC is taken as an example to illustrate and test the adapted ACO 

algorithm. The considered FSC produces three specific food products: Tomato & Basil sauce, Bolognese 

sauce and Amatriciana sauce. All the products characteristics and data for solving the RSFSCD problem 

(e.g. bill of materials, products recipe, 𝐻𝑄 price level, 𝐿𝑄 price level, etc.) were derived from specific 

market analyses. These three products are delivered both to the internal market (i.e. the “Italian market” 

node) and to the international one (i.e. the “international market” node). The related data for solving the 

problem are shown in Table 4 and were taken from a direct examination of the FSC; the weighted graph 

representing the FSC network is depicted in Figure 4. Overall, the readymade sauce FSC consists of 16 

activities nodes, shared among: 

 twelve supplying activity nodes (𝑣 
𝑠, 𝑣 

𝑠,…, 𝑣  
𝑠 ). The first seven of them must be considered as 

critical supplying activities, i.e. activities that directly affect the final quality level of the sauces; 

 two production activity nodes (𝑣  
𝑝

, 𝑣  
𝑝

); 

 two delivering activity nodes (𝑣  
𝑑 , 𝑣  

𝑑 ). 

The total number of secondary option nodes 𝑤𝑖𝑗
𝑟  is 53 and their sharing among all the activities is 

shown in Figure 4. Depending on the product recipe, not all the raw materials might be required; for 

instance, “meat” is not required for the Tomato & Basil sauce and therefore the corresponding node 

should not be visited when manufacturing this product. For a node to be visited, the demand value at 

each activity-node depends on the final product demand at the two delivery nodes, which is shown in 

Table 5 over the time horizon of 12 periods (one year) for each of the three products.  
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Figure 4: Readymade UHT tomato sauce FSC in graph representation. 

 

Table 4: Input data for the readymade UHT tomato sauce FSC 

Activity node - 𝒗𝒊
𝒓 Option - 

𝒘𝒊𝒋
𝒓  

Cost- 𝒄𝒊𝒋
𝒓  

[€/kg] 

Lead time - 

𝒕𝒊𝒋
𝒓  [days] 

Capacity - 𝑪𝑨𝑷𝒊𝒋 

[kg] 

Supply disruption 

probability - 𝝅𝒊𝒋
𝒔  [%] 

1 - Tomato 

(supply - critical) 

1* 0.58 5 27410 7 

2* 0.5 4 29480 7 

3* 0.46 6 21610 7 

4** 0.51 9 24860 7 

5** 0.49 8 29846 7 

2 - Basil 

(supply - critical) 

1* 0.26 7 1236 7 

2* 0.28 5 1632 7 

3* 0.23 6 1432 7 

4** 0.22 9 1513 7 

3 - Meat 

(supply - critical) 

1* 1.25 4 17652 7 

2* 1.21 5 16532 7 

3** 1.20 9 14165 7 

4** 1.21 8 18653 7 

4 - Oil 

(supply - critical) 

1* 2.21 5 14240 6 

2* 2.10 4 12650 6 

3** 2.08 8 16520 6 

5 - Onion 1* 0.29 4 16310 6 

𝑤 , 
𝑠

𝑤 , 
𝑠

salt

𝑤 , 
𝑠

𝑤 , 
𝑠
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𝑤  , 
𝑑
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𝑤 , 
𝑠

𝑤 , 
𝑠

𝑤 , 
𝑠

tomato
meat
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𝑠

𝑤 , 
𝑠

𝑤 , 
𝑠
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𝑠

𝑤 , 
𝑠

𝑤 , 
𝑠

𝑤 , 
𝑠
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carrot

𝑤 , 
𝑠

𝑤 , 
𝑠

𝑤 , 
𝑠

celery

𝑤 , 
𝑠

𝑤 , 
𝑠

𝑤 , 
𝑠

𝑤 , 
𝑠

𝑤 , 
𝑠

𝑤 , 
𝑠
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𝑤 , 
𝑠

𝑤  , 
𝑠

𝑤  , 
𝑠

spices

𝑤 , 
𝑠

𝑤 , 
𝑠

𝑤 , 
𝑠
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𝑤  , 
𝑠

𝑤  , 
𝑠
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𝑤  , 
𝑠

𝑤  , 
𝑠

𝑤  , 
𝑠
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𝑝

𝑤  , 
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𝑤  , 
𝑝

𝑤  , 
𝑝
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𝑑
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𝑤  , 
𝑑
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(supply - critical) 2* 0.22 3 13530 6 

3** 0.26 6 17850 6 

4** 0.23 9 12650 6 

6 - Carrot 

(critical supply) 

1* 0.21 4 19650 6 

2* 0.20 3 17300 6 

3** 0.19 7 1886 6 

7 - Celery 

(supply - critical) 

1* 0.19 5 1071 6 

2* 0.23 4 1015 6 

3** 0.22 8 1081 6 

8 - Salt  

(supply – non-critical) 

1 0.10 2 16520 3 

2 0.07 3 17200 3 

9 - Sugar 

(supply – non-critical) 

1 0.10 3 14300 3 

2 0.09 4 17650 3 

3 0.06 3 12400 3 

10 - Spices 

(supply – non-critical) 

1 0.23 5 60000 3 

2 0.17 3 30000 3 

11 - Additives 

(supply – non-critical) 

1 0.18 4 50000 3 

2 0.16 3 40000 3 

12 - Packaging 

(supply – non-critical) 

1 0.60 2 245100 3 

2 0.80 4 248200 3 

3 0.40 3 244300 3 

13 - Plant 1 

(manufacturing) 

1 1.52 2 12350 - 

2 1.56 3 14600 - 

3 1.42 5 12030 - 

4 1.36 4 13600 - 

14 - Plant 2 

(manufacturing) 

1 1.58 2 13260 - 

2 1.46 4 11460 - 

3 1.20 3 14520 - 

4 1.31 3 13400 - 

15 – Italian market 

(delivery) 

1 1.21 3 13100 - 

2 1.14 5 13500 - 

3 1.19 4 14000 - 

16 –International 

market 

(delivery) 

1 1.37 6 15600 - 

2 1.22 7 18500 - 

3 1.33 5 16200 - 

4 1.41 4 19500 - 

(*) 𝐻𝑄 critical supplying activity-option       (**) 𝐿𝑄 critical supplying activity-option 

Table 5: Average demand data for the FSC under examination. 

 Average monthly demand [kg/month] of 

UHT tomato sauce – Italian market 

Average monthly demand [kg/month] of 

UHT tomato sauce – international market 

Period Tomato & basil Bolognese Amatriciana Tomato & basil Bolognese Amatriciana 

1 10334 12320 10052 15162 15288 15274 

2 10370 10355 10330 15200 15370 15390 

3 10325 10330 10260 15220 15321 15320 

4 10390 10316 10106 15192 15268 15325 

5 10380 10329 10234 15213 15310 15302 

6 10354 10338 10348 15230 15346 15342 

7 10410 10422 10475 15310 15420 15454 

8 10460 10473 10492 15395 15490 15467 

9 10366 10360 10362 15294 15342 15347 

10 10310 10326 10120 15224 15302 15312 

11 10250 10302 10154 15187 15248 15280 

12 10290 10342 10326 15170 15326 15335 
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In order to provide the main outcomes of the performance analysis, the FSC is redesigned through 

the implementation of the proposed algorithm, generating a RFSCD. To evaluate the algorithm 

effectiveness, the redesign is compared with the current design in terms of performances (𝑇𝐿𝑇 and 𝑇𝑃). 

As there are three products in the supply chain, the 𝑇𝑃 is computed as the sum of the profits generated 

by each product, while the maximum lead time is taken as the 𝑇𝐿𝑇 of the system. Moreover, 𝑇𝐿𝑇 and 

𝑇𝑃 results are averaged across the 12 periods.  

The current FSCD is represented in graph in Figure 5. As mentioned earlier, an FSCD is described 

univocally by a set of ordered subsets of options selected to perform each FSC activity, as defined in 

(8). In particular, for each subset of option nodes, the first option in the sequence is used to satisfy the 

activity demand at its maximum production capacity; on the contrary, the last option in the subset will 

be exploited at a reduced capacity which equals to the residual demand value at that activity node. 

Therefore, reordering the order of elements (options) in a node would generate a different solution, i.e. 

a different FSCD. This means that for each node with 𝐽𝑖 options, the possible solutions to the problem 

are 𝐽𝑖
𝐽𝑖. Overall, the total number of solutions for the proposed FSCD is 1.54E+16. 

5.2 Parametrization of the algorithm 

5.2.1 Experimental design 

The adapted ACO algorithm was coded in MatlabTM and run on an Intel(R) CoreTM i3 2.4GHz CPU 

personal computer, equipped with Microsoft Windows 10 Pro 64-bit operating system. One important 

aspect in any metaheuristic is to tune the parameters of the algorithm in order to find the best results. 

There are a number of parameters involved in the ACO algorithm; the most relevant ones are 𝛼, 𝛽, 𝜌, 

𝜏, 𝑃 and 𝑄. Also, a relationship exists between 𝑃 and 𝑄, since fixing one and doubling the other one the 

execution time doubles (Fidanova & Marinov, 2013). 

To set these parameters effectively, several experimental analyses were carried out, considering a 

range of possible values derived from the literature. In particular, Dorigo et al. (1996) proposed to set 

the values of 𝛼 and 𝛽 from 2 to 5, as well as 𝜌 to 0.5 to get promising results in most ant systems. 

According to this, and with the aim of representing sufficiently different operating conditions of the 

algorithm, the following values were tested: 
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 𝛼 =1 and 𝛽=3, to investigate the condition in which the heuristic value dominates the 

pheromone concentration in generating RFSCD solutions; 

 𝛼=2 and 𝛽 =2, to investigate the condition in which none of them is dominant; 

 𝛼=3 and 𝛽=1, instead, to investigate the condition in which pheromone concentration is more 

important that the heuristic value in generating RFSCD solutions; 

 𝜌=0.1, 𝜌=0.5 and 𝜌 =0.9, to reflect three different situations in which the evaporation of the 

pheromone trail is extremely slow, moderately slow and extremely fast respectively;  

 𝜏=1 and 𝜏=0.5 reflecting the case of high and low initial quantity of pheromone trail; 

 𝑃=10 and 𝑃=20, with 𝑄=500, in order to intensify only the solution space exploitation phase 

of the algorithm. 

The combination of these settings led to 36 different scenarios. For each scenario, 10 runs of the 

algorithm were carried out to ensure significance of the outcomes. The results obtained were analysed 

in terms of performance of the algorithm and of effectiveness of the solution obtained. More precisely, 
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Figure 5: The current readymade UHT tomato sauce FSC design. 
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the CPU time required to reach a local optimal solution was evaluated as an indicator of the algorithm 

computational performance. As far as the solution quality is concerned, this was measured in terms of 

the total average error rate (𝑒𝑡𝑜𝑡), i.e. the mean of the average error rate in the 𝑇𝐿𝑇 (𝑒𝑇𝐿𝑇) and in the 𝑇𝑃 

(𝑒𝑇𝑃), already defined. To this end, a lower bound of the optimum 𝑇𝐿𝑇 value (𝐿𝐿𝑇𝐿𝑇) and an upper 

bound of the optimum 𝑇𝑃 value (𝑈𝐿𝑇𝑃) were calculated for each period and used in equations (1a) and 

(1b). These values were obtained by taking only the best option in terms of 𝑇𝑃 and 𝑇𝐿𝑇 for all activity 

nodes.  

5.2.2 Analysis of parametrization scenarios 

Table 6 shows the average results of the 36 scenarios. For each scenario, a possible solution of the 

RFSCD problem is provided, together with its performance in terms of 𝑒𝑇𝐿𝑇 and 𝑒𝑇𝑃 and of the average 

CPU time needed to solve the problem. The full analysis of the results returned by the algorithm as a 

function of the settings used can be found in Appendix 2. 

In terms of solution quality, expressed through the error rates, from Table 6 it is easy to see that 

five different settings of the algorithm return similar results, where the 𝑒𝑇𝐿𝑇 and 𝑒𝑇𝑃 are always less 

than 2%. From the point of view of the system’s resilience, this outcome indicates that all these settings 

are effective in identifying a new supply chain configuration where the 𝑇𝑃 and 𝑇𝐿𝑇 are very close to 

their ideal values. In terms of computational performance, instead, Table 6 also shows that the CPU time 

differs quite significantly as a function of the parameter setting (from 220 to 460 seconds, 

approximately), but it always remains in the range of several minutes; therefore, regardless of the setting, 

the algorithm is sufficiently fast for the analysis of long-term supply chain design problems. In line with 

this consideration, the most effective settings of the ACO algorithm were determined only in terms of 

the solution quality. Hence, the following setting turned out to be the most effective: 𝑃=20, 𝑄=500, 

𝜏=0.5, 𝛼=1, 𝛽=3, 𝜌=0.1. 
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ACO parameters RESILIENT FOOD SUPPLY CHAIN DESIGN OBJECTIVES 
AVERAGE ERROR 

RATE [%] 

CPU 

TIME 

P Q α β τ Ρ 𝑣 
𝑠 𝑣 

𝑠 𝑣 
𝑠 𝑣 

𝑠 𝑣 
𝑠 𝑣 

𝑠 𝑣 
𝑠 𝑣 

𝑠 𝑣 
𝑠 𝑣  

𝑠  𝑣  
𝑠  𝑣  

𝑠  𝑣  
𝑝

 𝑣  
𝑝

 𝑣  
𝑑  𝑣  

𝑑  TLT TP 𝒆𝑻𝑳𝑻 𝒆𝑻𝑷 𝒆𝑻𝑶𝑻 sec 

10  500 1 3 0.1 0.5 [3,2] 2 1 2 2 2 2 1 3 2 2 [3,1] [1,4,2] [3,2,4] [2,3,1] [4,3,1] 53 1466428.515 3.92% 1.59% 2.76% 222.46 

10  500 1 3 0.1 0.9 [3,2] 2 1 2 2 2 2 1 3 2 2 [3,1] [1,4,2] [3,2,4] [2,3,1] [4,3,1] 53 1466428.6 3.92% 1.59% 2.76% 230.22 

10  500 1 3 0.5 0.1 [2,1] 2 1 2 2 2 2 1 3 2 2 [3,1] [1,4,2] [3,4,1] [3,2,1] [3,1,4] 53 1463011.92 3.92% 1.82% 1.89% 222.49 

10  500 1 3 0.5 0.5 [2,1] 2 1 2 2 2 1 1 3 2 1 [3,1] [4,1,2] [3,4,1] [2,3,1] [3,1,4] 52 1463011.92 1.96% 1.82% 1.89% 220.02 

10  500 1 3 0.5 0.9 [2,1] 2 1 2 2 2 1 1 3 2 2 [3,1] [4,3,2] [4,3,1] [2,3,1] [1,3,4] 54 1462925.7 5.88% 1.83% 3.85% 222.58 

10  500 2 2 0.1 0.1 [2,1] 2 1 2 2 2 1 1 3 2 2 [3,1] [1,4,2] [3,2,4] [2,3,1] [4,3,1] 53 1465004.05 3.92% 1.69% 2.80% 253.04 

10  500 2 2 0.1 0.5 [1,2,3] 2 1 2 2 2 1 1 3 2 2 [3,1] [4,1,2] [3,4,1] [3,2,1] [3,2,4] 55 1467082.4 7.84% 1.55% 4.70% 222.83 

10  500 2 2 0.1 0.9 [2,1] 2 1 2 2 2 1 1 3 2 2 [3,1] [4,1,2] [3,4,1] [3,2,1] [3,1,4] 52 1463011.66 1.96% 1.82% 1.89% 222.83 

10  500 2 2 0.5 0.1 [3,2] 2 [1,2] 2 2 2 1 1 3 2 1 [3,1] [4,1,2] [3,4,1] [3,2,1] [1,3,4] 53 1465443.45 3.92% 1.66% 3.79% 222.49 

10  500 2 2 0.5 0.5 [3,2] 2 1 2 2 2 1 1 3 2 2 [3,1] [1,4,2] [3,4,1] [2,3,1] [2,3,1] 55 1468910.28 7.84% 1.43% 4.63% 220.63 

10  500 2 2 0.5 0.9 [3,2] 2 1 2 2 2 1 1 3 2 2 [3,1] [1,4,2] [3,4,1] [2,3,1] [2,3,1] 55 1468629.5 7.84% 1.44% 4.64% 250.01 

10  500 3 1 0.1 0.1 [2,1] 3 1 2 [2,1] 2 1 2 3 2 1 [3,1] [1,4,2] [3,4,2] [2,3,1] [1,3,4] 54 1460669.99 5.88% 1.98% 4.71% 259.55 

10  500 3 1 0.1 0.5 [2,1] 2 1 2 2 2 [1,2] 1 3 2 1 [3,1] [4,1,2] [3,4,2] [3,2,1] [2,1,4] 55 1466501.84 7.84% 1.59% 4.71% 220.46 

10  500 3 1 0.1 0.9 [2,1] 2 1 2 2 2 2 1 3 2 2 [3,1] [1,4,2] [3,4,1] [3,2,1] [3,1,4] 53 1463013.05 3.92% 1.82% 2.87% 236.76 

10  500 3 1 0.5 0.1 [2,1] 3 1 2 2 2 2 2 3 2 2 [3,1] [2,4,1] [3,4,2] [3,2,1] [1,3,4] 56 1467541.21 9.80% 1.52% 5.66% 229.89 

10  500 3 1 0.5 0.5 [3,2] 2 2 2 2 2 1 1 3 2 1 [3,1] [1,4,2] [3,4,1] [3,2,1] [2,3,4] 57 1468968.14 11.76% 1.42% 6.59% 221.76 

10  500 3 1 0.5 0.9 [2,1] 2 1 2 2 2 1 1 3 2 2 [3,1] [2,4,1] [3,4,2] [2,3,1] [3,2,4] 55 1460333.52 7.84% 2.00% 6.76% 254.33 

10  500 1 3 0.1 0.1 [2,1] 2 1 2 2 2 1 1 3 2 2 [3,1] [1,4,2] [3,2,4] [2,3,1] [4,3,1] 53 1466432.51 3.92% 1.59% 2.76% 220.22 

20  500 1 3 0.1 0.1 [2,1] 2 1 2 2 2 1 1 3 2 2 [3,1] [1,4,2] [3,2,4] [2,3,1] [4,3,1] 53 1460663.99 3.92% 1.98% 2.95% 445.04 

20  500 1 3 0.1 0.5 [2,1] 2 1 2 2 2 2 1 3 2 2 [3,1] [1,4,2] [3,4,1] [2,3,1] [1,3,4] 52 1463011.92 1.96% 1.82% 1.89% 445.72 

20  500 1 3 0.1 0.9 [2,1] 2 1 2 2 2 2 1 3 2 2 [3,1] [1,4,2] [3,4,2] [2,3,1] [2,3,4] 54 1464739.28 5.88% 1.71% 3.79% 429.63 

20  500 1 3 0.5 0.1 [2,1] 2 1 2 2 2 2 1 3 2 2 [3,1] [1,4,2] [3,4,2] [2,3,1] [1,3,4] 52 1464268.86 1.96% 1.74% 1.85% 443.99 

20  500 1 3 0.5 0.5 [2,1] 2 1 2 2 2 2 1 3 2 2 [3,1] [1,4,2] [3,4,1] [3,2,1] [3,1,4] 52 1463011.92 1.96% 1.82% 1.89% 442.89 

20  500 1 3 0.5 0.9 [2,1] 2 1 2 [2,1] 2 2 1 3 2 1 [3,1] [4,1,2] [3,2,1] [3,2,1] [1,3,4] 54 1460663.99 5.88% 1.98% 3.93% 445.35 

20  500 2 2 0.1 0.1 [3,2] 2 1 2 2 2 1 1 3 2 2 [3,1] [1,4,2] [3,4,1] [2,3,1] [2,3,1] 55 1468623.03 7.84% 1.44% 4.64% 445.12 

20  500 2 2 0.1 0.5 [2,1] 2 [1,2] 2 2 2 1 1 3 2 2 [3,1] [1,4,2] [4,3,2] [3,2,1] [1,3,4] 54 1464729.98 5.88% 1.71% 3.79% 438.91 

20  500 2 2 0.1 0.9 [2,1] 2 1 2 2 2 2 1 3 2 2 [3,1] [1,4,2] [3,2,1] [3,2,1] [1,3,4] 57 1462220.33 11.76% 1.87% 6.59% 434.02 

20  500 2 2 0.1 0.9 [2,1] 2 1 2 2 2 [1,2] 1 3 2 2 [3,1] [4,2,3] [4,3,1] [3,2,1] [2,3,1] 57 1463222.52 11.76% 1.81% 4.63% 459.25 

20  500 2 2 0.5 0.5 [2,1] 3 1 2 2 2 2 2 3 2 2 [3,1] [2,4,1] [3,4,2] [3,2,1] [1,3,4] 54 1464219.58 5.88% 1.74% 3.81% 435.1 

20  500 2 2 0.5 0.9 [3,2] 2 1 2 1 2 1 1 3 2 1 [3,1] [4,2,3] [1,3,2] [3,2,1] [3,1,4] 57 1464754.65 11.76% 1.70% 6.73% 453.87 

20  500 3 1 0.1 0.1 [2,1] 3 1 2 1 2 2 2 3 2 1 [3,1] [4,2,3] [3,4,1] [2,3,1] [3,1,4] 55 1466519.22 7.84% 1.59% 3.81% 445.35 

20  500 3 1 0.1 0.5 [2,1] 3 1 2 2 2 2 2 3 2 2 [3,1] [2,4,1] [3,4,2] [3,2,1] [1,3,4] 55 1467196.8 7.84% 1.54% 4.69% 454.55 

20  500 3 1 0.1 0.9 [2,1] 3 1 2 2 2 2 2 3 2 2 [3,1] [2,4,1] [3,4,2] [3,2,1] [1,3,4] 55 1467934.78 7.84% 1.49% 4.67% 447.23 

20  500 3 1 0.5 0.1 [2,1] 2 1 2 2 2 2 1 3 2 2 [3,1] [1,4,2] [3,4,2] [2,3,1] [2,3,4] 54 1467891.02 5.88% 1.49% 4.69% 422.55 

20  500 3 1 0.5 0.5 [3,2] 2 1 2 1 2 1 1 3 2 1 [3,1] [4,2,3] [1,3,2] [3,2,1] [3,1,4] 57 1463909.27 11.76% 1.76% 6.76% 459.25 

20  500 3 1 0.5 0.9 [2,1] 2 1 2 2 2 1 1 3 2 2 [3,1] [4,3,2] [4,3,2] [2,3,1] [2,1,4] 52 1461235.22 1.96% 1.94% 2.76% 443.99 

Table 6: Results for the resilient FSC designs (each averaged over 10 runs). 
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5.3 Supply chain redesign and sensitivity analysis 

In order to illustrate the use of the adapted ACO algorithm, this paper aims to redesign the tested FSC 

through the implementation of the proposed algorithm, generating an RFSCD. To evaluate the result, 

the redesign is compared with the current design in terms of performances (𝑇𝐿𝑇 and 𝑇𝑃). The current 

FSCD is represented by the graph in Figure 5. The new FSC generated by the algorithm is illustrated in 

Figure 6. The comparison of Figure 5 and Figure 6 highlights that the proposed ACO algorithm has 

removed parts of the original FSCD and introduced new ones. These changes aim at ensuring that every 

subset of selected options is able to fully satisfy the activity demands at each time period in presence of 

uncertainties, as well as to globally maintain business operations continuity in all the considered 

disruption scenarios of raw materials supply, making the entire FSC more resilient. For instance, the 

following changes can be seen: 
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Figure 6: The readymade UHT tomato sauce RFSCD generated by the ACO algorithm. 
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- 𝑣 
𝑠  “tomato” (critical node): the same options are selected for this node, i.e. 𝑤 , 

𝑠  and 𝑤 , 
𝑠 . 

However, in the RFSC 𝑤 , 
𝑠  must be inserted at maximum capacity and 𝑤 , 

𝑠  at reduced capacity 

equal to the residual demand at the node; 

- 𝑣  
𝑠  “packaging” (non-critical node): 𝑤  , 

𝑠 is eliminated while 𝑤  , 
𝑠  must be inserted at its 

maximum capacity and𝑤  , 
𝑠  at reduced capacity equal to the residual demand at the node; 

- 𝑣  
𝑝

 “plant 1”: 𝑤  , 
𝑝

 is eliminated and 𝑤  , 
𝑝

 is set at its maximum capacity. In addition, a new 

option 𝑤  , 
𝑝

 is introduced as set at its maximum capacity. In option 𝑤  , 
𝑝

 instead, the quantity 

required has been reduced to the residual demand seen by the node; 

- 𝑣  
𝑑  “Italian market”: all options are kept, but reallocating the total demand at each option. In 

particular, 𝑤  , 
𝑑  and 𝑤  , 

𝑑  are set at their maximum capacity, while the residual capacity is 

attributed to the 𝑤  , 
𝑑  option; 

- 𝑣  
𝑑  “international market”: 𝑤  , 

𝑑  is eliminated, while 𝑤  , 
𝑑  is kept at its same capacity and 𝑤  , 

𝑑  

kept at maximum capacity. In additions, a new option 𝑤  , 
𝑑  is introduced and set at reduced 

capacity, equal to the residual demand faced by the node.  

Table 7 contains a comprehensive list of all changes that were introduced by the algorithm.  

Table 7: results provided by the algorithm. 

Activity 𝑣𝑖
𝑟  FSCD vs. RFSCD (after ACO implementation) 

Tomato (critical supply) 𝑣 
𝑠 
 𝑤 , 

𝑠  set at maximum capacity 

 𝑤 , 
𝑠  set at reduced capacity (residual demand faced by the node) 

Basil (critical supply) 𝑣 
𝑠 
 𝑤 , 

𝑠  eliminated 

 𝑤 , 
𝑠  set at maximum capacity 

Meat (critical supply) 𝑣 
𝑠 same configuration 

Oil (critical supply) 𝑣 
𝑠 
 𝑤 , 

𝑠  eliminated  

 𝑤 , 
𝑠  set at maximum capacity 

Onion (critical supply) 𝑣 
𝑠 
 𝑤 , 

𝑠  eliminated  

 𝑤 , 
𝑠  set at maximum capacity 

Carrot (critical supply) 𝑣 
𝑠 
 𝑤 , 

𝑠  eliminated  

 𝑤 , 
𝑠  set at maximum capacity 

Celery (critical supply) 𝑣 
𝑠 
 𝑤 , 

𝑠  eliminated  

 𝑤 , 
𝑠  set at maximum capacity 

Salt (non-critical supply) 𝑣 
𝑠 same configuration 

Sugar (non-critical supply) 𝑣 
𝑠 
 𝑤 , 

𝑠  eliminated  

 𝑤 , 
𝑠  set at maximum capacity 

Spices (non-critical supply) 𝑣  
𝑠  

 𝑤  , 
𝑠  eliminated  

 𝑤  , 
𝑠  set at maximum capacity 

Additives (non-critical 

supply) 
𝑣  
𝑠  

 𝑤  , 
𝑠  eliminated  

 𝑤  , 
𝑠  set at maximum capacity 
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Packaging (non-critical 

supply) 
𝑣  
𝑠  

 𝑤  , 
𝑠  eliminated 

 𝑤  , 
𝑠  set at maximum capacity  

 𝑤  , 
𝑠  set at reduced capacity (residual demand faced by the node) 

Plant 1 (manufacturing) 𝑣  
𝑝

 

 𝑤  , 
𝑝

 eliminated 

 𝑤  , 
𝑝

 set at maximum capacity  

 𝑤  , 
𝑝

 set at a reduced quantity (residual demand faced by the node) 

 new option 𝑤  , 
𝑝

 introduced and set at maximum capacity  

Plant 2 (manufacturing) 𝑣  
𝑝

 

 𝑤  , 
𝑝

 eliminated 

 capacity modified for 𝑤  , 
𝑝

 and 𝑤  , 
𝑝

  

 new option 𝑤  , 
𝑝

 introduced and set at maximum capacity 

Italy (market) 𝑣  
𝑑  

 𝑤  , 
𝑑  and 𝑤  , 

𝑑  set at maximum capacity  

 𝑤  , 
𝑑  set at the residual capacity  

Abroad (market) 𝑣  
𝑑  

 𝑤  , 
𝑑  eliminated 

 𝑤  , 
𝑑  kept at the same capacity  

 𝑤  , 
𝑑  kept at minimum capacity 

 new option 𝑤  , 
𝑑  introduced and set at reduced capacity (residual 

demand faced by the node) 

 

The comparison between the two FSC configurations in terms of the key performance parameters 

is shown in Figure 7. It can be concluded that the implementation of the proposed ACO algorithm to the 

case study reduced the 𝑇𝐿𝑇 by approximately 18.75% and increased the 𝑇𝑃 by 1.74% simultaneously, 

compared to the original configuration. Therefore, the new design enhances both the resilience and the 

efficiency of the entire FSC (compared to the current situation).  

The proposed ACO was further tested by means of a sensitivity analysis, to evaluate the changes in 

the outputs generated by a modification of the weights of the objective functions, i.e. 𝜀 and 𝜔. The 

previous experimental studies were carried out by setting both weights at 0.5, reflecting the situation 

where the decision maker considers the two objectives equally important. The best setting of the ACO 

parameters, previously found, is assumed. 

The sensitivity analysis was carried out considering two further situations, specifically: 

 𝜀=0.2 and 𝜔=0.8, i.e. the case in which 𝑇𝐿𝑇 is more important than 𝑇𝑃 in the decision-making 

process; and  

 𝜀=0.8 and 𝜔=0.2, i.e. the (opposite) situation in which 𝑇𝑃 is more important than 𝑇𝐿𝑇 in the 

decision-making process. 
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Considering the same sources of uncertainty (i.e. disruptions in raw materials supply and food 

market demand fluctuations), the algorithm generated different resilient designs for the FSC considered, 

as a function of the weights set for the objectives functions. The resulting RFSCDs are detailed in Table 

7, while the values of the objective functions at each period are shown in Figure 7. It can be concluded 

that the adapted ACO algorithm is able to generate different solutions for the RFSCD problem and that 

such solutions are perfectly consistent with the different optimization purposes.  

 

Table 7: The generated RFSCDs by changing 𝜺 and 𝝎 values. 

Weighting  

factors 

Resilient Food Supply Chain Design 

𝜀 𝜔 𝑣 
𝑠  𝑣 

𝑠  𝑣 
𝑠  𝑣 

𝑠  𝑣 
𝑠  𝑣 

𝑠  𝑣 
𝑠  𝑣 

𝑠  𝑣 
𝑠  𝑣  

𝑠  𝑣  
𝑠  𝑣  

𝑠  𝑣  
𝑝

 𝑣  
𝑝

 𝑣  
𝑑  𝑣  

𝑑  

0.2 0.8 [2,1] 2 1 2 2 2 2 1 3 2 2 [3,1] [1,4,2] [4,3,1] [1,2,3] [3,1,4] 

0.5 0.5 [2,1] 2 1 2 2 2 2 1 3 2 2 [3,1] [1,4,2] [3,4,2] [2,3,1] [1,3,4] 

0.8 0.2 [3,2] 2 1 2 2 2 2 1 3 2 2 [3,1] [4,1,2] [3,4,2] [2,3,1] [3,1,4] 

5.4 Comparison with alternative approaches 

To confirm the effectiveness of the ACO algorithm, the same FSCD problem was solved using two 

additional approaches and the related results were compared to those returned by the proposed 

algorithm. 

5.4.1 Multi-objective optimization 

The first approach consists in modelling the problem as a bi-objective one (maximum 𝑇𝑃 and 

minimum 𝑇𝐿𝑇) and solving it with a multi-objective optimization software. To this end, the set of 

equations 1-6 previously described in section 4.2 was embodied in a Microsoft Excel™ model with 

VBA macros, together with the input data provided in section 5.1. Macros were used to generate random 

values of the disruption probabilities (10 values per period) as well as to switch among the different 

periods. ModeFRONTIER release 2018R3 (ESTECO S.p.A.) for Windows was used in support to the 

Microsoft Excel™ model to create the workflow of the design problem and to solve it with multi-

objective optimization (Figure 8). The problem formulation in ModeFRONTIER requires 53 decision 

Figure 7: The objectives values of the generated RFSCDs by varying ε and ω. 
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variables per product (159 variables overall), which were grouped into three input vectors because of 

their similarities across the three products. Decision variables reflect the 𝑦𝑖𝑗
𝑟  values in eq.6. NSGA-II 

(Deb et al., 2002) was selected as the multi-objective evolutionary algorithms to solve the problem 

because of its effectiveness. The multi-objective optimization algorithm returns approximately 1,500 

configurations for each period evaluated and for each value of the disruption probability (≈1.8*105 

results). Running the Microsoft ExcelTM macros to generate the disruption probabilities and the 

ModeFRONTIER model for multi-objective optimization on an Intel® Core™ i7 laptop with 32 GB 

RAM required approximately 3-4 minutes per period (35-45 minutes overall). The outcomes were then 

exported and subsequently elaborated in Microsoft Excel™ to evaluate their feasibility with respects to 

the problem constraints and to assign the relative importance to the two objective functions, so as to 

identify the most suitable solutions.  

 

Figure 8: multi-objective optimization workflow in ModeFRONTIER. 

The top-30 results returned by the multi-objective optimization software are shown in Table 8. From 

this table (which is limited to the minimum 𝑇𝐿𝑇 identified in the optimization) it is easy to see that 𝑇𝑃 

does not exhibit a wide variability; rather, it oscillates around two possible values. This characteristic is 

due to the constraint set about the market demand, which must always be satisfied (cf. section 4.2); 

because of this constraint, the turnover generated by supply chain cannot vary to an appreciable extent. 

More precisely, its maximum value is obtained when the demand can be satisfied using high quality 

supplies, while its minimum value is obtained if the demand cannot be satisfied using high quality 

supplies only and therefore the final product is sold at the low quality price. Oscillations around the 

maximum or minimum value can be due, for instance, to the different option nodes activated, which 

involve different production costs. Consequently, 𝑇𝑃 computed as the difference between turnover and 

cost, does not show a wide variability, as can also be appreciated looking at the previous results in Table 

6. Nonetheless, it is interesting to note that the results Table 8 are in line with those proposed previously 

in Table 6, both in terms of 𝑇𝐿𝑇 and 𝑇𝑃. Indeed, the minimum 𝑇𝐿𝑇 returned by the multi-objective 

optimization scores 52 days, and the best 𝑇𝑃 is around 1,475,000 €; this latter is slightly higher than that 

Input data of the three
products

Microsoft ExcelTM

simulator

Objective functions

Optimization
scheduler
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returned by the ACO model, which could be attributed to the random disruption probability values 

generated.  

𝑻𝑳𝑻 [days] 𝑻𝑷 [€] 

52 1474944.62 

52 1474848.73 

52 1465509.04 

52 1465501.37 

52 1465486.02 

52 1465139.54 

52 1465129.31 

52 1464669.04 

52 1464642.19 

52 1464626.85 

52 1464620.46 

52 1464601.28 

52 1464314.89 

52 1464284.20 

52 1464273.97 

52 1464268.86 

52 1464243.29 

52 1455702.68 

52 1455344.69 

52 1455273.10 

52 1454503.42 

52 1454440.77 

52 1454421.59 

52 1454413.92 

52 1454392.19 

52 1454168.44 

52 1454164.61 

52 1454160.77 

52 1454139.04 

52 1454053.37 

Table 8: top-30 configurations returned by the multi-objective optimization. 

5.4.2 Mathematical programming solver 

The second approach was to model the single-objective problem (eq.1* with 𝜀=𝜔=0.5) in IBM 

ILOG CPLEX Optimization Studio, a solver for both mathematical programming and constraint 

programming problems. According to the problem structure, the model developed in IBM ILOG CPLEX 

consists again in 53 binary decision variables per product (159 variables overall), reflecting the option 

nodes in the network. For each option node, further data to be included in the model are capacity, lead 

time, disruption probability and production cost. Moreover, each option node can be high-quality or 

low-quality. The main characteristics of the final products include their selling price (high-quality or 
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low-quality) and the market demand (national and international). These latter values are specific for 

each period; therefore, each period was modelled separately in IBM ILOG CPLEX. Again, the 

disruption probabilities were generated using Microsoft Excel™ (10 values per period). Overall, 120 

different sets of data (12 periods x 10 disruption probabilities) were imported in IBM ILOG CPLEX, 

which means that 120 problems were solved separately. The set of solutions is too long to be fully 

reported in this paper; as an example of the solution provided, Table 9 shows the solution returned by 

IBM ILOG CPLEX for period 1 with a given set of disruption probabilities. As Table 9 shows, the 

solution is, once again, similar to that returned by the proposed ACO algorithm. In general, the solver 

privileges the activation of the first option node available, thus generating a 𝑇𝐿𝑇 slightly higher than 

that returned by the proposed approach, but also a very good 𝑇𝑃 . Details about the option nodes 

activated are provided in Table 10. 

RESILIENT FOOD SUPPLY CHAIN DESIGN OBJECTIVES 

AVERAGE 

ERROR RATE 

[%] 

𝑣 
𝑠 𝑣 

𝑠 𝑣 
𝑠 𝑣 

𝑠 𝑣 
𝑠 𝑣 

𝑠 𝑣 
𝑠 𝑣 

𝑠 𝑣 
𝑠 𝑣  

𝑠  𝑣  
𝑠  𝑣  

𝑠  𝑣  
𝑝

 𝑣  
𝑝

 𝑣  
𝑑  𝑣  

𝑑  TLT TP 𝒆𝑻𝑳𝑻 𝒆𝑻𝑷 𝒆𝑻𝑶𝑻 

[1,2] 1 1 1 1 1 1 1 1 1 2 1 [1,2,3] [1,2,3] [1,2,3] [1,2,3] 57 1,482,433.12 3.92% 0.52% 2.20% 

Table 9: example of solution generated by IBM ILOG CPLEX for period 1. 

 

Activity 𝑣𝑖
𝑟  Option nodes activated 

Tomato (critical supply) 𝑣 
𝑠 
 𝑤 , 

𝑠  set at maximum capacity 

 𝑤 , 
𝑠  set at reduced capacity (equal to the residual demand at the node) 

Basil (critical supply) 𝑣 
𝑠  𝑤 , 

𝑠  set at maximum capacity 

Meat (critical supply) 𝑣 
𝑠  𝑤 , 

𝑠  set at maximum capacity 

Oil (critical supply) 𝑣 
𝑠  𝑤 , 

𝑠  set at maximum capacity 

Onion (critical supply) 𝑣 
𝑠  𝑤 , 

𝑠  set at maximum capacity 

Carrot (critical supply) 𝑣 
𝑠  𝑤 , 

𝑠  set at maximum capacity 

Celery (critical supply) 𝑣 
𝑠  𝑤 , 

𝑠  set at maximum capacity 

Salt (non-critical supply) 𝑣 
𝑠  𝑤 , 

𝑠  set at maximum capacity 

Sugar (non-critical supply) 𝑣 
𝑠  𝑤 , 

𝑠  set at maximum capacity 

Spices (non-critical supply) 𝑣  
𝑠   𝑤  , 

𝑠  set at maximum capacity 

Additives (non-critical 

supply) 
𝑣  
𝑠  

 𝑤  , 
𝑠  eliminated  

 𝑤  , 
𝑠  set at maximum capacity 

Packaging (non-critical 

supply) 
𝑣  
𝑠   𝑤  , 

𝑠  set at maximum capacity 

Plant 1 (manufacturing) 𝑣  
𝑝

 

 𝑤  , 
𝑝

 set at maximum capacity 

 𝑤  , 
𝑝

 set at maximum capacity  

 𝑤  , 
𝑝

 set at reduced capacity 

Plant 2 (manufacturing) 𝑣  
𝑝

  𝑤  , 
𝑝

 set at reduced capacity 

 𝑤  , 
𝑝

 set at maximum capacity  
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 𝑤  , 
𝑝

 set at reduced capacity 

Italy (market) 𝑣  
𝑑  

 𝑤  , 
𝑑  and 𝑤  , 

𝑑  set at reduced capacity  

 𝑤  , 
𝑑  set at maximum capacity  

Abroad (market) 𝑣  
𝑑  

 𝑤  , 
𝑑  set at maximum capacity  

 𝑤  , 
𝑑  set at maximum capacity 

 𝑤  , 
𝑑  set at reduced capacity. 

Table 10: example of solution generated by IBM ILOG CPLEX for period 1 - details. 

6 Conclusions 

Supply chain disruption risks and uncertainties are growing in number and modern food supply chains 

are among the most vulnerable to such risks. This study has proposed a new approach to design a multi-

product food supply chain that is both efficient in terms of performance (i.e. costs and responsiveness) 

as well as resilient to disruptions in raw material supply and demand variability.  

The proposed approach begins with a preliminary analysis of the main characteristics of the specific 

food supply chain to be analysed, based on a graph theory representation of the chain. Then, a bi-

objective resilient food supply chain design (RFSCD) problem is formulated as a non-linear 

optimization problem, with two objectives (total profit and total lead time). Subsequently, a 

metaheuristic algorithm based on the ant colony optimization is used to solve the RFSCD problem. This 

type of algorithm was chosen because the resilient supply chain characteristics of self-adaptation and 

self-coordination can be well captured by the self-organization features of ant colonies.  

The proposed algorithm was tested on a case study of a real readymade UHT tomato sauce chain. 

The algorithm parameters were studied to determine the best settings, and the tests made show that the 

proposed approach is effective in generating RFSCDs very close to the optimal solution (if available) 

of the problem in a relatively short time.  

Finally, a sensitivity analysis of the case study results was carried to test the effectiveness of the 

algorithm as a function of the weights defined for the two objective functions. Results of such analysis 

allows concluding that the algorithm is able to generate outcomes that are consistent with the 

optimization purpose, and that the proposed algorithm is expected to be useful to help managers plan a 

resilient design of their supply chain. 

Future works can investigate the adaptation of the proposed algorithm to RFSCD problems in 

different contexts, thus taking into account further possible disruptions and risks.  
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Appendix 1: Pseudo-code of the ACO algorithm adapted to solve RFSC 

configuration problem 

1 begin  

2   set Q and P; 

3   set the graph G={V,A} which models the RFSC configuration problem; 

4   for t=1 to T do 

5        get the set of nodes V and sub-nodes; 

6        get the weights at each sub-node; 

7        do supply disruption simulation; 

8        for p=1 to P do 

9            for q=1 to Q do            

10                 set an empty solution FSCDpq= [ ]; 

11                 while V≠{} do  

12                        select any supply task vi
r∈V; 

13                        set the neighborhood 𝑁𝑣𝑖𝑗
𝑟 ; 

14                        while demand at vi
r is not satisfied do 

15                              compute𝑃𝑣𝑖𝑗
𝑟   ∀ 𝑣𝑖𝑗

𝑟 ∈ 𝑁𝑣𝑖𝑗
𝑟 ; 

16                              select a vij
r based on the probability decision rule; 

17                              add the selected option to the solution, FSCDpq←vij
r; 

18                              delete vij
r from 𝑁𝑣𝑖𝑗

𝑟  

19                       end 

20                       delete vi
rfrom V; 

21                  end 

22                  set the LTi∀ 𝑣𝑖
𝑟 ∈FSCDpq; 

23                  compute TPpq ; 

24                  compute TLTpq; 

25             end 

26             define the best FSCDpq*; 

27             forall vij
r ∈FSCDpq*do 

28                  modify PM; 

29                  increase and evaporate pheromones (pheromone matrix update); 

30             end 

31       end 

32   end 

33   return the FSCDpq*as the optimal RFSC design; 

34 end 
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Appendix 2: detailed analyses of the objective function values 

To further illustrate the behaviour of our algorithm, Figure A-1(a) shows the objective function 

values 𝑧  and the two objective values separately for each ant of all colonies, as they were obtained 

changing 𝛼 and 𝛽 values and setting 𝑃=10, 𝜏 =1 and 𝜌=0.5. As reported in Figure A-1(a), although the 

algorithm converges with any setting, the local minima reached are different. More precisely:  

 for 𝛼=3 and 𝛽=1 (green line in Figure 6), the algorithm converges to the worst local minimum 

solution but faster than the other two setting of parameters;  

 for 𝛼=2 and 𝛽=2 (red line in Figure 6), the algorithm converges to a better solution than the 

previous one and shows similar rate of convergence; 

 for 𝛼=1 and 𝛽=3 (blue line in Figure 6), the algorithm converges to the best local minimum 

solution, but with the lowest convergence. 

For the sake of clarity, a more detailed representation of the same runs is reported in Figure A-

1(b), which shows the values of the two objectives for each “best” ant of all colonies (i.e. the ant that 

has generated the best 𝐹𝑆𝐶𝐷𝑝𝑞∗  for each colony). Figure A-1(b) shows clearly that both the 

convergence time of the algorithm and the performance of the generated solutions are the lowest for 

𝛼=3 and 𝛽=1, intermediate for 𝛼=2 and 𝛽=2, and the biggest for 𝛼=1 and 𝛽=3. 

Consequently, these analyses confirm that the setting that provides the most effective results is 

𝛼=1 and 𝛽=3. Similar analyses on the remaining parameter settings have shown that the algorithm is 

able to converge to even better solutions if initialising the values of the 𝑃𝑀 to 𝜏=0.5, regardless of the 

remaining parameters. According to this result, both reinforcing the exploitation phase (i.e. doubling 

the number 𝑃 of colonies) and using the best value for 𝜏 (0.5) are required to define the best values for 

𝛼and 𝛽. Therefore, Figure A-2(a-b) illustrate the objective function z values and the two objectives (TP 

and TLT) values that are reported for each ant and for each best ant of all colonies respectively, 

changing 𝛼 and 𝛽 values and setting 𝑃=20,𝜏 =0.5 and 𝜌=0.5. Figure A-2(a-b) shows that for 𝛼=2, 𝛽=2 

and for 𝛼=3, 𝛽=1 (depicted in red and green, respectively) the algorithm converges quickly to solutions 

with bad performances in terms of objectives of the problems. Concluding, we can again see that the 

best setting of 𝛼 and 𝛽 parameters is 𝛼=1 and 𝛽=3 (in blue in Figure A-2), since it allows the algorithm 

to reach the best local minimum. 

Finally, several analyses were carried out to tune last parameter 𝜌 , by fixing the remaining 

parameters to the best found values (P=20, 𝜏=0.5, 𝜌=0.5, 𝛼=1 and 𝛽=3). ρwas set at 0.1, 0.5 and 0.9 

(Dorigo, Dorigo, & Colorni, 1996). In Figure A-3(a-b) the objective functions are reported for each ant 

and each best ant respectively and we can conclude that the best results for our problem are found by 

setting 𝜌 =0.1. 
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(a)  (b) 

Figure A-1: objective function and objective values for each ant (a) and best ant (b) with 𝑷=10, 𝝉=1, 𝝆=0.5 and varying 𝜶 and 𝜷. 
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   (a)     (b) 

Figure A-2: objective function and objective values for each ant (a) and best ant (b) with 𝑷=20, 𝝉=0.5, 𝝆=0.5 and varying 𝜶 and 𝜷. 
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  (a)      (b) 

Figure A-3: objective function and objective values for each ant (a) and best ant (b) with 𝑷=20, 𝝉=0.5, 𝜶=1, 𝜷=3 and varying 𝝆. 


