

University of Parma Research Repository

Optimization of a hybrid energy plant by integrating the cumulative energy demand

This is the peer reviewd version of the followng article:

Original

Optimization of a hybrid energy plant by integrating the cumulative energy demand / Bahlawan, H.; Morini, M.; Pinelli, M.; Poganietz, W. -R.; Spina, P. R.; Venturini, M. - In: APPLIED ENERGY. - ISSN 0306-2619. - 253:(2019), p. 113484. [10.1016/j.apenergy.2019.113484]

Availability: This version is available at: 11381/2861302 since: 2021-11-03T15:19:31Z

Publisher: Elsevier Ltd

Published DOI:10.1016/j.apenergy.2019.113484

Terms of use:

Anyone can freely access the full text of works made available as "Open Access". Works made available

Publisher copyright

note finali coverpage

(Article begins on next page)

Optimization of a hybrid energy plant by integrating the cumulative energy demand

Hilal Bahlawan^{a*}, Mirko Morini^b, Michele Pinelli^a, Witold-Roger Poganietz^c, Pier Ruggero Spina^a, Mauro Venturini^a

^aDipartimento di Ingegneria, Università degli Studi di Ferrara, Via Saragat 1, 44122 Ferrara, Italy ^bDipartimento di Ingegneria e Architettura, Università degli Studi di Parma, Parco Area delle Scienze 181/a, 43124 Parma, Italy ^cKarlsruhe Institute of Technology (KIT), Karlsruhe, Germany

5 6 Abstract

1

2

3

4

5

8

2321

22 23 24

1 6 7

2 3

4

9 ⁷ 8 This paper deals with the optimal design of a hybrid energy plant. The considered hybrid energy plant is composed of a solar 10 9 1110 1211 1312 1413 1514 16 1715 1817 1917 2018 2119 thermal collector, a photovoltaic panel, a combined heat and power system, an absorption chiller, an air source heat pump, a ground source heat pump and a thermal energy storage. The optimization goal is to minimize the primary energy demanded throughout the manufacturing and operation phase of the hybrid energy plant. The demanded energy during the manufacturing phase is considered by means of the cumulative energy demand and is calculated by carrying out a cradle-to-gate life cycle assessment, while the demanded energy during the operation phase is evaluated by simulating the system throughout one year. The challenge of non-linear life cycle inventory scaling of energy systems is also addressed. A tower located in northern Italy is selected as a case study and two different approaches are evaluated. The first approach consists of solving the sizing optimization by minimizing primary energy consumption only during the operation phase, while in the second approach primary energy consumption is minimized throughout the life cycle of the plant by integrating the life cycle assessment into the optimization process. The results show that, if life cycle assessment is integrated, the optimal hybrid energy plant configuration is different and the primary energy saving throughout the life cycle is higher (approximately 12 %). Moreover, building energy demands are mostly met by using heat-driven technologies instead of electricity-driven technologies. <u>2</u>2²⁰

Keywords: Hybrid energy plant; Genetic algorithm optimization; Life cycle assessment; Primary energy saving

Nomenclature

25				
26	A	area	Р	decision variable or nominal power
27	а	correction factor	PE	primary energy consumption
28	Ε	energy	R	solar radiation
29	EER	energy efficiency ratio	Т	temperature
30	El	electricity	V	volume
31	fval	fitness function value	η	efficiency
32	G	input or output flow of the life cycle	-	
33 24		inventory	<u>Acronyms</u>	
34 35	i	time point	AB	auxiliary boiler
36	N	lifetime		
37	ABS	absorption chiller	ISO	international organization for
38	AC	auxiliary chiller		standardization
39	ASHP	air source heat pump	LCA	life cycle assessment
40	CED	cumulative energy demand	LCI	life cycle inventory
41	CHP	combined heat and power	LHV	lower heating value
42	GA	genetic algorithm		
43	GSHP	ground source heat pump	PV	photovoltaic panel
44	HEP	hybrid energy plant	STC	solar thermal collector
45			SOP	switch-on priority

4 46

47 The short version of the paper was presented at ICAE2018, Aug 22–25, Hong Kong (paper ID 715). This paper is a substantial extension of the 48 short version of the conference paper.

Subscripts and superscripts		k	life cycle assessment scaling
ABS	absorption chiller		exponent
ASHP	air source heat pump	0	optical
av	average	ор	operation
CHP	combined heat and power	PV	photovoltaic panel
BoS	balance of system	ref	reference
cool	cooling	S	generic energy system
el	electric	STC	solar thermal collector
eq	equivalent	sent	sent to the grid
fuel	fuel	taken	taken from the grid
grid	grid	th	thermal
GSHP	ground source heat nump		

1. Introduction

1 2

Increasing the sustainability of the residential sector may be achieved by reducing primary energy consumption. The integration of technologies powered by renewable energy sources in a Hybrid Energy Plant (HEP) may lead to improved conversion efficiency and a significant reduction in primary energy consumption. Consequently, the environmental impacts associated with producing the thermal, cooling and electrical energy demands of a building are also reduced. Generally, a HEP consists of a combination of two or more energy conversion systems which use different energy sources, which, when integrated, overcome the limitations that may be inherent in either [1]. HEPs have greater potential to provide higher quality and better reliability of energy supply compared to a system based on a single source of energy [1].

The promising energy and environmental benefits of HEPs may be achieved by properly sizing the technologies employed to fulfill the energy demands of the building. However, in order to achieve an optimal design of the energy plant, it is not sufficient to only minimize on-site primary energy consumption because off-site primary energy consumption could outmatch the advantages of on-site optimized systems, thus reducing the overall sustainability performance. This is particularly true for renewable energy technologies. In fact, energy production from renewable energy systems, such as photovoltaic systems and solar thermal collectors, are often seen as carbon-neutral, at least. However, a considerable amount of energy is used in the manufacturing, transporting and decommissioning of the different energy systems comprising the HEP [2]. In other words, the energy and environmental benefits associated with the use of HEPs should be compared with the impacts produced during the manufacturing, transporting and end-of-life phases by following a life cycle approach.

One of the most effective methodologies for the quantification of the off-site primary energy consumption is Life Cycle Assessment (LCA) [3]. LCA is a method for the evaluation of energy and environmental loads associated with the development of a product throughout its life cycle [4]. Several studies were conducted in order to evaluate the environmental performance of energy systems via LCA [5]. For instance, Moore et al. [6] investigated the global warming potential and primary energy demand associated with the life cycle of an electric storage hot water system, 2533 a solar electric system, a gas storage, a gas instantaneous and a solar gas instantaneous system installed in Australia. 2634 Onshore wind power systems were investigated and analyzed in [7]. The aim of the study was to quantify the 2785 environmental loads for producing 1 kWh of electricity compared to other traditional power plants, i.e. coal and 2886 natural gas. Colclough et al. [8] used the cumulative energy and cumulative carbon consumption approaches to 2**9**87 highlight the importance of adding solar and seasonal energy storage to achieve nearly zero energy heating in 3088 passive house buildings. A cradle-to-grave analysis of a photovoltaic plant was carried out by Desideri et al. [9] with 3B9 the aim of estimating the released environmental impacts. Moreover, Kelly et al. [10] investigated the application of an industrial CHP system via an energy and carbon LCA. However, typically the studies analyze the impact of 3341 specific energy technologies with respect to a given functional unit, implicitly ignoring that relevant energy technologies could vary in size and could thus experience scale effects. For the sizing optimization of HEPs which can be composed of renewable and non-renewable energy systems, the Life Cycle Inventory (LCI) of the considered technologies has to be available in a range of sizes, to calculate the off-site primary energy. However, the lack of

1 data is one of the main obstacles facing designers and LCA analysts in conducting the optimization study. In [11], a 2 series of interviews with designers, product development managers and environmental managers was carried out to 3 understand what the main obstacle is for conducting design optimization studies, and it was found that the scarcity of 4 environmental information is a major barrier to design improvement. This problem is often overcome by applying 5 linear scaling for the estimation of the LCI data or the final impacts of a product with its capacity or by using 6 literature data that are not necessarily consistent since they are collected from different sources. With this approach, 7 it is not possible to evaluate the effects of design changes, technology size and future installation. Therefore, the 8 integration of LCA into the system design to target the environmental impacts becomes an obstacle for decision 9 makers. 1

10 2 Keoleian [12] addresses the problem of applying LCA to product design and development. In his study, he 11 3 presented practical issues to apply LCA in a product design context. Gasafi et al. [13] presented an approach for the 12 4 application of LCA in the system design and decision making process. Their approach is based on a dominance 13 5 analysis which can be performed to identify the subsystems in the process chains that contribute most to the overall 14 6 environmental impacts of a system. The proposed procedure allows an environmental profile of the entire system to 15 7 be obtained. Then, the obtained profile is analyzed by designers who identify the critical processes of the supply 16 8 chain and make changes to the product design that could reduce the environmental impacts. However, the method is 17 9 hierarchical and the implementation of the proposed approach in a computer-aided optimization tool may be 18¹⁰ 19¹¹ 20¹² 21¹³ 22¹⁴ 22¹⁵ 23¹⁶ 24¹⁷ 25¹⁸ complicated. Lu et al. [14] developed an approach to life cycle design and evaluation with the aim of optimizing the functional, environmental and economic performance of a product. The proposed design process model was applied to a simple case study consisting of a "Z" section of a piping structure system. In order to evaluate the impacts associated with the life cycle of the system, an evaluation table was constructed for each stage of the life cycle. However, the suggested model is based on qualitative analysis techniques and requires inventory data adaptions each time a change is made to the product design. In addition, the application of the proposed approach to design complex products such as energy systems is time consuming. Therefore, it could not be suitable for energy system optimization. Stefanis et al. [15] presented a methodology to integrate LCA into the design of chemical process 26_{19} systems, considering a global environmental impact vector, and integrated these environmental criteria into the 27_{20} minimization of objective functions. However, for the implementation of their methodology, inventory data should 2821 be available for each process design option and operating condition.

2922 Regarding the optimization challenges of HEPs in a life cycle perspective, several research papers were presented in the literature. The sizing optimization problem of an HEP composed of a photovoltaic system, a wind turbine, a 3023 3124 diesel generator and a battery used for residential building applications is presented in [16]. The optimization of the 3225 system is achieved by using a genetic algorithm and considering only the operation phase of the system. The optimal $\begin{array}{c} 3326\\ 3427\\ 3528\\ 36^{29}\\ 37^{30}\\ 38^{31}\\ 39^{33}_{32}\\ 40_{34}\\ 41_{35} \end{array}$ design of a stand-alone PV-wind-diesel engine system with battery storage is investigated by the authors in [17]. In their study, the optimization is conducted by using an evolutionary algorithm which minimizes the levelized cost of energy and life cycle emissions over the lifetime of the HEP. They found that the final configuration of the optimized HEP may be affected by considering the emissions associated with the manufacturing and decommissioning phases in the optimization process. Jing et al. [18] optimized the size of a building energy system with the purpose of maximizing its life cycle energy saving and pollutant emission reduction. Wang et al. [19] presented a methodology for the optimization of a hybrid combined cooling heating and power system assisted with solar energy and natural gas. The aim of the study is to investigate the optimal configuration of the plant by minimizing the life cycle environmental impact of the plant. Energy consumption, pollutant emissions and material 4236 inputs during the manufacturing phase were calculated as a function of the capacity of the different systems comprising the studied energy plant. Allouhi et al. [20] proposed an optimization procedure of a centralized solar 4337 4438 heating system for the production of hot water with different temperature levels. The configuration optimization of 4539 the different systems comprising the plant was carried out with the aim of minimizing the life cycle cost. Investment, 4640 installation and maintenance costs were considered linear with the size of the different systems. The results indicated 4741 that the use of the proposed system may allow life cycle savings of about 179 kUSD, when considering a life span of 4842 20 years. Kang and Wang [21] investigated the optimization of distributed energy systems with the aim of achieving **49**43 a cost-effective design option that ensures a high performance operation condition of the system throughout its life 50^{44} cycle. The optimization was conducted by implementing a probabilistic method and carrying out the Monte Carlo 5145 simulation. In their study, only the useful-life of the system was considered, while the phases before and after the 46

- 47
- 48
- 49

1 operation phase were omitted. They found that the proposed optimization method can help to prevent problems of 2 undersizing or oversizing in distributed energy system design. Huang et al. [22] proposed a sizing optimization 3 strategy for heating, ventilating, and air-conditioning systems from a life cycle perspective. The proposed strategy 4 accounted for the uncertainties of the load and cooling supply. In [23], a combined cooling, heating and power 5 system is optimized from a life cycle energy, economic and environmental perspective. The aim of their study is to 6 optimize the capacity of the prime mover, the type of biomass feedstock and the operation strategy. Constructive 7 materials and energy consumption were estimated as a function of system capacity by assuming a linear relationship.

8 The works mentioned above performed the optimization study of the energy plant by applying linear scaling for 9₁ the estimation of the impacts of each technology involved in the plant. However, it is well known that the 10_{2} relationship between the LCI flows and the product size follows a power law [24], similarly to produce cost scaling 11 3 known as economies of scale [25]. Gerber et al. [26] made a comparison between the conventional LCA approach 12 4 which uses linear extrapolation to evaluate the impact at different sizes and the approach based on the analogy with 13 5 cost scaling. They observed that the use of a power law for the scaling and the use of cost exponents is more accurate 14 6 than using the linear scaling approach which assumes a specific constant impact with system size. Furthermore, 157 Caduff et al. [27] investigated whether the size of wind turbines affects the environmental profile of the generated 168 electricity. In order to derive scaling factors and to evaluate the effect of the size on the environment, they 17 ⁹ considered the LCIs of 12 different onshore wind turbines and quantified the environmental impact of each system. 180 191 202 214 225 236 247 258 269 The results show that the larger the turbine, the greener the produced electricity, concluding that scaling size affects the environmental profile.

Based on the literature survey presented above, this paper contributes to the scientific literature by:

- proposing a procedure for optimizing the size of a complex HEP by integrating LCA and considering the nonlinear LCI scaling of energy systems;
- evaluating the influence of LCA integration into the optimization process on HEP sizing and primary energy saving;
- assessing the influence of LCA integration on the operation strategy of the different energy technologies comprising the HEP.

2720 The HEP is composed of renewable and non-renewable energy systems and the optimization is conducted with the 2&1 aim of minimizing the primary energy demanded during the manufacturing, transportation and operation phases. 2922 Finally, a case study is considered to demonstrate the effectiveness of the proposed procedure. Two approaches are 3023 taken into consideration: in the first approach, LCA is not integrated into the optimization process, while in the 324 second approach the primary energy consumption is minimized throughout the life cycle of the plant by integrating 325 LCA.

326 347 328 369 370 370 370 370 370 32 383 31 383 3 4036 The rest of this paper is organized as follows: Section 2 illustrates the HEP considered in this study, presents the mathematical models of the HEP components and describes the control logic used for the allocation of the energy demands among the different technologies. Section 2 also describes the adopted LCA model, discusses the problem of LCA scaling and highlights the optimization procedure. The case study is outlined in Section 3. Finally, sections 4 and 5 discuss the results and conclude the paper, respectively.

2. Model development

The optimal design of the HEP is made by considering an energy-based criterion, i.e. the primary energy demanded throughout the manufacturing and operation phases is minimized. However, a different objective 4_{b7} function, such as pollutant emission production or total cost, may be implemented in the model developed in this 4238 paper. Sizing optimization is conducted by using a Genetic Algorithm (GA) because of its ability to deal with 4339 discrete spaces and solve nonlinear problems [28]. In fact, this kind of evolutionary algorithm does not require 4410 limiting assumptions about the underlying objective function. The optimization is conducted by simulating the HEP **45**1 throughout one year and the analysis is carried out on an hourly basis. For the simulation of the HEP, a model is **46**€2 developed in Matlab[®].

- 43 44
- 45
- 46
- 47
- 48
- 49

1 2.1. Hybrid energy plant

6

2 Figure 1 shows a scheme of the HEP considered in this paper. It is composed of different technologies which use 3 renewable and non-renewable energy sources. In particular, Solar Thermal Collector (STC), Photovoltaic Panel 4 (PV), Combined Heat and Power system (CHP), Absorption Chiller (ABS), Air Source Heat Pump (ASHP), Ground 5 Source Heat Pump (GSHP) and thermal energy storage are considered.

5

Fig. 1. Schematic diagram of the hybrid energy plant.

In addition, a condensing Boiler (AB) and a Chiller (AC) are also considered as auxiliary systems in order to meet thermal and cooling demands in case that they are not fulfilled by the abovementioned systems. Heat pumps are assumed reversible, i.e. they can produce thermal energy in winter and cooling energy in summer.

Equations (1), (2) and (3) express the balance of thermal energy, cooling energy and electric energy demands to be met by the different technologies of the HEP:

$$E_{AB,th}(i) = E_{th}(i) - \left(E_{STC,th}(i) + E_{CHP,th}(i) + E_{GSHP,th}(i) + E_{ASHP,th}(i) + E_{storage,th}(i)\right)$$
(1)

$$E_{\text{AC},\text{cool}}(i) = E_{\text{cool}}(i) - \left(E_{\text{ABS},\text{cool}}(i) + E_{\text{GSHP},\text{cool}}(i) + E_{\text{ASHP},\text{cool}}(i)\right)$$
(2)

$$E_{\rm el}(i) + E_{\rm GSHP,el}(i) + E_{\rm ASHP,el}(i) + E_{\rm AC,el}(i) = E_{\rm PV,el}(i) + E_{\rm CHP,el}(i) + E_{\rm grid,el,taken}(i)$$
(3)

1733 As can be seen, these equations ensure the fulfilment of the thermal, cooling and electric energy demands at each 1834 time step i (equal to one hour) of the entire simulation period of one year. In particular, from Eq. (1), E_{th} , which 1935 represents the space heating and hot water demand, can be met by the STC, CHP, GSHP and ASHP systems. The 2036 AB ensures the fulfillment of the thermal demand in case it is not met by the other systems. From Eq. (2), E_{cold} , 21³⁷ 22³⁸ 23³⁹ 24⁴⁰ 25⁴¹ 25⁴² 26⁴³ 27₄₄ which represents the cooling demand, is fulfilled by the ABS, GSHP and ASHP systems. The AC ensures the fulfillment of the cooling demand if not fulfilled by the other systems. As reported in Eq. (3), the electric energy demand (E_{el}), the electricity required by the heat pumps ($E_{GSHP,el}$ and $E_{ASHP,el}$) and the AC ($E_{AC,el}$) are provided by the PV ($E_{PV,el}$) and CHP ($E_{CHP,el}$) systems. If these systems are not able to fulfill the demand of electric energy, the remaining part, which is represented by Egrid,el,taken, is imported from the grid. Otherwise, the excess of the produced electric energy from the CHP system and the PV panel is delivered to the grid.

Equation (4) defines the primary energy used during the operation phase. It is defined as the sum of primary 28_{45} energy consumption of the CHP, AB and the primary energy referred to the electricity exchanged with the grid.

46

- 47 48
- 49

$$PE_{op} = PE_{fuel, CHP} + PE_{fuel, AB} + PE_{E_{grid, eltaken}} - PE_{E_{grid, elsent}}$$

(4)

6

2 2.2. Energy systems

1

3

4

5

6

The technologies considered in this paper are selected according to two criteria. The first criterion is that the candidate technologies are market available (in quite a wide range of sizes) and suitable for residential users as both single components and aggregate systems. Though ORC systems may be a promising alternative as the prime movers of micro-CHP systems in addition to internal combustion engines, they still present some challenges for real applications, as discussed by Ziviani et al. in [29]. Because of the purpose of the analyses carried out in this paper, 71 the second criterion used to select the technologies is the availability of quantitative LCA data. 82

93 The technologies which are considered in this study are modelled by following a gray-box modelling approach. 10 4 In particular, systems are defined by power and efficiency curves. It should be noted that the efficiency of all the 115 energy technologies, with the exception of STC and PV panels of which performance only depends on ambient 12 6 conditions, vary with the load. The basic correlations for each technology comprising the HEP are reported in the $13 7 \\ 8 \\ 14 9 \\ 15 \\ 16 \\ 17 \\ 13 \\ 18 \\ 15 \\ 19 \\ 7 \\ 18 \\ 20 9$ following.

Photovoltaic panel

Regarding the PV panels, single-crystalline silicon solar cells are considered. The efficiency of the PV system takes into account the efficiency of the inverter and electrical connections considering a Balance of System (η_{BoS}) equal to 0.9 [30, 31]:

$$\eta_{\rm PV} = \eta_{\rm M} \cdot \eta_{\rm BoS} \tag{5}$$

With;

$$\eta_{\rm M} = \eta_{\rm M, ref} \cdot \left[1 - \beta \cdot \left(T_{\rm c} - T_{\rm ref} \right) \right] \tag{6}$$

 $20 \\ 2\dot{p}1 \\ 2\dot{z}2 \\ 2\dot{z}3 \\ 24 \\ 24z5 \\ 2\dot{z}6 \\ 2\dot{z}7 \\ 28 \\ 269 \\ 30$ where $\eta_{M,ref}$ is the efficiency of the PV at reference conditions, β a temperature penalty coefficient, T_c the operating temperature of the cell and T_{ref} the reference temperature of the cell. The operating temperature (T_c) of the cell depends on the external air temperature and solar radiation.

Solar thermal collector

The STC efficiency is estimated by means of the following equation reported in [32]:

$$\eta_{\text{STC}} = \eta_{\text{o}} - a_1 \cdot \left(\frac{T_{\text{av}} - T}{R}\right) - a_2 \cdot \left(\frac{T_{\text{av}} - T}{R}\right)^2 \tag{7}$$

2731 where η_0 is the optical efficiency, a_1 and a_2 are correction factors, T the hourly external ambient temperature, T_{av} the average temperature and R the solar radiation. The collector efficiency varies during the year because it depends on both the external ambient temperature and the global solar radiation. The average temperature is assumed equal to 80 °C during summer, and 50 °C during winter.

Combined heat and power system

2 8^{2} 2 9^{3} 3 9^{4} 3^{5} 3 16 3 2^{7} 3 3^{3} 3^{3} 3^{4} 3^{3} 3^{4} 3^{3} 3^{4} 3^{3} 3^{4} 3^{3} 3^{4} 3^{3} 3^{4} 3^{3} 3^{4} 3^{3} 3^{4} 3^{3} 3^{4} 3^{3} 3^{4} 3^{3} 3^{4} 3^{3} 3^{4} 3^{3} 3^{4} 3^{3} 3^{4} 3^{3} 3^{4} 3^{3} 3^{4} 3^{3} 3^{4} 3^{4} 3^{4} 3^{3} 3^{4} The CHP system considered in this study is based on an internal combustion engine. The size of the CHP system is defined by the nominal electric power. The electric efficiency and the nominal thermal power are calculated as a function of the nominal electric power as reported in [33]:

⁴¹
3542
$$\eta_{\text{CHP,el,nom}} = 0.232 \cdot (P_{\text{CHP,el,nom}})^{0.084}$$
 (8)

$$P_{\text{CHP,th,nom}} = 2.5 \cdot \left(P_{\text{CHP,el,nom}} \right)^{0.91}$$
(9)

- 43 3644 45 46 47
- 48 49

(11)

1 The performance of the CHP varies with the ambient temperature and load variation which is defined as the ratio 2 between the actual thermal power and nominal power [33]. The minimum load is assumed equal to 10 % of the 3 nominal thermal load [34]. Moreover, CHP system start-up is modelled by adding a penalty equal to the fuel 4 consumption for five minutes at nominal conditions.

<u>Heat pumps</u>

5

6

7

2 3 9

4

11

The performance of the GSHP and ASHP systems is calculated by using the technical standard [34]. The nominal cooling power is calculated as a function of the nominal thermal power by following the same approach reported in 8 1 [33]:

(10) $P_{\text{GSHP.cool.nom}} = 0.82 \cdot P_{\text{GSHP.th.nom}}$

10 ⁵ 6 $P_{\text{ASHP.cool.nom}} = 0.88 \cdot P_{\text{ASHP.th.nom}}$

11 ⁷ 8 For both heating and cooling modes, the performance of the heat pumps varies depending on the temperature of 12 9 the external heat exchanger, internal heat exchanger and the load. The minimum load is assumed equal to 10 % of 1310 the nominal load [33, 36].

Absorption chiller

 $1412 \\ 1514 \\ 1615 \\$ A single-effect H₂O-BrLi ABS is considered. The nominal efficiency of the ABS, represented by the energy efficiency ratio (*EER*), is assumed equal to 0.7 [33]. The capacity of the ABS system is defined by the nominal 1716 thermal power. The nominal cooling power is calculated as follows:

$$P_{\text{ABS,cool,nom}} = P_{\text{ABS,th,nom}} \cdot EER_{\text{ABS,nom}}$$
(12)

The part load operation can affect the performance of the ABS. The minimum load is fixed equal to 25 % of the nominal load [37].

Auxiliary systems

 $17 \\ 1818 \\ 19 \\ 19^{20} \\ 20^{21} \\ 2123 \\ 2123 \\ 22^{24} \\ 23_{26} \\ 24_{27} \\ 24_{27} \\ 2$ A condensing boiler powered by natural gas and an electric chiller are considered as auxiliary generation systems. The nominal thermal efficiency (on an LHV basis) of the AB is assumed equal to 1.06, while the EER of the AC is assumed equal to 2.7. Both systems are considered as modulating systems. The minimum load of the AC 2528 is assumed equal to 10% [38], while the AB can modulate between 0 and 100 %. Moreover, a variation of the 2629 performance with load is assumed for both systems.

2731 2.3. The control logic

2833 2934 3035

30

32

In an HEP, the control logic of the different technologies defines which systems are switched on/off or regulated. Generally, control logic approaches such as time-led, heat-led, cold-led or electricity-led are implemented for the definition of the starting order of the systems involved [39]. In other cases, some hybrid function may be implemented to enhance the performance of the supply/demand matching.

 $\begin{array}{r} \mathbf{31}^{36} \\ \mathbf{32}^{37} \\ \mathbf{33}^{38} \\ \mathbf{34}^{39} \\ \mathbf{35}^{40} \\ \mathbf{35}^{41} \\ \mathbf{36}_{42} \\ \mathbf{37}_{43} \\ \mathbf{38}_{44} \end{array}$ In this work, the control logic of the different technologies is defined by Switch-On Priority (SOP) mapping, which defines the starting order and allows the minimization of on-site primary energy consumption during the considered period. The SOP mapping procedure is described and discussed in [40]. The mapping is developed by considering the demands for winter and mid-season and the summer season separately, and the SOP control logic is defined by maximizing the efficiency of the system depending on the nominal capacity and the types of systems utilized. Renewable energy systems, such as STC and PV are not considered in the mapping, since they are not controllable and must be activated first. Furthermore, the AB and AC are not considered in the mapping because 39₄₅ they are considered as auxiliary systems and their size is set equal to the peak of the thermal and cooling energy

46

47

48

demand, respectively. The CHP size ranges between (50 to 500) kW, with a step of 50 kW and the ASHP and GSHP 1 2 capacities range between (30 to 300) kW with a step of 30 kW. The nominal thermal power of the ABS is defined 3 equal to the CHP thermal nominal power.

8

4 In order to develop the SOP mapping, for each combination of component sizes, the on-site primary energy 5 consumption is calculated and the best SOP control logic is evaluated. For the considered components, the 6 developed SOP mapping consists of a 3D matrix which contains 1000 size combinations. At each iteration of the 7 optimization process, the developed SOP mapping is used by the optimization algorithm to define the proper SOP 8 which minimizes the on-site primary energy consumption.

1 9₂ 2.4. Life cycle assessment model

3

161

1712

18.3

1914

17

10 4 In order to evaluate the primary energy demanded during the manufacturing phase of the PV, STC, CHP, GSHP, 115 ASHP, ABS and the storage, a cradle-to-gate LCA is carried out. AB and AC are not assessed, since they are 126 considered as auxiliary systems and they are not involved in the optimization process. The disposal phase is not 137 taken into account in this study due to lack of consolidated data. Figure 2 shows the boundary considered for the 148 development of the cradle-to-gate analysis. For each technology comprising the HEP, the boundaries of the cradle-15 9 to-gate analysis include: 10

- Raw material extraction (cradle);
- Raw material processing;
- Transportation of processed materials to the manufacturing site; •
- Manufacturing of the final product;
- 2015 Transportation to market; • 216
 - System at market (gate).

- 2337
- 38

Fig. 2. Boundary of the technologies comprising the HEP.

The LCIs of the investigated systems were obtained from Ecoinvent[®] [41] by considering the European market. 2489 The calculation is conducted by using the software openLCA[®] [42]. The cumulative energy demand (CED) is 2540 261 considered as the impact indicator. The CED takes into account the primary energy demanded throughout the 2742 cradle-to-gate life cycle and represents the depletion of energy resources associated with the life cycle of the system 28⁴³ [43]. 44

- 46
- 47
- 48 49

For sizing optimization purposes, in order to calculate the CED of a system of an arbitrary size, the CED values 2 should be available at different sizes of the considered system. However, LCI databases usually provide inventory 3 data for a certain product at a predefined size. In the literature, this problem is usually overcome by the linear 4 scaling of the LCI flows of equipment with its capacity. Nevertheless, linearization may over- or under- estimate the 5 final results because the relationship between LCI flows (or impacts) and system size is not linear and follows a 6 power law trend, in a fashion similar to the economies of scale [44]. Among others, the analogy between LCI 7 scaling and cost scaling was demonstrated by Gerber et al. [26] who recommend the use of the power law 8 relationship for LCI scaling instead of linear scaling. Moreover, they showed that, when no information about the 9 scaling rule is available (i.e. the relationship between mass and equipment size), the use of cost exponents always 1 10 allows better results than linear scaling. Furthermore, Whiting et al. [45] used a scaling exponent of 0.6 to scale up 2 11 3 LCA results of a CHP system. Likewise, Lantz [46] scaled the investment costs of a CHP plant by using a cost 12 4 exponent of 0.66. These two works confirm the validity of the analogy between LCA and cost scaling. The use of 13 5 scaling factors is also recommended by Caduff et al. [44]. In their study, they suggest the use of scaling factors in 14 6 the range from 0.5 to 0.8 for the scaling of energy technologies. Therefore, to calculate the CED of a system in a 15 7 range of sizes, the LCI data were scaled as in Eq. (13):

$$\overset{8}{\underset{0}{9}} \qquad G = G_{\text{ref}} \cdot \left(\frac{P}{P_{\text{ref}}}\right)^k \tag{13}$$

 $16 \ {}^9 \ {}^{10} \ {}^{11} \ {}^{11} \ {}^{12} \ {}^{13} \ {}^{2014} \ {}^{2115} \ {}^{2216} \ {}^{2317} \ {}^{2418} \ {}^{2519} \ {}^{250} \ {}^{20}$ where G represents the scaled LCI flows (i.e. material, energy, emission, etc.) at the scaled size P, G_{ref} the flows at a reference size P_{ref} and k the scaling exponent which ranges from 0 to 1. The LCI flows (G_{ref}) at the reference size are obtained from the Ecoinvent[®] database, while the scaling exponent (k) is derived from the literature. It should be mentioned that, nonlinear scaling was only carried out for the CHP, GSHP, ASHP, ABS and hot water storage equipment, while the LCI of the STC and PV systems was scaled linearly (i.e. k=1) as a function of the respective area. Indeed, the choice of 1 m² as a functional parameter for the STC/PV allows the linear scaling of the LCI as a function of the STC/PV area. Scaling exponents (k) for the CHP, GSHP, ASHP, ABS and hot water storage were obtained from the literature. The scaling exponents for the abovementioned technologies are reported in Table 1.

22			
22-		Scaling exponent (k)	Reference
24 S	TC/PV	1	-
25 C	CHP	0.66	Heck et al. [47]
26 G	SSHP	0.60	Caduff et al. [44]
27 28 A	ASHP	0.67	Caduff et al. [44]
29 A	ABS	0.54	Eicker et al. [48]
30 s	torage	0.81	Eicker et al. [48]
27 ³¹			

2621 Table. 1. Scaling exponents of the CHP, GSHP, ASHP, ABS and storage equipment.

28³² Moreover, in order to calculate the primary energy associated with the manufacturing of the grid, the Italian grid 29³³ was also modelled by using the Ecoinvent[®] database. The CED associated with the cradle-to-gate life cycle of the **30**³⁴ 35 optimized technologies is calculated as in Eq. (14):

$$CED = CED_{\text{HEP}} + CED_{\text{grid}}(E_{\text{grid,el,taken}}) = \sum_{s} \frac{CED_{s}(P_{s})}{N_{s}} + CED_{\text{grid}}(E_{\text{grid,el,taken}})$$
(14)

3240 where CED represents the total CED expressed in MJ_{eq} per year, the first term on the right-hand side (CED_{HEP}) is 3341 the sum of the primary energy associated with the cradle-to-gate life cycle of the optimized systems and CED_{erid} 34⁴² represents the primary energy associated with the life cycle of the Italian grid and depends on the electricity taken 35⁴³ from the grid per year of operation. Finally, for each system, the variables N_s and P_s represent the useful lifetime and 36^{44}_{45} the decision variable (or the size), respectively.

1

46

47 48

2.5. Optimization model

The methodology for sizing optimization of HEPs is outlined in Fig. 3. The GA is initialized by generating a random population of individuals in the design space and each individual represents a combination of sizes of the technologies comprising the HEP.

For each individual of the population, the primary energy PE_{op} used during the operation phase is calculated from the simulation model of the HEP as reported in Eq. (4), while the CED associated with the cradle-to-gate life cycle of the considered technologies and the Italian grid is calculated by means of the LCA model according to Eq. (14).

Fig. 3. GA optimization flowchart.

Consequently, the GA evaluates the fitness function of each individual in the current population as follows:

$$fval = f(P) = PE_{op} + CED$$

28 29 31 10 33 11 33 12 36 7 13 38 9 15 0 Then, based on the values of the individuals in the current population, the GA creates a new population by applying three operators (elitism, crossover and mutation). These mechanisms are repeated by the GA until a certain criterion is met and the best individual, which represents the optimal combination of sizes, is selected.

The decision variables P which represent the sizes of the technologies to be optimized are $P_{\text{CHP,el,nom}}$, $P_{\text{GSHP,th,nom}}$, $P_{\text{ASHP,th,nom}}$, $P_{\text{ABS,th,nom}}$, A_{STC} and A_{PV} . The volume of the storage V_{storage} is calculated according to [49] as a function of the CHP and STC decision variables. In particular, a ratio equal to 0.04 m^3/m^2 is considered between the storage volume and the STC area, while the storage volume associated to the CHP system is assumed equal to 2 kWh/kWth. Finally, the size of AB and AC are imposed equal to the peak of the thermal and cooling energy demands, #5 respectively.

(15)

1 3. Case study

2 A tower composed of thirteen floors, located in the northern Italy, is considered as a case study [40]. In the tower, 1189 m², corresponding to a volume of 5735 m³, are used as commercial premises, while 4457 m², corresponding to 3 a volume of 20187 m³, are used as offices. 4

5 3.1. Environmental data

6 1 The ambient temperature and solar radiation for the considered case study is calculated by using the procedure 7 2 recommended in the standard [35]. This standard identifies one representative day of each month. Then, the hourly 8 3 profiles of temperature and total solar radiation are calculated for the Italian climatic zone "A", where the 9 4 considered building is situated, according to the standard [50]. The monthly air temperature and total solar radiation 10 5 values are reported in Fig. 4a and Fig. 4b, respectively.

Fig. 4. Average air temperature (a) and daily total solar radiation (b).

3.2. Energy demands

 $11^{19}_{20}\\12^{21}_{22}\\13^{23}_{24}\\14^{25}_{15^{26}}\\15^{27}_{28}\\17^{29}_{29}\\18^{30}_{30}\\19^{31}_{31}\\20^{32}$ Figures 5a through 5d report the monthly energy demand for space heating, hot water, space cooling and electricity, respectively. The monthly energy demands were characterized for three different zones and calculated by using the EdilClimaEC700® software [40]. Zone 1 is for business use, Zone 2 is for offices and the Off Zone comprises elevators, lighting, parking lots, and the outdoor lighting basement. The energy demand is estimated equal to 207.17 MWh/year for space heating (Fig. 5a), 8.75 MWh/year for domestic hot water (Fig. 5b), 154.83 MWh/year for space cooling (Fig. 5c), and 410.92 MWh/year for electricity (Fig. 5d). The hourly demand presents a power peak of 234 kW for space heating and hot water, 294 kW for space cooling and 103 kW for electricity.

 21_{33} The energy demands were evaluated by considering 292 days of occupancy. The heating period for the climatic 2234 zone in which the building is located begins on 15th October and ends on 15th April, while the cooling period goes 2335 from 15th June to 15th September. Energy demands for domestic hot water and electricity are present throughout the 2436 whole year. In order to obtain hourly profiles of the energy demands, monthly energy demands are converted into 2537 hourly energy demands by using non-dimensional profiles which consider the types of users [51].

38

2639 3.3. System variables and optimization algorithm set-up 40

2741 The sizing optimization problem of the HEP is carried out based on the efficient matching between building 28^{42} energy demands and the energy supplied by the considered technologies, with the aim of minimizing the objective 29⁴³ function represented by Eq. (15). The optimization aims at optimizing the STC and PV area (A_{STC} and A_{PV}) which 30^{44}_{45} can cover the available total area (328 m²), the CHP nominal electric power ($P_{CHP,el,nom}$), which is an integer in the

- 46
- 47
- 48
- 49

1 range (0 to 500) kWe, the GSHP and ASHP nominal thermal power (P_{GSHP,th,nom} and P_{ASHP,th,nom}) in the range (0 to 2 300) kW_{th} and the ABS nominal thermal power ($P_{ABS,th,nom}$) in the range (0 to 400) kW_{th}. Regarding the GA set-up, 3 100 generations with a population of 300 individuals for each generation are evaluated and the elite count (i.e. the 4 number of individuals with the best fitness values that survive to the next generation) is set equal to 10.

Fig. 5. Energy demands of the considered case study [40].

4. Results

Table 2 shows the optimization results of the two approaches considered in this study. In the first approach (LCA not integrated), LCA is not integrated into the optimization process, i.e. only the primary energy used during the operation phase is taken into account, while the second approach (LCA integrated) optimizes the sizes of the technologies considering the primary energy demanded throughout the cradle-to-gate life cycle and the operation phase of these systems.

As can be seen, the integration of LCA may lead to a different combination of sizes. In fact, by adding the off-1536 site primary energy consumption evaluated by the LCA method, the area of the PV system increases in favor of the 167 STC of about 37 m², the size of the CHP is increased from 93 kW_e to 114 kW_e, the size of the GSHP is decreased from 298 kWth to 120 kWth, the size of the ASHP decreases from 121 to 32 kWth and the ABS nominal power 1738 1889 increases from 153 to 235 kW_{th}. It should be noted that a sensitivity analysis was carried out (but the results are not 1940 reported in this paper for the sake of brevity) by increasing the available total area which can be covered by STC 20#1 and PV panels (increased up to three times). The analysis revealed that, in the optimal solution, almost the entire 2142 available area is covered by PV panels.

- 2243
- 44 45
- 46
- 47 48
- 49

Table 2. Optimal sizes of the technologies

Optimization decision variables (P)	$A_{\rm STC} [{ m m}^2]$	$A_{\rm PV} [{ m m}^2]$	$P_{\rm CHP,el,nom} [\rm kW_e]$	$P_{\text{GSHP,th,nom}} \left[\text{kW}_{\text{th}} \right]$	$P_{\rm ASHP,th,nom} [\rm kW_{th}]$	$P_{\rm ABS,th,nom}[kW_{\rm th}]$	V _{storage} [1]
LCA not integrated	40.3	287.5	93	298	121	153	892.6
LCA integrated	2.7	324.7	114	120	32	235	935.5

7

8

9 7

8

9

10

11

12

13 14

15

16 17

18 19

20 21

1

Figure 6 reports the annual CEDs associated with the cradle-to-gate life cycle of the two combinations of 1 technology sizes (see Table 2) per one-year lifetime obtained by applying the two approaches. With reference to the 2 3 CED of the GSHP, it can be noted that, even if the size of the GSHP is more than halved by passing from the "LCA not integrated" approach to the "LCA integrated" approach, the value of the CED does not decrease proportionally. 4 This is due to the nonlinear scaling approach adopted in this paper. Indeed, this justifies that linear scaling may 5 under- or over- estimate LCA results and affect the optimization results. 6

Fig. 6. Annual CED of the different technologies.

Figure 7 shows the primary energy associated with the grid (CED_{grid}), the cradle-to-gate life cycle of the whole plant (CED_{HEP}), the operation phase (PE_{op}) and the total primary energy consumption (*fval*). It can be seen that *CED*_{erid} most heavily affects the optimization results.

 $\begin{array}{c} 22\\ 10_{23}\\ 11_{25}^{24}\\ 12_{25}^{26}\\ 13_{28}^{27}\\ 14_{29}\\ 15_{30}\\ 16_{31}\\ 17_{32} \end{array}$ It should be mentioned that CED_{grid} can be evaluated only by considering both LCA and the operation. This is due to the fact that CED_{grid} is related to the electricity taken from the grid which depends on the operation policy of the different technologies. Furthermore, by integrating LCA into sizing optimization, the GA algorithm tends to 1833 increase the PV area in favor of the STC and also increases the size of the CHP, in order to minimize the amount of 1934 electricity taken from the grid. Moreover, the integration of LCA leads to a primary energy saving of about 12.5 %.

2035 Figures 8a through 8c show the production of thermal energy, cooling energy and electric energy from the 2136 different technologies, respectively. As can be noted from Fig. 8a, the system which fulfills most of the thermal 2237 energy demand is the CHP followed by the GSHP while ASHP and AB are not used for the production of thermal 2338 energy. By considering the case of "LCA integrated", the CHP produces about twice the thermal energy fulfilled by 2439 the same technology when LCA is not integrated into the optimization process. Indeed, about 40 % of the energy 25^{40} produced from the CHP (in the "LCA integrated" approach) is used to operate the ABS which is used to produce 2641 cooling energy. So, the integration of LCA makes the thermal energy to be met higher because, in addition to 27⁴² building thermal energy demand, the thermal energy required by the ABS also has to be fulfilled. But, even if the 28⁴³ thermal energy demand is increased, the reversible GSHP is not used for the fulfillment of the thermal energy 29^{44}_{45} demand, while the thermal energy produced by the STC is lower because it is characterized by a smaller size.

- 47
- 48
- 49

Fig. 7. Contribution of the grid, HEP and operation phase to primary energy consumption.

Fig. 8. Energy production from the different HEP components.

By analyzing the cooling energy production of the different systems, Fig. 8b shows that, if LCA is not integrated, the cooling energy demand is mostly fulfilled by the GSHP (about 90 %) followed by the ASHP (about 10 %), while the ABS is not used. However, by integrating LCA, most of the cooling energy demand is fulfilled by the ABS (about 68 %) followed by the GSHP unit which produces about 25 % of the energy produced by the same machine when LCA is not accounted for (Fig. 8b). As reported before when analyzing the thermal energy production of the "LCA integrated" approach, a certain amount of thermal energy produced by the CHP is used by the ABS which in turn fulfills a large portion of the cooling energy demand.

8 Figure 8c shows the electric energy produced by the PV, CHP system and the electricity taken from the grid for 9 1 both approaches. The produced electricity is used to fulfill building electric demand and to operate the heat pumps. 10 It can be seen that, by considering LCA into optimization, the solution identified by the GA tends to produce more 2 11 3 electricity (and consequently more thermal energy) from the CHP system and tends to decrease the amount of 12 4 electricity taken from the grid. This result is explained by the fact that the life cycle of the grid has a higher weight 13 5 on the primary energy demanded throughout the life cycle (see Fig. 7). Moreover, by integrating LCA, the solution 14 6 found by the algorithm tries to fulfill the cooling energy demand by using more heat driven technologies, such as the 15 7 ABS, and to limit the production of energy (both thermal and cooling energy) from the electricity driven 16 8 technologies.

Figures 9 and 10 highlight how the HEP components are managed during a typical winter and summer day in order to meet the thermal and cooling energy demand. In Fig. 9, "Storage In" represents the energy produced by the CHP system and STC and stored in the storage, "Storage Out" stands for the stored energy used to meet the thermal energy demand, while "Storage State of Charge" is the thermal energy available in the storage. As can be noted from Figs. 9a and 9b, the integration of LCA affects the operational results of the different technologies comprising the HEP. In particular, when LCA is not integrated (Fig. 9a), the thermal energy demand is met by the STC, CHP system, GSHP and hot water storage. In particular, in each hour, the storage is the first system that contributes to meeting the thermal energy demand. The CHP system is directly used to meet the demand, if the stored energy is not sufficient, and the excess thermal

The CHP system is directly used to meet the demand, if the stored energy is not sufficient, and the excess thermal 26_{19} energy is stored. The GSHP is activated during peak hours when the stored energy and the CHP system are not able 27_{20} to meet the energy demand.

With regard to the "LCA integrated" approach (Fig. 9b), the same also applies here, i.e. the thermal energy demand is first met by the storage, supported by the CHP system and the STC. Instead, the GSHP is no longer used and the activation of electric driven technologies is avoided. In fact, the integration of LCA suggests increasing the size of both the CHP system and hot water storage. Consequently, the demand is fully met by these two technologies. For both approaches, the thermal demand met by the STC is negligible. However, when LCA is not integrated, the demand met by the STC is slightly higher, since the area of the STC is larger than in the case of the 34^{27} "LCA integrated" approach.

³⁴²⁷ "LCA integrated" approach. ³⁵²⁸ Figure 10 shows the contribution of each component to meet the cooling energy demand for the "LCA not ³⁶²⁹ integrated" approach (Fig. 10a) and "LCA integrated" approach (Fig.10b). When LCA is not integrated, the system ³⁷³⁰ which mostly contributes is the GSHP followed by the ASHP, while the ABS and AC are not used. This is mainly ³⁸¹ due to the fact that the GSHP requires lower energy consumption than ASHP and ABS. However, by integrating ³⁹³³ LCA (Fig. 10b), the rank of the different energy technologies is changed and the cooling demand is mostly met by ⁴⁰³⁴ the ABS. Furthermore, the GSHP and ASHP systems are used during peak loads or when cooling demand is lower ⁴¹³⁵ than the minimum load of the ABS. This outcome confirms that, when LCA is integrated, it is advisable to first meet ⁴²³⁶ the cooling energy demand by using the CHP system coupled with the ABS.

37 43₃₈ **5. Conclusions**

39

This paper addresses the problem of integrating up-stream energy demands of energy technologies into design optimization and investigates the effect of considering the up-stream impacts on the optimal size of a hybrid energy plant. The work covered the evaluation of off-site primary energy consumption by using the life cycle assessment (LCA) methodology, the challenge of life cycle assessment scaling of renewable and non-renewable energy technologies and the problem of integration of life cycle assessment in system design and optimization.

- 49⁴⁵ 46
 - 47
 - 48
 - 49

Fig. 9. Contribution to thermal energy demand of the CHP system, GSHP, ASHP, STC, AB and storage during a winter day.

Fig. 10. Contribution to cooling energy demand of ABS, GSHP, ASHP and AC during a summer day.

1 A methodology based on a genetic algorithm is used for the optimization of hybrid energy plants and two 2 approaches were conducted in order to evaluate the influence of the integration of life cycle assessment on the 3 optimal size and plant configuration. For both approaches ("LCA not integrated" and "LCA integrated"), the system 4 which fulfills most of the thermal energy demand (more than 90 %) is the CHP system. If the life cycle assessment 5 is not integrated, the cooling energy demand is mostly fulfilled by the ground source heat pump (about 90 %) 6 followed by the air source heat pump (about 10 %), while the absorption chiller is not used. However, by integrating 7 life cycle assessment, the thermal energy produced by the CHP system is almost doubled and about 40 % of the 8 thermal energy produced by the CHP system is used to operate the absorption chiller which fulfills most of the 9 1 cooling energy demand (about 68 %).

10 2 The life cycle of the grid has a major weight on the primary energy demanded throughout the life cycle, when 11 3 considering life cycle assessment into optimization, the amount of electricity taken from the grid is decreased and 12 4 more electricity is produced from the CHP. Moreover, by integrating the life cycle assessment, the cooling energy 13 5 demand is fulfilled by using more heat driven technologies, such as the absorption chiller, and the production of 14 6 cooling energy from the electric driven technologies, such as the ground source heat pump and air source heat pump, 15 7 is limited. Finally, when considering off-site primary energy consumption may lead to a different configuration of 16 8 the hybrid energy plant and to higher primary energy saving (about 12 %); this in turn results in a lower depletion of

energy resources and lower environmental impact.

References

- [1] Manwell J.F. Hybrid energy systems. In: Cleveland, C.J. (ed.), Encyclopedia of Energy, vol. 3, pp. 215-229, London (2004).
- $17 \begin{array}{c} 9 \\ 10 \\ 18 \\ 12 \\ 19 \\ 13 \\ 20 \\ 14 \\ 21 \\ 15 \end{array}$ [2] Comodi G., Bevilacqua M., Caresana F., Paciarotti C., Pelagalli L., Venella P. Life cycle assessment and energy-CO2-economic payback analyses of renewable domestic hot water systems with unglazed and glazed solar thermal panels. Appl Energy, 164 (2016), pp. 944-955.
- 2216 [3] Varun, Bhat I.K., Prakash R. LCA of renewable energy for electricity generation systems - A review. Renew Sust Energ Rev, 13 (5) (2009), pp. 1067-1073.
 - [4] UNI EN ISO 14040: 2006. Environmental management life cycle assessment principles and framework.
- $\begin{array}{c} 23_{17} \\ 24_{18} \\ 25_{19} \\ 26_{20} \\ 27_{20} \\ 28_{21} \\ 29_{22} \\ 30_{23} \end{array}$ [5] Kabakian V., McManus M.C., Harajli H. Attributional life cycle assessment of mounted 1.8 kWp monocrystalline photovoltaic system with batteries and comparison fossil energy production system. Appl Energy, 154 (2015), pp. 428-437.
 - [6] Moore A.D., Urmee T., Bahri P.A., Rezvani S., Baverstock G.F. Life cycle assessment of domestic hot water systems in Australia. Renew Energ, 103 (2017), pp. 187-196.
 - [7] Xu L., Pang M., Zhang L., Poganietz W.-R., Marathe S.D. Life cycle assessment of onshore wind power systems in China. Resour Conserv Recy, 132 (2018), pp. 361-368.
- 3124 [8] Colclough S., McGrath T. Net energy analysis of a solar combi system with seasonal thermal energy store. Appl Energy, 147 (2015), pp. 611-616.
 - [9] Desideri U., Proietti S., Zepparelli F., Sdringola P., Bini S. Life cycle assessment of a ground-mounted 1778 kWp photovoltaic plant and comparison with traditional energy production systems. Appl Energy, 97 (2012), pp. 930-943.
- 3124 3225 3326 3427 3528 3628 3729 [10] Kelly K.A., McManus M.C., Hammond G.P. An energy and carbon life cycle assessment of industrial CHP (combined heat and power) in the context of a low carbon UK. Energy, 77 (2014), pp. 812-821.
 - [11] Keoleian G.A., Menerey D. Life cycle design guidance manual. Environmental requirements and the product system. Final report (1993).
- 3830 [12] Keoleian G.A. The application of life cycle assessment to design. J Clean Prod, 1 (3-4) (1993), pp. 143-149.
 - [13] Gasafi E., Meyer L., Schebek L. Using life-cycle assessment in process design: Supercritical water gasification of organic feedstocks. J Ind Ecol, 7 (3-4) (2004), pp. 75-91.
- [14] Lu B., Gu P., Spiewak S. Integrated life cycle design approach for sustainable product development. Proceedings of the Canadian Engineering Education Association, 2011, doi:10.24908/pceea.v0i0.3990.
- [15] Stefanis S.K., Livingston A.G., Pistikopoulos E.N. Minimizing the environmental impact of process plants: A process systems methodology. Comput Chem Eng, 19 (1995), pp. 39-44.
- 3830 3931 4032 4133 4234 4335 4435 4536 4637 4637 [16] Ogunjuyigbe A.S.O., Ayodele T.R., Akinola O.A. Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building. Appl Energy, 171 (2016), pp. 153-171.
- 4738 [17] Dufo-López R., Bernal-Agustín J.L., Yusta-Loyo J.M., Domínguez-Navarro J.A., Ramírez-Rosado I.J., Lujano J., Aso I. Multi-objective 4839 optimization minimizing cost and life cycle emissions of stand-alone PV-wind-diesel systems with batteries storage. Appl Energy, 88 (11) (2011), pp. 4033-4041.
- [18] Jing Y.-Y., Bai H., Wang J.-J. Multi-objective optimization design and operation strategy analysis of BCHP system based on life cycle assessment. Energy, 37 (1) (2012), pp. 405-416.
- 4940 5041 5142 5243 5343[19] Wang J., Yang Y., Mao T., Sui J., Jin H. Life cycle assessment (LCA) optimization of solar-assisted hybrid CCHP system. Appl Energy, 146 (2015), pp. 38-52.
- 54⁴⁴ [20] Allouhi A., Agrouaz Y., Benzakour Amine M., Rehman S., Buker M.S., Kousksou T., Jamil A., Benbassou A. Design optimization of a 5545 multi-temperature solar thermal heating system for an industrial process. Appl Energy, 206 (2017), pp. 382-392.
- 46
- 47
- 48
- 49

- 1 2345678 9 10 111 12_{2} 13₃ 13 3 14 4 15 5 16 5 17 6 18 7 198 20 9 21₀ 2210 2211 232 242 253 264 2715 286 2917 30 8 31 9 32 0 33 1 9 32 0 33 1 9 32 0 33 1 9 3\$22 3@3 324 3825 **39 40 41 42 43 9** 44 45 46 46 47 3 46 3 46 3 46 3 46 3 46 3 47 3 4 50 51 6 5237 5388
- [21] Kang J., Wang S. Robust optimal design of distributed energy systems based on life-cycle performance analysis using a probabilistic approach considering uncertainties of design inputs and equipment degradations. Appl Energy, 231 (2018), pp. 615-627.
- [22] Huang P., Huang G., Sun Y. Uncertainty-based life-cycle analysis of near-zero energy buildings for performance improvements. Appl Energy, 213 (2018), pp. 486-498.
- [23] Li C.Y., Wu J.Y., Chavasint C., Sampattagul S., Kiatsiriroat T., Wang R.Z. Multi-criteria optimization for a biomass gasification-integrated combined cooling, heating, and power system based on life-cycle assessment. Energ Convers Manage, 178 (2018), pp. 383-399.
- [24] Caduff M., Huijbregts M.A.J., Althaus H.-J., Hendriks A.J. Power-law relationships for estimating mass, fuel consumption and costs of energy conversion equipments. Environ Sci Technol, 45 (2) (2011), pp. 751-754.
- [25] Moore F.T. Economies of scale: Some statistical evidence. O J Econ, 73 (2) (1959), pp. 232-245.
- [26] Gerber L., Gassner M., Maréchal F. Systematic integration of LCA in process systems design: Application to combined fuel and electricity production from lignocellulosic biomass. Comput Chem Eng, 35 (7) (2011), pp. 1265-1280.
- [27] Caduff M., Huijbregts M.A.J., Althaus H.-J., Koehler A., Hellweg S. Wind power electricity: The bigger the turbine, the greener the electricity? Environ Sci Technol, 46 (9) (2012), pp. 4725-4733.
- [28] Messac A. Optimization in Practice with MATLAB®: For Engineering Students and Professionals. Cambridge University Press, Cambridge (2015).
- [29] Ziviani, D., Beyene, A., Venturini, M., Advances and Challenges in ORC Systems Modeling for Low Grade Thermal Energy Recovery, Appl Energy, 121 (2014), pp. 79-95.
- [30] Cocco D., Palomba C., Puddu P. Tecnologie delle energie rinnovabili. SG Editoriali, Padova (2008).
- [31] Kreith F., Goswami D.Y. Handbook of energy efficiency and renewable energy. CRC Press (2007).
- [32] Rubini L., Sangiorgio S. Le energie rinnovabili. Hoelpi, Milano (2012).
- [33] Barbieri E.S., Dai Y.J., Morini M., Pinelli M., Spina P.R., Sun P., Wang R.Z., Optimal sizing of a multi-source energy plant for power heat and cooling generation. Appl Therm Eng, 71 (2) (2014), pp. 736-750.
- [34] Saleh H.E. Effect of variation in LPG composition on emissions and performance in a dual fuel diesel engine. Fuel, 87 (2008), pp. 3031-3039
- [35] Ente Italiano di Normazione, UNI TS 11300, 2012, In Italian.
- [36] Waddicor D.A., Fuentes E., Azar M., Salom J. Partial load efficiency degradation of a water-to-water heat pump under fixed set-point control. Appl Therm Eng, 106 (2016), pp. 275-285.
- [37] Zamora M., Bourouis M., Caronas A., Vallès M. Part-load characteristics of a new ammonia/lithium nitrate absorption chiller. Int J Refrig, 56 (2015), pp. 43-51.
- [38] Seo, B.M., Lee, K.H. Detailed analysis on part load ratio characteristics and cooling energy saving of chiller staging in an office building. Energ Buildings, 119 (2016), pp. 309-322.
- [39] Peacock A.D., Newborough, M. Impact of micro-CHP systems on domestic sector CO2 emissions. Appl Therm Eng, 25 (17-18) (2005), pp. 2653-2676.
- [40] Barbieri E.S., Morini M., Munari E., Pinelli M., Spina P.R., Vecci R. Concurrent optimization of size and switch-on priority of a multisource energy system for a commercial building application. Energy Procedia, 81 (2015), pp. 45-54.
- [41] EMPA. EcoInvent. Switzerland: EcoInvent; 2007.
- [42] OpenLCA 1.6.3. GreenDelta, http://www.openlca.org.
- [43] Frischknecht R., Wyss F., Büsser Knöpfel S., Lützkendorf T., Balouktsi M. Cumulative energy demand in LCA: the energy harvested approach. Int J Life Cycle Assess, 20 (7) (2015), pp. 957-969.
- [44] Caduff M., Huijbregts M.A.J., Koehler A., Althaus H.-J., Hellweg S. Scaling relationships in Life Cycle Assessment: The case of heat production from biomass and heat pumps. J Ind Ecol, 18 (3) (2014), pp. 393-406.
- [45] Whiting A., Azapagic A. Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion. Energy. 70 (2014), pp. 181-193.
- [46] Lantz M. The economic performance of combined heat and power from biogas produced from manure in Sweden A comparison of different CHP technologies. Appl Energy, 98 (2012), pp. 502-511.
- [47] Heck T. Wärme-Kraft-Kopplung. In: Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz (ed. Dones R.). Swiss Centre for Life Cycle Inventories, Dübendorf, CH (2007).
- [48] Eicker U., Pietrushka D. Design and performance of solar powered absorption cooling system in office buildings. Energ Buildings, 41 (2009), pp. 81-91.
- [49] Ente Italiano di Normazione, UNI 8477-2, 1985, In Italian.
- [50] Ente Italiano di Normazione, UNI 10349, 2016, In Italian.
- [51] Vio M. Impianti di cogenerazione. Editoriale Delfino (2007). 39

18

48 49