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Abstract — Human Activity Recognition (HAR) is currently 

recognized as a key element of a more general framework designed 

to perform continuous monitoring of human behaviors in the area 

of Ambient Assisted Living (AAL), well-being management, 

medical diagnosis, elderly care, rehabilitation, entertainment and 

surveillance in smart home environments. In this paper, an 

innovative HAR system, exploiting the potential of wearable 

devices integrated with the skills of deep learning techniques, is 

presented with the aim of recognizing the most common daily 

activities of a person at home. The designed wearable sensor 

embeds an Inertial Measurement Unit (IMU) and a Wi-Fi section 

to send data on a cloud service and to allow direct connection to 

the Internet through a common home router so that the user 

themselves could manage the installation procedure. The sensor is 

coupled to a CNN network designed to make inferences with the 

minimum possible resources to keep open the way of its 

implementation on low-cost or embedded devices.  

The system is conceived for daily activity monitor and nine 

different activities can be highlighted with an accuracy of 97%.   

 
Index Terms— activity recognition, Internet of Things, machine 

learning, wearable sensor.  

I. INTRODUCTION 

N recent years, wearable sensors have gained considerable 

importance both in research and application fields. The 

reason for such interest lies in their use in many applications, 

which has been made possible by the progressive reduction of 

their size and costs. Some examples are wearable sensors in 

sport and physical activities [1]–[3], surveillance [4], human 

computer interaction [5], [6], rehabilitation [7], [8], monitoring 

elderly people for Ambient Assisted Living (AAL) purposes 

[9], [10]. The latter has particular importance, since nowadays 

the progressive increment of the average population age is 

widely recognized as a big deal in both social and economic 

contexts [11]. AAL technologies may contribute to the 

construction of active aging scenarios [12]–[14]  in order to 

preserve quality of life of aging population in an affordable 
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way, reducing the need of social and health-care services. The 

importance of this topic is evidenced worldwide by the great 

number of research initiatives and programs (e.g. “active and 

assisted Living joint program” (AAL-JP)). 

In this framework, wearable sensors can be exploited in 

different ways, from the simplest panic button function up to 

the continuous monitoring of the user’s physiological 

parameters [10], [15]. Among these, Human Activity 

Recognition (HAR) plays an important role: it is indeed 

recognized that an active lifestyle is the basis for a healthy life 

[16]. Therefore, users’ lifestyle can be assessed monitoring the 

amount of daily activity and, eventually, building-up a 

behavioral model which in turn can be useful for the early 

detection of anomalies possibly relevant to wellbeing [16]. 

Moreover, to construct a precise behavioral profile, it is of 

utmost importance to accurately assess the type of the user’s 

activity (i.e. walking, climbing stairs up/down, etc.). For 

example, a user could continue to move regularly (e.g. walking) 

but begin to avoid more difficult movements (e.g. climbing 

stairs). This behavior could signal an increase in fatigue, which 

may indicate a possible deterioration in the health conditions 

worthy of further study. 

A behavioral model can be constructed also with 

environmental sensors [17], but aging at home makes it possible 

to have the presence of two or more elderly people in the same 

environment, or in the same building, each with its own 

diseases that must be monitored in a personalized manner. 

Thanks to the use of wearable sensors, the single person’s 

activities can be recognized. More information can be acquired 

integrating the sensor in a more complete IoT system [17].  

Moreover, from the point of view of HAR algorithms, a lot of 

work has been done in automatic recognition of human 

activities through the analysis of data coming from a video 

camera [18], [19] or from integration of data obtained from 

different types of sensors  [20], [21]. The potential of deep 

learning, however, allows to explore new developments in 
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intelligent assisted living home environments also in the 

presence of chronic patients [13]. 

It is important to note that, in the context of AAL, 

ergonomics and ease of use is of utmost importance: the device 

must be worn 24 hours a day without being perceived as a 

burden to the user. Platform such as, for example, smartphones 

are not conceived for this use, even if they integrate all the 

sensors needed and they are used for many hours a day. It 

therefore becomes important to design ad-hoc sensors that meet 

these needs. Moreover, it is worth noting that the quality of the 

models coming from machine learning techniques greatly 

depends on the dataset used for the training. A dataset similar 

to the actual use case and trained on the specific monitored user  

could guarantee the highest activity recognition ability. In 

addition, the capability of update the trained model is important 

to reach the best system performance with an arbitrary users’ 

number. In these context, taking advantage of cloud computing 

can help. Typically, wearable sensors base their connectivity on 

body area networks (BAN) [15], with the sensor connected 

through a low power protocol (e.g Bluetooth Low Energy) to a 

gateway (e.g. the smartphone).  With the development of the 

Internet of Things (IoT) paradigm, it is now possible to exploit 

system architectures connecting the device directly with cloud 

services in order to minimize the number of devices involved in 

data acquisition/transmission and therefore the costs, users’ 

burden, technological skills needed [8], [22]–[24] and allowing 

also the sharing of the device outcomes with other users (e.g. 

physicians, caregivers, etc.). 

In this paper, we present an HAR system, based on a Wi-Fi 

wearable sensor and Deep Learning techniques, conceived to 

exploit the potential of smart and wearable devices in order to 

recognize daily activities of single users within an AAL 

environment. In a general view, the proposed architecture 

exploits Wi-Fi connectivity and a neural network designed to 

be used on cloud for the most computational demanding task 

(the training phase) and on an embedded unit or on a low cost 

local device for the daily activity recognition.  In this view, the 

connection to the cloud service is necessary only when a new 

person begins to be monitored, providing a small re-training 

phase, to create a complete dataset perfectly fitting to the use 

case. 

The purpose of this work is not a real time activity 

recognition but a long-term personalized monitoring of the 

activity performed during the day by the elderly to infer 

abnormal behaviors, often relevant to unhealthy states or 

emergent situations.  

The paper is organized as follow: in section II some related 

works are reported, in section III the proposed system is 

described, detailing the Wi-Fi wearable device, the choice of 

the neural network architecture and its optimization. Then, in 

section IV, to validate the system some tests are described and 

results are discussed. In section V conclusion are drawn.  

II. RELATED WORKS 

Deep learning approach is based on computational models 

that are composed of multiple processing layers. This allows an 

automatic learning of the intrinsic structure in complex and 

large data [25]. 

In the field of healthcare, deep learning is widely used to 

carry tasks based on data that comes from mobile systems [26]. 

In [27] the authors describe how sensor-equipped smartphones 

and wearables are transforming the health monitoring. These 

devices could collect many people analytic data and deep 

learning is considered to be a key element in analyzing this new 

type of information, but using deep learning approach in 

healthcare sensing domain is also an open challenge due mainly 

to hardware limitations.  

In [28] the authors argue about HAR using wearable sensors 

and deep learning: rather than analyzing handcrafted features 

from time-series sensor signals, they arrange signal sequences 

of accelerometers and gyroscopes into an activity image, which 

enables Deep Convolutional Neural Networks (DCNN) to learn 

the discriminative features automatically for activities 

classification. Their results demonstrated a better performance 

respect to the state-of-the-arts on three public datasets. In 

particular, an accuracy of 99.93% has been obtained. Despite 

this very high performance, the system requires a quite complex 

preprocessing phase: considering the application context, a 

light learning model with automatic feature extraction 

techniques is desirable.  

Also in [29] the HAR task is carried out by Convolutional 

Neural Network (CNN) that automatically extract human 

activity features without any domain knowledge (such as 

activities in kitchen or jogging, walking, etc.), while prior 

works have shown that some heuristically-defined features can 

perform well in recognizing one activity, but badly for others. 

The authors focus on the fact that a CNN method can capture 

the local dependencies and scale-invariant features of activity 

signals and so, variations of the same activity can be effectively 

captured through the extracted features. Also in this case, the 

network is tested on three public dataset: the best accuracy 

obtained by the authors is 96.88%. 

The CNN used in [30] performs a HAR task by using the data 

coming from a single accelerometer, making possible to 

construct an acceleration-based HAR on the mobile platform, 

with no extra hardware demand. The results show a quite good 

accuracy of 93,8% on a dataset acquired by volunteers which 

uses an Android application to record tri-axial accelerometer 

data. The experiments were repeated with the device placed in 

3 different body parts with the purpose of maintaining diversity 

of data. The comparison on the same dataset with other popular 

classifiers, such as Support Vector Machine (SVM), shows that 

CNN must have extracted more effective features than Fast 

Fourier Transform (FFT) and Discrete Cosine Transform 

(DCT), which were calculated by hand as input features for the 

SVM. 

Instead, in the paper [31] a deep learning technique based on 

Long Short-Term Memory (LSTM), or Recurrent Neural 

Network, is introduced to perform HAR task from data captured 

with wearable sensors in ubiquitous computing. This approach 

was chosen in order to exploit the temporal dependencies within 

the movement data allowing an immediate, real-time inference 

at the same rate as the data is collected by the sensors. In fact, 

in system that use a segmentation step, that is some kind of 
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sliding window extraction procedure, a delay between the 

recording of movements using inertial sensors and the inference 

procedure is present. The authors illustrate how their results, 

verified on a large benchmark dataset, are the state-of-the-art. 

The works described above, report HAR computation, by 

using deep learning, that are quite suitable for mobile 

application. In [32] HAR technique based on a deep learning 

methodology is designed to enable accurate and real-time 

classification for low-power wearable devices. The proposed 

approach has been deployed as an app for Android devices and 

also as an embedded algorithm for the Intel Edison 

Development Platform in order to demonstrate on-node human 

activity classification using the trained classification model. To 

avoid the problem of know the position of the inertial sensor 

and to reduce the complexity of the classification task, the raw 

inertial data is projected to the spectral domain. The output, the 

spectrogram representation, is the input for the deep learning 

activity recognition model, which shows results that are 

comparable to existing state-of-the-art approaches that utilize 

many more nodes and layers but with computation times that 

are consistent with the requirements for real-time on-node 

human activity recognition. 

Finally in [33] the authors propose a system that is able to 

identify  human’s physical activities automatically through 

analysis of the signals acquired (in real time) from multiple 

body-worn (or body-embedded) inertial sensors. Multiple 

sensor is used to overcome the issues of intra-class variability 

(each subject may perform the same activity with somewhat 

different movements) and the inter-class similarity (for 

example, jogging and running). The method builds a deep 

architecture based on CNN to investigate the multichannel time 

series data with better results than other state-of-the-art 

methods.  

All these results are obtained in general purpose experiments, 

where the type of activity and the related datasets are not 

intended for an AAL field. In [8] an activity recognition 

approach applied to the AAL context and based on support 

vector machines (SVMs), decision trees, and dynamic time 

warping is presented. The dataset is acquired by eight 

volunteers using different smartphones. For the activity 

recognition task, the results obtained reach an average accuracy 

of 82% on the three tested methods. 

III. THE PROPOSED SYSTEM 

The system architecture is sketched in Fig. 1. During the 

training phase the data, collected by the wearable sensor, are 

sent to the cloud, while in daily use they can be elaborated on 

board or sent to another device for further processing. For 

prototypal purposes, the data are elaborated offline and used to 

create the datasets exploited to design the neural network 

proposed in this work. 

A. Hardware Platform 

Data acquisition system is composed by a Wi-Fi wearable 

sensor sending collected data to a cloud service in IoT 

compliant vision. The prototype of the wearable sensor (Fig. 2) 

is based on the MPU9250 integrated inertial measurement unit 

(IMU, with a 3D accelerometer, gyroscope and magnetometer) 

connected, in the prototype version, to a development board 

(LaunchPadXL board) including the CC3200 system-on-chip 

(SoC) by Texas Instruments, which integrates the ARM Cortex-

M4 MicroController Unit (MCU). It features a 32-bit 

architecture at 80 MHz clock and a network processor 

compliant with the IEEE 802.11b/g/n network protocol radio. 

From the ergonomic point of view, a more compact board 

redesign is planned.  

The sensors full-scales are programmable and a sensing 

acceleration up to ±8g and a magnetometer sensitivity of 

±4800µT have been set, while the gyroscope was set on a full 

scale range of ±250°/sec. All the sensors have been configured 

with a sampling rate of 50Hz.  The physical sensor output 

consists of an ordered list of values (3D output from 

accelerometer, gyroscope and magnetometer) corresponding to 

16bit with sign for axis for a total of 18bytes. For testing 

purposes, two bytes have been added indicating respectively the 

identification number of the user, and a code related to the 

activity actually performed. The latter has been obtained asking 

the user to follow a specified protocol during the test (i.e. 

activities sequence) and to press a button available on the 

wearable sensor at every activity change. Pressing the button 

triggers a counter in the device firmware: every activity the 

 
Fig. 2.  The WiFi wearable sensor including the LaunchPadXL board and the 
inertial measurement unit (IMU) board 

  

 

 
 

Fig. 1.  The system architecture.  
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subject was performing was then identified with the 

corresponding counter number. No noise filtering was carried 

out on the data. 

A key issue in device usability is the network configuration 

procedure: the wearable sensor is directly connected to the 

Internet through the Wi-Fi home router. The commissioning 

procedure is very simple and relies on Wi-Fi Protected Setup 

(WPS) standard: the user is asked to push a button on the 

device, and a single LED signaling pattern has been 

implemented to provide feedback. No technical skill is 

required, so that the user themselves could manage the 

installation procedure. Data are sent to the online Watson IoT 

platform, inside the IBM Bluemix cloud services, via MQTT 

protocol with a Quality of Service (QoS) equal to 2: this ensures 

the necessary reliability to the transmission process, since the 

protocol itself guarantee that the message is received by the 

broker once and once only. The payload of the message is a 

string in a JSON format, reporting the sensors status. The 

device firmware, nevertheless, is suitable for connecting to 

other platforms as well (e.g. Amazon AWS, Microsoft Azure, 

Thingspeak, etc.). Each wearable device features its own unique 

ID, so that the association to the cloud environment can be 

managed by the service provider; this results in a truly “plug-

and-play” approach.  

The collected data are in general not significant in 

themselves, but they need interpretation to infer meaningful 

information (e.g., information about user actual activity such as 

walking, sitting, etc.). We may think to transmit every sensor 

sample to the cloud, for subsequent processing and 

interpretation. This implies that the radio section, the most 

energy-hungry part of the sensor, is always active reducing the 

battery lifetime. In order to prove the validity of the whole 

approach, sensor energy consumption has to be considered. In 

order to account for actual use scenarios, a low capacity battery 

(Li-Ion 4.2V, 500mAh) has been used (battery capacity is 

limited due to ergonomic constraints: size and weight).  

The analysis of human motion features requires a sampling 

rates as high as 50 samples per second [34]: assuming a 

sampling frequency of 50 Hz, a full 9 degrees-of-freedom 

datum sent as soon as sampled and a battery of 500mAH, it can 

be demonstrated [22] that a lifetime shorter than 8 hours could 

be obtained. This prevents such approach to be actually usable 

in a real-life context. Improvement in the battery lifetime can 

be obtained implementing compression algorithms [35] or other 

on-board processing features. For instance, we may greatly 

reduce transmission overhead by packing data into larger 

bursts, exploiting internal memory for buffering. An expected 

battery lifetime (at 500 mAh capacity) of 2.07 days was 

measured in this case, as reported in [22]. This result turns out 

to be fully compatible with the purposes of this work.  

B. Selection of the Neural Network Model  

The advent of deep learning has widely modified the 

approaches in signal processing and features extraction fields. 

In the past years, in fact, the features extraction was performed 

by a manual analysis of the signals in its components, with the 

aim of creating domain-specific features [8]. Statistical and 

classical machine learning models were then trained on the 

processed  version of the data. A limitation of these approaches 

is that signal processing and domain expertise are required to 

analyze the raw data and collect the features to fit a model and 

this expertise would be required for each new dataset or sensor. 

Another important limit of a classic machine learning approach 

in activities classification is the difficulties in being able to 

generalize the models against the variety of movements 

performed by different subjects.  

Considering the application context and with the aim of not 

imposing any constraints on the computational resources made 

available by a cloud service, we focused on learning models that 

could combine performance with system requirements. In 

particular, we considered: 

 The need of automatic feature extraction. In light of this, 

we focused on deep learning architectures that can ensure 

our requirement on feature extraction and optimal learning 

capacity. This need is also motivated by the recent HAR 

literature [36]. 

 The need of a light learning model. We designed and 

trained a light enough neural network capable of making 

inferences with the minimum possible resources and 

potentially easily portable on low-cost or embedded 

devices.  

Thus, in this paper we considered a deep learning based 

approach to classify signal data, without the need to manually 

engineer features but with only a simple preprocessing phase 

described later. 

The state-of-the-art of deep learning architectures are 

represented by Recurrent Neural Networks (RNN) and 

Convolutional Neural Networks (CNN) [37], [38]. RNNs, and 

in particular the version with Long-Short-Term Memory gates 

(LSTM) [39], are commonly adopted in the HAR field [31].  

In order to choose which architecture could reach the best 

results in our context, a dataset has been collected with the 

proposed device and preliminary experiments have been carried 

out on a LSTM [40] and on a CNN [36] already presented in 

literature.  

The data collection phase involved 15 subjects (12 male and 

3 female aging between 25 and 50 years) repeating the same 

test 9 times in different days.  During the test, the subject was 

asked to wear the sensor in a belt and to execute the most 

common activities performed in the daily life (Table I), in a 

predefined order.  

 
TABLE I 

ACTIVITY SET 

Activity ID Activity 

1 Walking 
2 Stand 

3 Sitting-down 

4 Stay seated 
5 Standing-up 

6 Running 

7 Climbing stairs down 
8 Climbing stairs up 

9 Lie down 
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In Table II the protocol for data acquisition is reported. 

 
TABLE II 

ACQUISITION DATA PROTOCOL  

counter Activity ID Activity 

1 1 Walking 
2 2 Stand 

3 3 Sitting-down 

4 4 Stay seated 
5 5 Standing-up 

6 2 Stand 

7 6 Running 
8 8 Climbing stairs up 

9 7 Climbing stairs down 
10 1 Walking 

11 6 Running 

12 8 Climbing stairs up 
13 7 Climbing stairs down 

14 1 Walking 

15 3 Sitting-down 
16 4 Stay seated 

17 5 Standing-up 

18 9 Lie down 

 

Data have been organized as follows: userID, counter, 3D 

linear acceleration (x,y,z), 3D angular rate, and 3D magnetic 

data. 

In Fig.3 an example of x-axis readings of the accelerometer 

for various activities has been reported. 

Sensor signals (accelerometer, gyroscope and 

magnetometer) have been collected and pre-processed by 

sampling in fixed-width sliding windows of 2.56s and 50% 

overlap (128 readings/window). During this phase all those 

ranges of values that are not part of a single category are 

discarded as showed in Fig. 4.  

The window is rather short: this would allow to process data 

into real time mode, opening the way to new development such 

as the embedding of the inference phase into the sensor node. 

The result was a dataset of 15616 instances, which have been 

subdivided as reported in the Table III.  

 
TABLE III 

COMPOSITION OF DATASET  
(15616 INSTANCES) 

% of Instances   Activity 

26.1 Walking 

12.0 Stand 
3.6 Sitting-down 

11.9 Stay seated 

2.6 Standing-up 
9.4 Running 

14.8 Climbing stairs down 

16.5 Climbing stairs up 

2.7 Lie down 

 

From this dataset both the training set and the test set were 

obtained. Three different partitions of the data in training set 

and test set have been evaluated to assess the performance of 

LSTM and CNN networks in different cases and to define the 

more appropriate architecture for our system. 

In the first scenario, we considered a random split (about 

60% of the instances have been included into the training set 

and the rest into test set): even if this subdivision is widely used, 

this is a quite unrealistic case, since an unbalanced distribution 

of the instances could occur between the training and test set.  

In the second scenario, we considered the nine repetitions of 

ten users for the training set, while five users (different from 

those of the training set) for the test set. In this case, thus, the 

network is trained on a set of individuals not considered during 

the network working phase. In a real scenario, this consists of 

training the network once before the actual use with a set of pre-

gathered data: the network does not have to be retrained if a 

new individual is to be monitored.  

Finally, in the third scenario, we have distributed the nine 

repetitions of all the 15 users between training set (6 repetitions) 

and test set (3 repetitions). In this case the network has been 

trained on all users monitored in the running phase. With this 

scenario the best results are expected. Training the network on 

the same users that will be monitored is a demanding method in 

a real context, requiring high computational resources. 

Actually, taking advantage of the Wi-Fi transceiver on the 

sensor and cloud connection, a different approach can be 

conceived. A brief training phase can be planned every time a 

new user is considered: the user is asked to follow a defined 

activity protocol, then, the data acquired by the sensor are sent 

to the cloud, where, exploiting cloud analytics, a training phase 

of the network can be performed. The new parameters of the 

network tuned to detect the activities with the best performance 

can be then downloaded on the wearable sensor to perform 

HAR on board if a light enough neural network is available. 

Then, if necessary, the outcome of the HAR analysis can be 

transmitted to the cloud service for sharing with other users 

(physicians, caregivers, etc.). 

 

 
Fig. 3.  Example of the accelerometer x-axis reading. The activities performed 

during data acquisition have been highlighted, reporting the corresponding 

activity ID. 
 

  

 
Fig. 4.  Example of sampling in fixed-width sliding windows of 2.56s.  
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Experiments were conducted using the same number of 

training epochs (1000) and the same batch size (600). 

The results have shown that CNN can reach better accuracies 

compared to LSTMs architectures (about 2% higher).  

Accuracy obtained with CNN in the preliminary tests have 

been reported in Table IV.  
TABLE IV 

PRELIMINARY RESULTS 

Architecture scenario 1 scenario 2 scenario 3 

CNN 91% 81% 92% 

 

These results confirm that the third scenario shows the best 

performance. 

C. Optimization of the CNN Model 

In light of the preliminary results obtained, we selected the 

CNN architecture for the development of the system and for the 

optimization of the model using the best practices suggested in 

literature [41]. 

The optimization has been obtained performing several 

experiments with different network structures (changing 

number of hidden layers and typology of these layers), applying 

the Learning Rate Decay technique (LRD) [25], and a grid-

search over the main hyper-parameters that can affect the model 

performance.  

The network structure with the highest accuracy has been 

selected. For each structure a Dropout layer set to 0.5 before the 

output layer was introduced. A Softmax (eq. 1) has been used 

as activation function for the output layer.  

 𝑝𝑖 =
𝑒𝑎𝑖

∑ 𝑒𝑎𝑘𝑁
𝑘=1

 ( 1 ) 

 

Where ai is an element of the input vector of N real numbers 

and pi is the corresponding probability, obtained by normalizing 

with the sum of all exponentials. The Softmax function is used 

to map the non-normalized output of a network to a probability 

distribution. 

Moreover, for each structure a grid-search over the following 

hyper-parameters has been performed: 

 Learning Rate: search range (0.0001 – 0.04) with an 

incremental step of 0.005  

 Batch size: evaluated values 64,128,256,600 

 Number of training epochs: search range (500 – 

2500) with an incremental step of 500 

Results are presented in Table V.  
TABLE V  

COMPARISON OF DIFFERENT CNN STRUCTURES 

 

N° 

Convolutional 

layers  

N° Fully 

Connected 

layers 

Accuracy 

2 1 92.80% 

3 1 93.80% 

3 2 93.60% 

4 1 94.20% 

4 1 93.80% 

The structure that achieves the best accuracy has 

4 convolutional and 1 fully connected layers with Learning 

Rate equal to 0.0001, batch size equal to 256 and training 

epochs equal to 2500. This architecture, represented in Fig. 5, 

has been adopted for the proposed system.  

The aim of each convolutional layer is to learn features from 

the network input. It is composed by two components, a 

convolutional operator (eq. 2) applied between I (training 

example i×j input matrix) and K (filter m×n matrix) and a max 

pooling operator [42].   

 

𝑔(𝑖, 𝑗) = (𝐾 ∗ 𝐼)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛)

𝑛𝑚

 ( 2 ) 

 

The K values are learned subsequently with the Back-

Propagation Algorithm [43]. Once the resulting matrix g(i,j) is 

computed, the max pooling operator implements a down-

sampling of it. This last operation is useful to reduce the 

computational cost by reducing the number of parameters to be 

learned. Finally, the fully connected layer is based on the 

classical neural network structures [44]. 

As suggested in [44], once the structure has been determined, 

the model has been optimized using the LRD with another grid 

search. The LRD requires a starting value for the learning rate 

parameter in order to start its optimization during the training 

epochs. This last grid search (Fig. 6) enabled the model to reach 

the accuracy of 94.75 % with the best configuration of the 

hyper-parameters shown in Table VI. 

 

 
Fig. 5.  The final architecture of the trained CNN. 

  

 
Fig. 6.  The final grid-search with the best configuration 
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TABLE VI 
THE OPTIMAL CONFIGURATION OF THE HYPER PARAMETERS 

. 

Hyperparameter Best Value 

Learning Rate 0.0050 

Learning Rate Decay 0.96 

Epochs 1000 

Batch size 600 

 

The network model so optimized can be trained, exported 

and used in the framework of our system to make new 

inferences.  

IV. EXPERIMENTAL RESULTS 

To evaluate the performance of the optimized CCN model 

presented above, some tests have been carried out. Two 

different datasets have been exploited: a standard dataset from 

UCI Machine Learning Repository [45] and a new dataset 

created collecting data with the proposed sensor. The 

parameters used to compare performance are Accuracy, 

Precision, Recall and F-Measure, defined as follows: 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

TP + TN + FP + FN
 ( 3 ) 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
 ( 4 ) 

 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN
 ( 5 ) 

 

 𝐹 ̵𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

Precision + Recall
 ( 6 ) 

 

Where TP are the True Positives, TN the True Negatives, FP 

the False Positives and FN the False Negatives. 

For each dataset accuracy has been evaluated to assess the 

global CNN performance (i.e. considering the whole set of 

classes), while F-Measure, Precision and Recall have been 

computed to give a more precise indication on how the CNN 

behave in recognizing a particular class. 

The UCI dataset is show in Table VII.  

 
TABLE VII 

COMPOSITION OF UCI DATASET 
(10299 INSTANCES) 

% of Instances   Activity 

16.72 Walking 

14.99 Climbing stairs up 
13.65 Climbing stairs down 

17.25 Sitting-down 
18.50 Standing up 

18.87 Lie down 

 

 

The confusion matrix related to this test is reported in 

Table VIII, together with Recall (RCL) Precisions (PRC) and 

F-Measure (FM) per class. The most significant FPs and FNs 

are highlighted in bold. The resulting global accuracy is 92.5%. 

 
Table VIII 

THE CONFUSION MATRIX RELATED TO THE TEST-SET OF THE UCI DATASET. 

IN BOLD THE MOST SIGNIFICANT FALSE POSITIVES AND FALSE NEGATIVES 

 

  Activity 1 2 3 4 5 6 RCL FM 

1 Walking 491 1 4 0 0 0 0.99 0.98 

2 
Climbing 
stairs up 

11 433 27 0 0 0 0.92 0.92 

3 
Climbing 

stairs down 
0 1 419 0 0 0 0.99 0.96 

4 Sitting-down 0 6 0 414 70 1 0.84 0.84 

5 Standing-up 0 2 0 86 444 0 0.83 0.85 

6 Lie down 0 27 0 0 0 510 0.95 0.97 

  PRC 0.97 0.92 0.93 0.83 0.86 0.99  
  

 

The accuracy obtained has been compared (Fig. 7) with other 

results achieved with other machine learning models, presented 

in literature [28], [45]–[57], applied to the same dataset. In these 

works, when more than one machine learning architectures is 

presented, the one performing better is selected.  As can be seen, 

our result is comparable with the state-of-the-art, although the 

network has been optimized for a different context. It can be 

concluded that the proposed network shows a good 

generalization capability.  
 

 
Fig. 7.  Comparison between different architectures reported in literature using 

the UCI Dataset. 
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In Table IX the dataset obtained with a new data acquired 

with our device is shown.  
 

TABLE IX 

COMPOSITION OF THE NEW DATASET 

(38764 INSTANCES) 

% of Instances   Activity 

20.6 Walking 

11.6 Stand 

7.9 Sitting-down 
10.6 Stay seated 

7.1 Standing-up 

8.5 Running 
10.3 Climbing stairs down 

11.7 Climbing stairs up 

11.7 Lie down 

 

This dataset features more balanced instances compared to 

the one used in the optimization phase of the CNN architecture 

(Table III), and can be used to analyze in a more accurate way 

the performance of our network. 

The training set and the test set have been created from this 

dataset following the third scenario described above (i.e. the 

network has been trained on all users monitored in the running 

phase). Each user was asked to do the test three times: the first 

and the second test have been used for the training phase, while 

the third for the test. 

A global accuracy of 97% has been reached.  

In Table X, the confusion matrix related to the test-set is 

shown. As before, the most significant false positives and false 

negatives are highlighted in bold. ID is the Activity ID reported 

in Table I. 

 
Table X 

THE CONFUSION MATRIX RELATED TO THE TEST-SET. 

IN BOLD THE MOST SIGNIFICANT FALSE POSITIVES AND FALSE NEGATIVES 

 

ID 1 2 3 4 5 6 7 8 9 RCL FM 

1 2584 17 0 0 1 0 17 17 1 0.98 0.98 

2 4 1452 5 10 5 1 1 2 0 0.98 0.96 

3 1 11 963 16 13 0 2 1 5 0.95 0.96 

4 1 25 4 1328 2 0 0 0 0 0.97 0.97 

5 1 34 20 11 834 0 0 0 2 0.92 0.95 

6 11 3 0 0 0 1046 11 10 3 0.96 0.97 

7 21 0 0 0 0 12 1270 15 1 0.96 0.96 

8 13 2 0 0 0 8 8 1469 1 0.98 0.97 

9 1 2 3 1 3 5 3 4 1476 0.98 0.99 

PRC 0.98 0.94 0.97 0.97 0.97 0.97 0.97 0.97 0.99  
 

 

 

The result obtained is positive when compared to the other 

studies discussed in section II [8], [28]–[33] as presented in Fig. 

8. In [28], [32] a better accuracy has been reached, but the 

classifying systems require a quite complex pre-processing 

phase. In our context a light model is desired with an automatic 

features extraction process to simplify the training procedure 

when a new user has to be monitored. Moreover, the number of 

activities recognized are smaller (7 and 6 respectively), 

influencing in positive the results. Finally, in [32] the hardware 

is a smartphone: this is a good solution when a short-term 

monitoring has to be done (e.g. rehabilitation session), but in 

the case of continuous monitoring, these device usually do not 

ensure the required ergonomics.   

The architecture designed is then fully compliant with the 

requirements of our HAR system exploiting cloud scenario 

through a wearable sensor with Wi-Fi connection and a CNN 

model. 

V. CONCLUSIONS AND FUTURE WORK 

 In this paper, an innovative IoT system for long-term 

personalized monitoring of the activities performed by a person 

at home is proposed. The system integrates a Wi-Fi wearable 

sensor and Deep Learning Techniques to give information on a 

number of activities with the aim to infer abnormal behaviors. 

The approach presented has been conceived to be extended to 

systems requiring multiple wearable sensors (such as in the case 

of a home habited by more people) giving information in a 

personalized manner.  

The activity classification has been performed by a CNN-

based architecture (with four convolutional layers, one fully 

connected layer and a sliding processing window of 2.56s 

conceived for real time elaboration), able to classify data 

coming from nine different activities with an accuracy of 97%, 

while having a relatively small training set. This result is 

interesting because it shows the possibility to implement, quite 

easily, different HAR systems calibrated on different classes of 

problems (e.g. age groups of people). Like all Machine 

Learning algorithms, Deep Learning requires a large amount of 

computer power to train the network, while the use of a pre-

trained network to make inference is less expensive in terms of 

computing resources. Nowadays, to improve performance in 

computational terms, graphics processing units (GPUs) are 

widely used (both for the training and the inference phases). 

With the increasing complexity and flexibility of embedded 

 

 
Fig. 8.  Comparison between different architectures reported in literature using 

datasets acquired in an AAL Environment. 
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devices, we can consider the use of them as an interesting 

alternative for the implementation of the pre-trained CNN-

based model.  

The presented system architecture exploits on-board Wi-Fi 

connectivity and cloud computing to ensure a constantly update 

of the network with new training sets when users are added. To 

this purposes every data sample acquired by the sensor is 

transferred to the cloud: this has been recognized as an energy 

consumption problem. Energy saving can be obtained 

elaborating data on the sensor itself buffering them in the 

internal memory and sending to the cloud compressed data. 

Further improving in battery consumption could be obtained, in 

the future, implementing on the sensor the inference phase 

based on the CNN model proposed in this paper. The training 

phase, instead, has been designed to remain on the cloud, in 

consideration of the fact that typically it requires the greatest 

computational power and that the network is updated only when 

a new user needs to be added.  

The system architecture designed open the door to an 

alternative approach that could take advantage on the use of 

FPGA technologies for the implementation of complex signal 

processing systems to produce tiny, wearable and autonomous 

embedded HAR systems. 
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