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Abstract: 

When optimizing the design of multi-energy systems, the operation strategy and the part-load behavior of the 
units must be considered in the optimization model, which therefore must be formulated as a two-stage 
problem. In order to guarantee computational tractability, the operation problem is solved for a limited set of 
typical and extreme periods. The selection of these periods is an important aspect of the design methodology, 
as the selection and sizing of the units is carried out on the basis of their optimal operation in the selected 
periods. This work proposes a novel Mixed Integer Linear Program clustering model, named k-MILP, devised 
to find at the same time the most representative days of the year and the extreme days. k-MILP allows 
controlling the features of the selected typical and extreme days and setting a maximum deviation tolerance 
on the integral of the load duration curves. The novel approach is tested on the design of two different multi-
energy systems (a multiple-site university Campus and a single building) and compared with the two well-
known clustering techniques k-means and k-medoids. Results show that k-MILP leads to a better 
representation of both typical and extreme operating conditions guiding towards more efficient and reliable 
designs. 
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1.  Introduction 
Recently, the Multi-energy Systems (MES) and District Energy Systems (DES) paradigms have been 

attracting the interest of both private and public institutions. Indeed, they appear as promising 

solutions to lower the costs and the environmental impact of the energy production, distribution and 

use in urban areas [1]. The key element for their success is the integration of the energy networks – 

i.e. electricity, heating and cooling – operating in residential, commercial and industrial districts, so 

as to maximize the possible synergies among them. In addition, this energy integration approach is 

considered as a valuable mean to increase the share of renewable energy sources into the production 

mix [2]. An underlying result of the analysis of the MES and DES is that, when dealing with their 

design optimization, the development of efficient and reliable models is challenged by at least three 

main aspects: (i) their multi-location scale, i.e. the spatial distribution; (ii) their multi-temporal scale, 

i.e. the design and operation variables are part of the same problem; and (iii) the uncertainty of the 

input data (design and operation choices are made today on the basis of forecasts about the future). 

As for aspect (i), the optimal design may entail a mix of centralized and distributed generation 

solutions, thus a design optimization model has to accommodate for the possibility of installing 

multiple energy conversion units of variable size in many different locations of the district. As for 

aspect (ii), the optimal design has to take into account the part-load performances and operational 

limitations (e.g., start-up/shut-down time and costs, ramp-up rates, etc.) that characterize the 
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operation of the energy conversion units [3], since it has severe implications on the design choices. 

Thus a reliable and efficient MES and/or DES design methodology needs to take into account the 

conditions that the energy system (the installed units and networks) would face in the real-world 

operation, which requires the formulation of the synthesis problem as a two-stage optimization 

problem [7]. In order to guarantee the computational tractability of such kind of problem, the 

operation problem is solved for a limited set of typical periods (e.g., days or weeks), for which the 

hourly profiles of energy demands, energy prices and energy production from Renewable Energy 

Sources (RES) are usually considered. As for aspect (iii), it requires advanced modeling and 

optimization strategies, like the stochastic programming approaches proposed by Zatti et al. in [4] 

and Mitra et al. in [5], respectively, or the advanced approach to account for data uncertainty 

developed by Gabrielli et al. in [6], which shows how the daily value of energy demands give 

indications on the robustness of the design.  

Among the three above-listed issues, the selection of typical and extreme periods (e.g., days or weeks) 

plays an important role, as the selection and sizing of the units is carried out on the basis of their 

performances in the considered periods. Many different methods for the selection of the typical 

periods have been presented and compared for energy systems design optimization problems. The 

majority uses clustering approaches (CA) to divide periods with “similar” profiles into clusters and 

then define a representative period for each cluster. Several clustering approaches are possible, 

depending on the criteria used to measure the “similarity” between the data profiles of the periods 

and to select the representative period of the cluster. The main CAs used so far in the field of energy 

systems design optimization include k-means [7] [8] [10] [11] [12], k-medians [11], k-medoids [8] 

[11] [12] [12] [15], k-centers [11], hierarchical [8] [12], down-sampling resolution [14], averaging 

[8], dynamic time warping barycenter averaging [12] and k-shape [12].  

Schutz et al. [11] compare k-means, k-medians, k-medoids, k-centers with fixed time based 

representations using synthetic load profiles of an apartment building and a single-family house. They 

conclude that all clustering methods are able to determine close-to-optimal designs and k-medoids is 

able to approximate the operating costs with highest accuracy. 

Kotzur et al. [8] compare averaging periods, k-means, k-medoids, and hierarchical clustering using 

three case studies with different peculiarities. They found that the averaging periods approach leads 

to inaccurate results while none of the other aggregation methods outperforms all the others for every 

case study. In general, selecting the medoid of the cluster performs better than the centroid because 

the averaged time-series of the k-means centroid underestimates the real system cost. Another 

important conclusion concerns the effects of the peculiarities of the case studies: centralized grid-

connected cases are easier to represent with typical periods compared to islanded systems with a 

higher share of renewable production.  

Teichgraeber et al. [12] compare k-means, k-medoids and hierarchical clustering with shape-based 

clustering approaches (dynamic time warping barycenter averaging and k-shape) for the 

approximation of electricity price series. They use two different power plants designs as references 

for the comparison finding that centroid-based clustering (e.g., k-means) can represent the operational 

domain more predictably than medoid-based approaches. Dynamic time warping barycenter does not 

perform well while k-shape performs very well on the test problem featuring a battery for electricity 

arbitrage. In such problem k-shape can represent the full period with just two days that capture the 

arbitrage potential between hours. 

Elsido et al. [10] tackle the optimal design problem for the MES serving a medium size district heating 

network. The authors propose a “weighted” version of the k-means algorithm in which different 

weights are assigned to the relative errors of electricity demand, heat demand and ambient 

temperature. Such weights are related to the influence that each data profile has on the total yearly 

operating costs. For such purpose, the authors propose a systematic approach in which the relative 

effect of each data profile on the yearly total operating cost is evaluated for different designs. Results 

for an industrial case study show that for all designs, the influence/weight of the relative error of heat 

demand is appreciably higher (almost double) than that of electricity. This result depends on the fact 

that electricity can be imported/exported from/to the grid, while the heat demand must be necessarily 



met by the installed CHP units becoming a strong constraint on their scheduling/operation. The use 

of the proper weights allows decreasing the error in assessing the total operating costs from 10% to 

3%.  

Bahl et al. [16] propose an iterative time-series aggregation approach aimed at finding under-

estimators of energy demand of the clusters. This allows finding a lower bound for the design 

optimization problem that can be used within a rigorous decomposition method to assess the need of 

increasing the number of representative periods. The main limit of the methodology is the loss of the 

chronology of time steps which makes it not suitable for problems with storage systems and/or 

dynamic constraints (e.g., ramp-up and minimum up-time constraints of units). 

Since the typical periods are the most representative profiles of the clusters, extreme periods are not 

included and need to be added so as to enforce the operational feasibility of the system throughout 

the year. There is no general consensus on the best approach to select the extreme periods; 

nonetheless, it seems that the selection of the periods in which the peak values are reached is one of 

the most successful [9]. Some authors have developed algorithms for the optimization of the design 

that iteratively add the extreme periods to the input data set on the basis of the feasibility of the design 

solutions, like in [7]. Nevertheless, this last approach is expected to be rather computationally 

intensive for large size and multi-site case studies, as the actual extreme period might be found in the 

last iteration.  

Differently from clustering-based selection approaches, some researchers have proposed systematic 

approaches to select typical periods which do not cluster the yearly data into clusters, targeting 

directly the selection of the most representative days on the basis of pre-defined quality indexes. For 

example, Poncelet et al. [17] have proposed an optimization-based method that selects the set of days 

that minimizes the sum of differences between the original and the approximated load duration 

curves, ramp duration curves (required for reproducing short-term dynamic issues), and correlation 

between different data series. The load duration curves need to be discretized into bins and, similarly 

to clustering-based approaches, extreme periods selection is not included in the optimization problem. 

As found by different authors ([14] [8] [12], no aggregation method outperforms all the others for 

every case study and the best CA varies depending on the intra-day variability of profiles and problem 

constraints (e.g., operating range and ramp limitations of the units, size of the energy storage systems, 

islanded or grid-connected system). Another important conclusion of comparison analyses [8][11] is 

that assessing the quality of representative days on the basis of performance indicators may be 

misleading. Ideally, the effects of the approximations caused by the use of aggregated time series in 

the design should be evaluated with respect to the exact design solution considering the original yearly 

time series, as done in [8]. If this is not practicable because the design optimization problem becomes 

intractable, an alternative approach is to evaluate the operation of the optimized design across the 

whole year (using the original time series), as done by [11]. This provides a more accurate estimate 

of the actual total annual costs of the optimized systems and it can be used to compare the different 

time series aggregation approaches. 

From a more general perspective, while the selection of typical periods has been investigated by 

several authors, very little attention has received the selection of extreme periods (days or weeks). 

Their relevance is expected to be considerable especially for islanded systems (e.g., rural microgrids) 

and all those applications requiring high reliability in which outages need to be avoided or minimized 

(e.g., MES serving public buildings like hospitals and schools).  

In this work, we propose an optimization-based approach for the systematic selection of both typical 

and extreme periods (e.g., days or weeks). The approach is based on a MILP model that divides the 

real periods into similar clusters while automatically identifying the extreme periods. The MILP 

model allows including essential requirements on the selected typical and extreme periods. The novel 

clustering method is tested against k-means and k-medoids on the design optimization of the district 

energy system for the University of Parma Campus and a single building, both in Northern Italy. The 

district energy system is made of five district heating networks and features electricity, heating and 

cooling demands. The single building features electricity and heating demands. The optimal design 



problem is linearized and formulated as a large-scale MILP and solved with state-of-the-art MILP 

solvers. 

2.  Formulation of the design optimization problem 
The design optimization problem considered in this work has been formulated as a two-stage MILP 

problem, involving investment decisions (first stage) and operation decisions (second stage). This 

two-stage structure is represented by the following compact formulation: 

 min
x𝑢

(1)
,𝑥𝑢,𝑡

(2)
𝑇𝐴𝐶 = ∑ 𝐶𝐼𝑁𝑉 ⋅ 𝑥𝑢

(1)

𝑢 𝜖 𝑈

+ ∑ ∑ 𝐶𝑂𝑃 ⋅ 𝑥𝑢,𝑡
(2)

𝑡 𝜖 𝑇𝑢 𝜖 𝑈

 ( 1 ) 

Subject to 

 𝐴(1)𝑥𝑢
(1)

+ 𝐴(1)𝑦𝑢
(1)

= 𝑏𝑢
(1)

      ∀ 𝑢 ( 2 ) 

 𝐴(2)𝑥𝑢,𝑡
(2)

+ 𝐴(2)𝑦𝑢,𝑡
(2)

= 𝑏𝑡
(2)

      ∀ 𝑢, ∀ 𝑡 ( 3 ) 

 𝐴(1)𝑥𝑢
(1)

+ 𝐴(1)𝑦𝑢
(1)

+ 𝐴(2)𝑥𝑢,𝑡
(2)

+ 𝐴(2)𝑦𝑢,𝑡
(2)

= 𝑏𝑢,𝑡
(1,2)

      ∀ 𝑢, ∀ 𝑡 ( 4 ) 

 𝑥𝑢
(1)

 𝜖 ℝ , 𝑥𝑢,𝑡
(2)

 𝜖 ℝ , 𝑦𝑢
(1)

 𝜖 {0,1} , 𝑦𝑢,𝑡
(2)

 𝜖 {0,1} ( 5 ) 

Where 𝑇𝐴𝐶 = 𝐶𝐴𝑃𝐸𝑋 + 𝑂𝑃𝐸𝑋 is the total annualized costs; 𝑢 ∈ 𝑈 is the sets of energy conversion 

and storage units and 𝑡 ∈ 𝑇 is the set of time steps considered in the operation. 𝑥(1) and 𝑦(1) are, 

respectively, the continuous (unit sizes, storage capacities, network branches capacities) and binary 

(unit/storage/network branch selection and installation) investment variables, and 𝑥(2) and 𝑦(2) are 

the continuous (unit load, storage level, network branch power flow) and binary (unit on/off status) 

operation variables. As one can see in Eq. ( 5 ) , there are both real and binary variables in both stages 

making the problem structurally similar to a two-stage stochastic problem with integer recourse [18]. 

There are constraints that accounts only for the investment stage, as in Eq. ( 2 ), as can be the minimum 

and maximum unit sizes or the available locations for units’ installation. There are also constraints 

referring only to the operation stage, as in Eq. ( 3 ), e.g., the balances between the energy production 

and demand. Finally, there are constraints that bind the first and the second stage variables, as in Eq. 

( 4 ), e.g., the performance maps of the units which depend on their size. Indeed, in the model used 

in this study, the part load-load operation of the units is represented with the convex hull formulation 

[19] and the strategy proposed in [3] is adopted to linearize the size effects on units’ performance.  

To sum up, Problem ( 1 ) - ( 5 ) can be stated as follows: 

Given: 

• Topology of the district 

• Hourly profiles in the selected representative periods: energy demands, Renewable Energy 

Sources production, energy prices, weather parameters 

• Catalogue data of the considered technologies in terms of: CAPEX [€/kW], OPEX [€/kWh], 

performance maps, operational constraints. 

Determine: 

• Selection and sizes of units to be installed in each site 

• Hourly profiles in the representative periods of: on/off and loads of the energy conversion 

units, management strategy of the storage systems, energy import/export profiles of the 

district, district network energy flows. 

So as to minimize the Total Annualized Cost 

 

 



3.  Clustering techniques for design optimization 
The ideal design problem would involve the optimization of the operation in the whole set of time 

steps, yet this way the problem would be, nowadays, not solvable in reasonable amount of time. This 

becomes even more relevant when Problem ( 1 ) – ( 5 ) is applied to DES with distributed multiple 

energy demands and distributed multi-energy production systems, bringing about a further set, 

namely the one involving the sites in which a DES can be divided, as we already considered in [4]. 

To enable the reduction of the complexity of such problems, time series aggregation is usually used 

in literature to find a few representative operating profiles [9],[10] or to group the binary operational 

variables [20] and reduce the problem size. The required feature of such aggregation is to be 

representative of the original time series, in such a way that: 1) the operational feasibility is preserved 

and 2) the operational costs appearing in the objective function resemble properly the actual 

operational costs. For the first task, extreme periods are usually added to the input data set, while for 

the second one, clustering techniques are commonly used.  

As thoroughly explained in [8], the aim of time series aggregation techniques is to gather a set of 

periods 𝑗 ∈ {1, … , 𝑁𝑑} (e.g., 𝑁𝑑  are the 365 days of a year), each consisting of the same number of 

time steps ℎ ∈ { 1, … , 𝑁ℎ} (e.g., 𝑁ℎ are the 24 hours), with 𝑁𝑎 attributes (e.g., heating demand, 

irradiance, etc.), into a pre-defined 𝑁𝑘 number of groups such that the group members are as similar 

as possible. Usually, the aggregation is performed by minimizing a distance measure of the attributes 

between each group member. The groups are then represented by a single period. The selection of the 

representative period, often called typical periods, depends on the specific techniques. 

In this work, the attributes considered for the clustering are: heating, electricity and cooling demands, 

irradiance, ambient temperature and electricity prices. Moreover, based on the periodicity of the 

energy demand profiles, of the physical phenomena (sun irradiance) and the typical usage of the 

storage systems, the time step basis we have chosen for the typical periods is 24 hours, that is we 

have considered typical days.  

3.1. Traditional clustering techniques  

3.1.1 k-means clustering 

Given a fixed number of clusters (i.e., number of typical days), the k-means clustering algorithm 

creates the clusters by minimizing the squared error between the empirical mean of a cluster and all 

the candidates in the cluster. This defines a mixed-integer nonlinear program (MINLP) [8], which 

can be written as in Eq. ( 6 ): 

 

min ∑ ∑ [∑ ∑(𝑥𝑎,ℎ,𝑗 − 𝜇𝑎,ℎ,𝑘)
2

𝑁𝑎

𝑎=1

𝑁ℎ

ℎ=1

] ⋅ 𝑧𝑘,𝑗

𝑁𝑑

𝑗=1

𝑁𝑘

𝑘=1

 ( 6 ) 

where 𝑥𝑎,ℎ,𝑗 is the value of the attribute (e.g., the heating demand) in the available dataset, 𝜇𝑎,ℎ,𝑘 is 

the mean value, 𝑧𝑘,𝑗 is a binary variable that is equal to 1 if the candidate 𝑗 is assigned to cluster 𝑘, 

zero otherwise. In order to make sure that each candidate is assigned exactly to a cluster, constraint  

( 7 ) is added. 

 

∑ 𝑧𝑘,𝑗 = 1

𝑁𝑘

𝑘=1

      ∀ 𝑗 ∈ {1, … , 𝑁𝑑} ( 7 ) 

The MINLP is solved by a greedy algorithm [21] that converges to a local minimum. 

The major advantage of such an approach is that, being each representative period calculated as the 

mean profile of the cluster that it represents, the repetition of the 𝑘 representative periods, according 

to the size of the clusters, features the same total value as the original time series for each attribute. 

On the other hand, its major limit relies on the “smoothness” of the representative period: being 

averaged profiles they smooth sudden hourly variations with the risk that the shape of the resulting 



aggregated load duration curve (LDC), i.e. the LDC made by the repetition of the representative days, 

is quite different from the original LDC, i.e. the LDC made by the real data set. Owing to this 

smoothing effect of the energy demand profiles, the design optimization problem may be affected by 

the following limitations: 1) the operational costs tend to be underestimated compared to the real 

ones; 2) the required installed capacity of generation units, networks and storages may be 

underestimated (set only by the extreme days); 3) on/off costs and flexibility requirements of the units 

may be underestimated favoring energy technologies with limited flexibility. 

In this work, we consider the following approach based on the k-means clustering technique: days 

reaching the peak value of each attribute are selected as extreme days (six) while the remaining ones 

are clustered with a Matlab® implementation of the k-means algorithm [21] to identify the typical 

periods. 

3.1.2 k-medoids clustering 

In the k-medoids method, instead of using the mean of the cluster as representative period, a real 

period, the medoid, is chosen among the elements of the cluster. The problem can be stated as a 

Mixed-Integer Linear Program (MILP) [8]. First, the Euclidean distance between each candidate is 

calculated as in Eq. ( 8 ): 

   

𝑑𝑖,𝑗 = √∑ ∑(𝑥𝑎,ℎ,𝑖 − 𝑥𝑎,ℎ,𝑗)
2

𝑁𝑎

𝑎=1

𝑁ℎ

ℎ=1

      ∀ 𝑖, 𝑗 ∈ {1, … , 𝑁𝑑} ( 8 ) 

Then, the MILP problem ( 9 ) – ( 12 ) can be formulated. 

   

min ∑ ∑ 𝑑𝑖,𝑗 ⋅ 𝑧𝑖,𝑗

𝑁𝑑

𝑗=1

 

𝑁𝑑

𝑖=1

 ( 9 ) 

Subject to: 

   

∑ 𝑧𝑖,𝑗 = 1

𝑁𝑑

𝑗=1

      ∀ 𝑖 ∈ {1, … , 𝑁𝑑} ( 10 ) 

   𝑧𝑖,𝑗 ≤ 𝑦𝑖      ∀ 𝑖, 𝑗 ∈ {1, … , 𝑁𝑑} ( 11 ) 

   

∑ 𝑦𝑖 = 𝑁𝑘

𝑁𝑑

𝑖=1

  ( 12 ) 

Where 𝑧𝑖,𝑗 is equal to 1 if candidate 𝑗 is represented by candidate 𝑖 and 0 otherwise; 𝑦𝑖 is equal to 1 

if the candidate 𝑖 is selected as representative for its cluster and 0 otherwise. Constraint ( 10 ) imposes 

that each day of the year is associated to one typical day. Constraint ( 11 ) imposes that each day 𝑗 

can be assigned to day 𝑖 if this last is a representative day. Constraint ( 12 ) ensures that exactly 𝑁𝑘 

days are selected as typical days. This optimization problem can be solved to global optimality, but 

the large number of binary variables may lead to an excessive computational time. We used the greedy 

built-in function in Matlab® that approximates the solution of this problem [21]. 

The most important advantage of the k-medoids approach relies on the fact that the representative 

periods are actual values extracted from the original time series, in principle less smoothed than in 

the k-means case [8]. Moreover, the seasonal and daily correlation between the many attributes is 

preserved. On the other hand, the crucial limit of the k-medoids approach rests on the fact that, 

generally, the repetition of the representative periods, according to the size of the clusters, may lead 

to a total monthly or yearly value, for any attribute, that is quite different from the one calculated for 

the original data set, especially for small numbers of typical days. This means that the operational 

costs in the optimization problem can be considered a reliable measure of the operational costs only 



if a sufficiently large number of clusters are generated. For complex applications featuring multiple 

networks and sites (e.g., buildings), this may hinder the computational tractability of the design 

optimization problem. 

In this work, we consider the following approach based on the k-medoids clustering technique: the 

days reaching the peak value of each attribute (six), like in k-means A, are selected as extreme days 

while the remaining ones are clustered with the k-medoids algorithm [22] to identify the typical days. 

3.2. k-MILP model for the automatic identification of extreme and typical 
days  

We have developed a MILP model for simultaneously selecting the typical and the extreme days 

while setting the maximum allowed violation of the yearly total value of the energy demands (heating, 

cooling and electricity). It is essentially a modification of the tradition k-medoids.  

First, in order to allow the model for automatically excluding particular days from the clustering, 

constraint ( 10 ) of the k-medoids MILP problem needs to be modified into constraint ( 13 ). 

   

∑ 𝑧𝑖,𝑗 ≤ 1

𝑁𝑑

𝑗=1

      ∀ 𝑖 ∈ {1, … , 𝑁𝑑} ( 13 ) 

where 𝑧𝑖,𝑗 is equal to 1 if candidate 𝑗 is represented by candidate 𝑖 and 0 otherwise. This way, it is not 

imposed anymore that each day of the year is associated to one typical day. Indeed, the extreme days 

are the objects 𝑒 that are not clustered (i.e., ∑ 𝑧𝑖,𝑒
𝑁𝑑
𝑖=1  = 0). In order to exclude the trivial solution 

where all days are classified as extreme, constraint ( 14 ) needs to be added. 

   

∑ ∑ 𝑧𝑖,𝑗 = 𝑁𝑑 − 𝑁𝐸𝐷

𝑁𝑑

𝑗=1

𝑁𝑑

𝑖=1

 ( 14 ) 

where 𝑁𝐸𝐷 is the number of extreme days, a parameter to be fixed a priori.  

The MILP model can therefore automatically identify as extreme days the most “atypical” days of 

the year (i.e., real days not well represented by the representative days of the clusters). These 

“atypical” days are expected to contain operating conditions for the energy systems very different 

from those of the typical days. 

Moreover, by adding the set of constraints ( 15 ), that bounds, for some selected attribute 𝑎 ∈ 𝐴𝐿𝐷𝐶 

(e.g., the energy demands), the difference between the sum over the original entire data set 

(∑ 𝑥𝑎,ℎ,𝑗
𝑁𝑑
𝑗=1 ) and the sum over the repetition of the representative periods(∑ 𝑥𝑎,ℎ,𝑖

𝑁𝑑
𝑖=1 ), the model can 

ensure that the LDC for each attribute is properly preserved. 

  

    

∑ ∑ ∑|𝑥𝑎,ℎ,𝑗 − 𝑥𝑎,ℎ,𝑖| ⋅ 𝑧𝑖,𝑗 ≤ 𝜆𝑎
𝐿𝐷𝐶

𝑁ℎ

ℎ=1

𝑁𝑑

𝑖=1

𝑁𝑑

𝑗=1

⋅ ∑ ∑ 𝑥𝑎,ℎ,𝑗

𝑁ℎ

ℎ=1

𝑁𝑑

𝑗=1

      ∀ 𝑎 ∈ 𝐴𝐿𝐷𝐶 ( 15 ) 

Clearly, in order to preserve the linearity, the absolute value is formulated within the MILP using two 

complementary constraints. For example, if we consider the heating demand, constraint ( 15 ) ensures 

that the difference between the aggregated LDC (i.e., corresponding to the repetition of the 

representative days) and the original LDC (i.e., corresponding to the real data set) is smaller than a 

determined tolerance, expressed as a fraction of the original LDC, 𝜆𝑎
𝐿𝐷𝐶 (e.g., 2-5%). 

In addition, we have added constraint ( 16 ) which guarantees that for some selected attributes 𝑎 ∈
𝐴𝑝𝑒𝑎𝑘 (e.g., the energy demands), in our case the energy demands, at least one of the extreme periods 

chosen by the algorithm contains the highest peak value (or close-to) in the data set:  



   

∑ 𝑚𝑎,𝑗 ⋅ max
h

𝑥𝑎,ℎ,𝑗 ≥

𝑁𝑑

𝑗=1

𝜆𝑎
𝑃𝐸𝐴𝐾 ⋅ max

𝑑,ℎ
𝑥𝑎,ℎ,𝑑       ∀ 𝑎 ∈ 𝐴𝑝𝑒𝑎𝑘 ( 16 ) 

where ℎ 𝜖 {1. . 𝑁ℎ}, 𝑑 𝜖 {1. . 𝑁𝑑} and  𝜆𝑎
𝑃𝐸𝐴𝐾 is a real value expressing the fraction of the peak to be 

represented with the extreme days (e.g., 90-100%). 𝑚𝑎,𝑗 is a binary variable equal to 1 when day 𝑗 is 

selected as extreme day for attribute 𝑎 and 0 otherwise. This feature is enforced by constraints ( 17 ) 

and ( 18 ): 

   

∑ 𝑚𝑎,𝑗

𝑁𝑑

𝑗=1

= 1     ∀ 𝑎 ( 17 ) 

   

𝑚𝑎,𝑗 ≤ 1 − ∑ 𝑧𝑖,𝑗

𝑁𝑑

𝑖

   . ∀ 𝑎, ∀ 𝑗  ( 18 ) 

4.  Real-world case studies 

4.1. University Campus 

The first case study concerns the Campus of University of Parma (Italy), featuring electricity, heating 

and cooling demands. The Campus features in total 21 buildings spread over an area of approximately 

0.77 km2. Currently a centralized layout is adopted: the thermal power is provided by five boilers and 

the cooling demand is supplied by four refrigeration units, all arranged in a dedicated building. From 

this central site, the heating and cooling networks reach all the other buildings through four 

independent pipe loops, as shown in Fig. 1. The objective of this study is to determine the retrofit 

design of the energy supply system that minimizes the total annual cost (annualized capital costs + 

operating costs). In order to limit the capital cost of the retrofit, the layout of the heating and cooling 

networks is kept fixed.  

The technologies considered in the case study are: cogeneration internal combustion engines (ICE), 

natural gas boilers, compression refrigerators, heat pumps (HP), heat storage, photovoltaic (PV) 

panels and solar heating (SH) panels. According to the site characteristics, it has been assumed that 

internal combustion engines, natural gas boilers and compression refrigerators can only be located in 

the central site. The number of units that can be installed in each site and the surface available for the 

installation of PV and SH panels are also parameters of the model. The techno-economic parameters 

of the model are available in [23]. 

Within the MILP design optimization model described in Section 2, the four heating and cooling 

loops (serving several buildings each) have been modeled as sites with given energy demands, given 

choice of possible generation and storage units, and maximum area available for hosting solar PV 

and SH panels. 

 



 

Fig. 1.  The energy district corresponding to the University of Parma Campus studied in this work. 

Networks: blue = cooling, red = heating, green = electricity. The district is connected to the national 

electricity grid (green box). There is a central site, where the major part of units can be installed (i.e., 

batteries, hot water tank for heat storage, boilers, heat pumps, refrigeration cycles) and four sites 

where only heat pumps, and Photovoltaic (PV) and Solar heating (SH) panels can be installed.  

HP = heat pumps, ICE = Internal combustion engine, REFR = compression refrigeration cycle 

Hourly values for one year of heating, cooling and electricity demand have been used as input of the 

model. As concerns heating and cooling, data were made available for each building in the Campus 

as results of both data collection and physical models, as described in [24]. As regards electricity, 

only measures of the total monthly demands of the Campus were available. They have been allocated 

to the different buildings on the basis of the following considerations:  

• the characteristic daily and weekly profiles for schools [25]; 

• the electricity demand during evening hours, weekends and holidays is a very low and 

constant since the buildings are closed. 

In addition to the energy demand profiles, hourly values for ambient temperature and solar irradiation 

have been retrieved and used for the identification of the typical and extreme days. Global horizontal 

irradiance and beam horizontal irradiance data have been used to calculate the global irradiance on a 

tilted surface (angle = 35°, commonly used values at these latitudes), which has been assumed to be 

directed towards south, so as to maximize the daily and yearly production. Finally, hourly electricity 

prices have been collected from the Italian power exchange website [26]. The one-year time series 

for the relevant attributes (normalized between 0 and 1 as explained in Section 5.1.1) are reported in 

Fig. 2. Three major remarks can be done on these time series. The total heat and electricity demand 

profiles are quite smooth (compared to the single building) due to the averaging effect of the large 

number of buildings and users simultaneously connected. The Electricity Demand presents a peak 

during the summer due to the fact several buildings/offices feature also air conditioning units 

(absorbing electric power) that are not accounted for in the Cooling Demand but in the Electricity 

Demand. The Global Tilted Irradiance shows relatively constant values along the year (i.e., it features 

a weak-seasonal profile) because it represents the global irradiance on a tilted surface whose 

inclination and orientation has been set so as to maximize the sun energy harvesting at the University 

Campus location (as previously described), therefore the profile is different from the one expected 

for the horizontal irradiance. 



 

Fig. 2.  University Campus – one-year original (normalized) data sets of heating, cooling and 

electricity demands (the profiles report the total of the five sites), electricity purchase price, ambient 

temperature, and the irradiance on a tilted surface (35°) oriented towards the south. 

4.2. Single building 

The second case study concerns a single university building consisting mainly of offices. Currently, 

the whole thermal demand is provided by a single boiler, while the electricity demand is fulfilled by 

the national grid. The cooling demand is negligible. The delivery temperature of the hot water heating 

system of the building is set at 95 °C and the return temperature at 65 °C. There is a maximum 

installation capacity for the heat storage equal to 35 m3. The surface available for the installation of 

panels coincides with the roof of the building, which is equal to 200 m2. 

Like for the previous system, the objective of the study is to determine the optimal energy supply 

system design which minimizes the total annual cost. With respect to the university Campus, here we 

have also included absorption refrigeration cycles, biomass-fired Organic Rankine Cycles as well as 

cogeneration micro-ICEs.  

Hourly values for one year of heating and electricity demands, ambient temperature, solar irradiation, 

and electricity price have been gathered and used as inputs of the clustering approaches. The one-

year time series for the relevant attributes (normalized between 0 and 1 as explained in Section 5.1.1) 

are reported in Fig. 3.  

 



 

Fig. 3  Single building – one-year original (normalized) data sets of heating and electricity demands, 

electricity purchase price, ambient temperature, and the irradiance on a tilted surface (35°) oriented 

towards the south. 

 

5.  Results 
The use of the clustering methods analyzed in this work requires the normalization of the data sets, 

in order to evaluate all the time series on the same scale. We have calculated the normalized time 

series as: 

   
𝑥𝑎,ℎ,𝑖 =  

�̃�𝑎,ℎ,𝑖 − min �̃�𝑎,ℎ,𝑖

max �̃�𝑎,ℎ,𝑖 − min �̃�𝑎,ℎ,𝑖
 ( 19 ) 

Where �̃�𝑎,ℎ,𝑖 is the original value and 𝑥𝑎,ℎ,𝑖 is the normalized value. For each attribute 𝑎, we have 

normalized the time series with respect to the max and min values within the data set. This is quite 

straightforward as long as the so-called general attributes are considered, that is the irradiance, the 

electricity price and the ambient temperature. For the university Campus, the normalization of the 

attributes that are specific per each site (i.e., the heating, cooling and electricity demands of each site) 

requires particular attention. In this work, good results have been obtained by normalizing the profiles 

with respect to the peak value among the sites.  

In order to obtain a computationally tractable MILP design problem, we have considered 6 typical 

days and 6 extreme days. We assumed 100 iterations for the k-means and k-medoids algorithms and 

a MIP gap of 0.05% for the solver (CPLEX [27]) of the MILP clustering model. 

5.1. University Campus 

5.1.1 Clustering results 

Fig. 4 shows the normalized plots of the typical and extreme days selected by the three different 

approaches. The shape of the profiles of the typical days identified by the k-means is smoother than 

that of the k-medoids and k-MILP clustering method, as expected. The extreme days selected by the 



k-means and the k-medoids methods are those in which the peaks of the heating demand (ED1), the 

sun irradiation (ED2), the electricity demand (ED3), the ambient temperature (ED4), the electricity 

purchase price (ED5) and the cooling demand (ED6) are reached. 

Concerning the extreme days, the analysis of the systematic selection made by k-MILP indicates that: 

• ED1 features the peak heating demand; 

• ED2 is identified as “a-typical” (not similar to the typical days) because with respect to typical 

day 5 – which is similar concerning the high sun irradiation and null cooling demand – it features 

a higher electricity purchase price (not visible in the plot); 

• ED3 features the peak electricity demand (not visible in the plot); 

• ED4 is identified as “a-typical” because it features a high cooling demand but a low irradiation 

(indeed it is unusual for summer days and it could be critical day for a design employing solar PV 

to provide electricity to refrigeration cycles); 

• ED5 identified as “a-typical” because of its considerably higher average cooling demand with 

respect to the typical day 6; 

• ED6 for the peak cooling demand; 

It is worth noting that 4 out of 6 EDs selected by the k-MILP clustering feature high cooling demand, 

while “peaks” method includes at least a day with some heating demand besides the peak one. 

This shows that the k-MILP clustering method has the capability of automatically identifying a-

typical days that are potentially extreme for the energy systems providing energy to the district of 

buildings. It is worth noting that classic approach to select extreme days does not find such potentially 

critical days (indeed their extreme days feature high cooling demand and high solar radiation). The 

dimensions of the clusters and the selection of the extreme days are reported in Errore. L'origine 

riferimento non è stata trovata.. 

Fig. 5 reports the comparison between the original LDC of the real time series (original LDC) and 

those estimated with the typical and extreme days (aggregated LDC). The corresponding errors and 

root mean square deviations (RMSD) are reported in Errore. L'origine riferimento non è stata 

trovata.. The heat LDC is well approximated by all approaches but the k-medoids, whose aggregated 

LDC features a total heating demand 30% larger than the original one, with substantial deviations at 

mid-low loads. The k-medoids overestimates the electricity demand – the aggregated LDC has an 

error of about 11% with respect to the original LDC – and considerably underestimates the cooling 

demand, indeed the total yearly value is even 12% of the actual one. The k-MILP clustering approach 

closely resembles the LDCs of all attributes and, for the selected ones (electricity, cooling and heating 

demands), features a deviation of the total yearly value limited to 2%, as imposed by constraint ( 15 

). 

We have repeated the identification of the typical days doubling the number of representative days 

(i.e., 12). The computational time of the k-MILP clustering method remains limited to 60 seconds. 

The differences between the typical days identified by the three approaches tend to decrease and all 

them can closely match the original LDCs. On the other hand, the computational time required to 

solve the MILP design problem increase exponentially showing that considering 12 typical days 

becomes impracticable for plants featuring more than 5 sites. Thus, for multi-site systems, achieving 

a close representation of the whole yearly time series with a few typical days is essential. 



 

Fig. 4.  University Campus – Normalized profiles of (a) typical days and (b) extreme days for the 

three clustering techniques. The profiles are: red = heating demand, yellow = irradiance and light 

blue = cooling demand. 

 

 

 

Fig. 5.  University Campus – load duration curves of the three energy demands. 

 

 

 

 

 

 

5.1.2 Design optimization results 

The MILP design optimization problem has been solved considering the typical and extreme days 

returned by the three analyzed approaches. Four scenarios have been considered: 

• Scenario 1UC (UC stands for University Campus): outages are not allowed (the heat and cooling 

demand must always be satisfied by the installed units). 

• Scenario 2UC: if the energy systems supplying heat and cooling power cannot meet the users’ 

demands in a certain hour of the day, a fixed fee of 5000 Euro/hour must be paid plus a variable 
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fee proportional to the load shedding (100 and 200 Euro per MWh of, respectively, heating and 

cooling demand not met). 

• Scenario 3UC: in case of outages, only a variable fee of 100 and 200 Euro per MWh of, 

respectively, heating and cooling demand not met is paid. 

• Scenario 4UC: outages are not allowed, and a limit is imposed on the net fossil CO2 emissions of 

the DES, equal to 75% of the value reported for Scenario 1UC.  

Scenarios 1UC, 2UC and 3UC have been devised to investigate: (i) how different outages policies 

affect the design choices and the corresponding annual costs; (ii) how the clustering methods affect 

the design accuracy and feasibility when outages are allowed in the design process. The fees that have 

been assumed are typical values considered in the operation of energy systems serving buildings. 

Scenarios 4UC has been devised to investigate the impact of the clustering methods on the Renewable 

Energy Sources integration into the DES design. 

In light of the results obtained from the comparison of the clustering approaches in the first three 

scenarios, only k-means and k-MILP typical and extreme days are considered for Scenario 4UC 

calculations. Errore. L'origine riferimento non è stata trovata. reports the details of the energy 

conversion and storage systems selected in each scenario for the considered clustering approaches 

and their normalized sizes, when optimizing the total annual costs. The normalization has been 

performed with respect to: (i) the peak heating demand for boilers, heat pumps, and the heat capacity 

of internal combustion engines, SH and thermal storage; (ii) the peak cooling demand for refrigeration 

cycles; (iii) the peak electricity demand for PV and the electrical capacity of internal combustion 

engines. As it can be seen in the table, the optimal design of the MES for the Campus is essentially 

centralized: energy conversion units are installed only in sites S2 and S5. Errore. L'origine 

riferimento non è stata trovata. reports the annualized capital costs, the operating costs estimated 

in the design MILP problem on the basis of the selected typical and extreme days, the actual operating 

costs assessed with a yearly optimization of the system operation using the original data set, the total 

annual cost (TAC) estimated by the MILP problem using the typical/extreme days (TAC TDs), and 

the actual TAC, assessed with a yearly optimization of the system operation using the original data 

set  (TAC 365 days). 

In scenario 1UC, the k-means and k-medoids indicate that the optimal design must feature 3 boilers 

(a large one covering approximately 54-59% of the peak heating demand, two small size ones to be 

used during the mid-season when space heating is considerably lower), a heat pump in site 2 (covering 

around 14% of the peak heating demand) a large ICE (covering between 40-70% of the peak 

electricity demand) and 3 refrigeration cycles (two large ones covering 45-50% of the demand and a 

smaller one). According to the k-MILP extreme/typical days, increasing the capacity of one of the 

two small boilers is more profitable than installing a heat pump in site 2. Looking at the actual TAC 

(365 days operation) in Errore. L'origine riferimento non è stata trovata., from an economic point 

of view this design choice does not bring about a significant difference (1% TAC decrease is within 

the MIP gap of the solver). 

Results reported in Errore. L'origine riferimento non è stata trovata. show that the designs found 

with the three different sets of typical days feature some differences in the capital costs and operating 

costs but, in the end, they achieve the same total annual cost and guarantee no outages. A common 

feature of all three designs is to help the large size boiler to meet the peak of heating demand by using 

the heat storage system up to the maximum size allowed. The storage system is also used during the 

typical days to allow a more efficient and profitable management of the internal combustion engine. 

In scenarios 2UC and 3UC, the optimal designs exploit the possibility of making outages to save 

some capital costs. For all the three sets of typical and extreme days, the optimal design reduces the 

capacity of installed boilers. In scenario 2UC, the designed system is not able to meet about 0.5-0.9% 

of the requested heat demand, while in scenarios 3UC, due to the lower outage fees, this fraction rises 

to 2.8-4.4%. Also, in these two scenarios the optimal solution essentially resembles the centralized 

paradigm to exploit economies of scale. Even if outages are allowed and not expensive, renewable 



technologies (solar PV and solar thermal panels) are not selected in most approaches because of their 

higher costs compared to conventional fossil-fired technologies (boilers and ICEs). 

In scenario 3UC the set of typical days selected with the k-medoids leads to a very poor design which 

does not feature any refrigeration cycle to meet the cooling demand. This is due to the fact that the 

selected typical days underestimate the cooling demand (since it occurs only in a few months of the 

year), so the design MILP decides not to install any refrigeration cycle and to pay the outage fees 

during the extreme days. Actually, the outage occurs during the whole summer and this leads to very 

high outage costs. This issue is overcome by using the proposed MILP clustering approach, as shown 

in Errore. L'origine riferimento non è stata trovata..  

In scenario 4UC, in order to comply with the limit on the net CO2 fossil emissions, the DES features 

for both the k-means and the k-MILP a very large share of PV to cover as much electricity demand 

as possible during the sunny days. Moreover, if compared to Scenario 1UC, a smaller fraction of 

heating demand is covered by the boilers (capacity 47-54% of the peak demand) in favor of a second 

internal combustion engine that enables a larger cogeneration along the year. These different designs 

entail a much larger capital investment cost, with respect to Scenario 1UC (more than doubled), which 

is not sufficiently counterbalanced by the lower operational expenditures (lower fuel consumption). 

As far as the comparison between k-means and k-MILP is concerned, both are able to approximate 

the actual yearly operating costs with good accuracy, while also avoiding outages. In terms of costs, 

for this last scenario (4UC), k-means performs slightly better than k-MILP.  

In general, for the University Campus case study, k-means and k-MILP have very similar 

performance in representing the operating costs of the whole year. In this large-size case study, the 

averaging effect of k-means does not affect its representation accuracy since the input demand 

profiles are quite smooth. Nevertheless, the extreme days selected by the k-MILP allow decreasing 

the number and extent of the outages. 

 

 

 

 

 

 

5.2. Single Building 

Since the single building does not feature the cooling demand, that is covered by single electric 

compression chillers, only five Extreme Days have been considered for this case study: heating 

demand, electricity demand, ambient temperature, electricity prices, and sun irradiation. In light of 

the poor performances reported by the k-medoids in the previous case study, only k-means and k-

MILP have been considered in this one. 

5.2.1 Clustering results 

Fig. 6 shows the normalized plots of the typical and extreme days selected by the two approaches.  

The extreme days selected by the k-means method are those in which the peaks of the heating demand 

(ED1), the electricity price (ED2), the sun irradiance (ED3), the ambient temperature (ED4), and the 

electricity demand (ED5) are reached. Concerning the extreme days selected by the k-MILP 

clustering method, the analysis of the results indicates that: 

• ED1 features the peak heating demand; 

• ED2 features a high electricity purchase price (not visible in the plot); 

• ED3 is identified as “a-typical” because the heating demand does not get close to zero in the 

evening hours, unlike in the other typical and extreme days; 



• ED4 features a very high heating demand together with a high average value throughout the day: 

such extreme days would turn out to be useful in avoiding the under-sizing of the thermal units 

(energy conversion and storage systems together);  

• ED5 features a peak electricity demand. 

It is worth noting that four out of five EDs selected by the k-MILP clustering method features high 

or relatively high heating demand, while the k-means extreme days include three days with null 

heating demand. 

Fig. 7 reports the comparison between the original and aggregated LDCs. The corresponding errors 

and RMSD are reported in Errore. L'origine riferimento non è stata trovata.. As it can be seen, 

the two methods have similar performances: k-means is generally characterized by a lower percentage 

error (by definition, its typical days feature average profiles) but for the heating demand and the 

electricity purchase price the RMSD of the k-MILP is smaller. The only attribute for which we can 

observe an appreciable error is the global tilted radiation, where the k-MILP overestimates by 8% the 

available irradiance. This could be decreased by setting a lower bound on the approximation error of 

the radiation LDC, but it was not considered relevant for the case study due to the limited area 

available for solar heating and photovoltaics panels.  

 

 

Fig. 6  Office building – Normalized profiles of (a) typical days and (b) extreme days for the two 

clustering techniques. The profiles are: red = heating demand, yellow = irradiance and green = 

electricity demand. 
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Fig. 7  Office Building – load duration curves of the two energy demands. 

 

5.2.2 Design optimization results 

The MILP design problem has been solved considering the typical and extreme days returned by the 

two clustering methods. Three scenarios have been considered: 

• Scenario 1OB (OB stands for Office Building): outages are not allowed (the heat and cooling 

demand must always be satisfied by the installed units). 

• Scenario 2OB: outages not allowed yet it is not possible to install cogeneration units (e.g., neither 

ICE nor micro-ICEs). 

• Scenario 3OB: outages not allowed, cogeneration units can be installed (as in 1OB) and a limit is 

imposed on the net fossil CO2 emissions of the DES, equal to 75% of the value reported for 

Scenario 1OB. 

Errore. L'origine riferimento non è stata trovata. reports the details of the energy conversion and 

storage systems selected in each scenario when optimizing the total annual costs using typical and 

extreme days from the two clustering approaches. Like before, sizes have been normalized with 

respect to: (i) the peak heating demand for boilers, the thermal capacity of internal combustion 

engines and biomass-fired Organic Rankine Cycles (ORCs), SH, and thermal storage, and (ii) the 

peak electricity demand for the electric capacity of internal combustion engines and biomass-fired 

ORCs. Errore. L'origine riferimento non è stata trovata., instead, reports annualized capital costs, 

operating costs estimated in the design MILP problem on the basis of the selected typical and extreme 

days, actual operating costs assessed with a yearly optimization of the system operation, total annual 

cost (TAC) estimated by the MILP problem using the typical/extreme days, and actual TAC (assessed 

with a yearly optimization of the system operation). 

Both in scenario 1OB and 2OB, the use of the typical and extreme days coming from the k-means 

and the k-MILP leads to the selection of the same types of units yet featuring different sizes. In 

particular, in scenario 2OB, 43-58% of the heating demand is satisfied by two boilers (a larger one 

and a smaller one), which are helped, during the peak hours, by a heat storage system. Whereas, in 

scenario 1OB, for both clustering methods, the system takes advantage of cogeneration by reducing 

the size of the larger boilers (10-23% of the peak, instead of 33-49%) and installing a micro-ICE, that 

covers around 30% of the peak. 

Looking at the actual TAC (365 days operation) in Errore. L'origine riferimento non è stata 

trovata., from an economic point of view, the design choices made when using the k-MILP typical 

and extreme days brings about a significant difference with respect to the k-means: -20% in Scenario 

2OB and -30% in Scenario 1OB. This is mainly due to the extreme days selected by the k-MILP, 

which turns out to be more “challenging” in terms of heating demand with respect to those of the k-

means. Indeed, ED4 of k-MILP (featuring a high heat demand for several hours) guides the design 

optimization towards bigger capacities of the boiler and internal combustion engine and smaller heat 

storage systems. The under-sized ICE and boilers coming from the use of the k-means extreme days 

would turn out to be insufficient to cover the demand causing outages and less efficient operation 

throughout the year. Another advantage of k-MILP over k-means is the preservation of the intra-hour 

variability of the input profiles within the typical days, which is smoothed by the averaging effect of 

k-means. 

The aforementioned over-estimation of the global tilted radiation associated to the k-MILP typical 

days leads to the installation of SH panels both in scenario 1OB and 2OB when its typical and extreme 

days are considered; however, as already seen, such choice does not penalize the economic figures 

appreciably. 

Scenario 3OB is quite different: it features the installation of renewable energy sources to meet the 

limits imposed on the fossil CO2 emissions. Namely, for both the k-means and k-MILP typical and 

extreme days, a biomass-fired Organic Rankine Cycles is installed. Even if the smallest possible size 



of the units is selected, yet they are over-sized for the heating demand of the users. The selection of 

the ORCs is due to the fact that the available area on the building roof would not be enough to meet 

the CO2 emissions limits and solar PV panels would also require the installation of a heat pump to 

generate the required heat with a considerable increase in cost. 

For this scenario, the differences in the costs are limited since the design choices have been forced in 

both cases by the CO2 limits, but it is worth pointing out that k-MILP case selects a simpler 

configuration with respect to the k-means, replacing the boiler with a larger heat storage. 

 

 

 

 

 

 

 

 

 

 

 

Conclusions 
The proposed MILP-based clustering approach significantly improves the accuracy in reproducing 

the load duration curves and the total yearly values of the relevant attributes compared to the classic 

k-medoids approach. In addition, it automatically identifies extreme days that cannot be well clustered 

because atypical compared to the representative days of each cluster. The analysis of the results for 

two real-world case studies (a university Campus and a single building) show that these days feature 

either very high/very low attributes or atypical combinations of attributes (e.g., high cooling demand 

with very low solar radiation) or high values maintained for several hours. All these periods could be 

critical for the operation of energy systems. 

For the University Campus case study, k-means and k-MILP have very similar performance in 

representing the operating costs of the whole year, while k-medoids considerably underestimates the 

cooling duration curve. In this large-size case study, the averaging effect of k-means does not affect 

its representation accuracy since the input demand profiles are quite smooth. Nevertheless, the 

extreme days selected by the k-MILP allow decreasing the number and extent of the outages. Among 

the extreme days, k-MILP correctly identifies as a-typical a day featuring a very high cooling demand 

and low radiation which would be critical for systems relying on solar photovoltaic panels to drive 

the refrigeration cycles.  

For the single building case study, the advantages of k-MILP over k-means become considerable in 

terms of both costs (up to -30% total annual cost) and reliability of the optimized designs. This is 

mainly due to the extreme days selected by the k-MILP, which turns out to be more “challenging” in 

terms of heating demand with respect to those of the k-means. In particular, k-MILP is able to find 

as extreme day one featuring a high heat demand for several hours which would be critical for systems 

relying on the use of storage units to meet the peak demand. Another advantage of k-MILP over k-

means is the capability of preserving the hourly fluctuations of input profiles in the typical days. 

In conclusion, k-MILP appears to be a valid alternative to well-known clustering techniques for its 

capability of inheriting the advantages of k-medoids (accuracy of the hourly profiles) and k-means 

(accuracy of the integral of the aggregated load duration curve) while automatically identifying 

extreme (and a-typical) operating periods which would not be easily identified on the basis of a-priori 

defined criteria. 
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