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Abstract

A barrier option is an exotic path-dependent option contract that, depending on
terms, automatically expires or can be exercised only if the underlying asset ever
reaches a predetermined barrier price. Using a partial differential equation ap-
proach, we provide an integral representation of the barrier option price via the
Mellin transform. In the case of knock-out barrier options, we obtain a decom-
position of the barrier option price into the corresponding European option value
minus a barrier premium. The integral representation formula can be expressed in
terms of the solution to a system of coupled Volterra integral equations of the first
kind. Moreover, we suggest some possible numerical approaches to the problem
of barrier option pricing.



1 Introduction

A European option is a financial derivative contract that gives the buyer the right to
buy or sell a particular asset at a fixed maturity or expiry 7 and at a predetermined
exercise or strike price E. In the case of a barrier option, this right is activated
(knock-in) or extinguished (knock-out) when the underlying asset reaches a cer-
tain barrier price during the time interval [0, T]. If the option expires inactive or
extinguishes, then it may be worthless or there may be a cash rebate R paid out.
A barrier option has a lower premium than a similar European option without a
barrier. Barrier options were created to provide the hedge of an option at a lower
premium than a conventional option and are traded in large volumes.

Barriers are generally fixed, but time-dependent barriers can be considered
as well. Moreover, time-dependent barriers arise naturally in financial markets
even if the barriers in the option contract are constant. For instance, assuming
a deterministic term structure of interest rates or a time-dependent volatility, by
a change of variables we can move the time-dependence from the coefficients of
the partial differential equation (PDE) modeling the price to the barriers. Further-
more, by referring to the forward price of the underlying, the option contract with
constant barrier translates into a contract with time-dependent barriers. The as-
sumption that the term structure of interest rates is deterministic is very common
in the foreign exchange markets as the majority of barrier option contracts have
short maturities of up to one year and have little dependence on the stochasticity
of interest rates.

The academic literature on continuously monitored barrier options is vast and
varied and dates back to at least the work of Merton [19], who presented a closed-
form solution for the price of a continuously monitored down-and-out European
call. Several approaches can be found. The first one, which mainly deals with
constant barriers, identifies pathwise hedging strategies with European derivatives
that either uniquely determine or provide an admissible range for the barrier op-
tion price (see, for instance, [5, 6, 7]). A static hedge using calls and puts for
a time-dependent single barrier option is described in [1]. The result applies to
linear diffusions with compound Poisson jumps, but the hedging strategy depends
on knowing the values of the barrier contract to be hedged at certain times before
expiry. A probabilistic approach using Laplace transforms for constant double
barrier options in the Black-Scholes model is given in [10]. A method using the
joint density of the stock, its maximum, and its minimum to find the price of time-
dependent barrier options in the Black-Scholes model was pioneered in [16]. The
article [21] used boundary crossing probabilities for Brownian motion to price
single barrier options when the underlying asset price process has deterministic
time-dependent drift and volatility. Lattice methods have been employed by sev-
eral authors such as in [3, 23]. PDE-based methods for pricing continuously or



discretely monitored barrier options are studied, among others, in [4, 27, 31] using
finite difference and finite volume and infinite element methods.

More recent works on time-dependent double barrier options used analytic
tools such as Fourier transforms [9], Green’s functions [14], and complex inte-
gration [22]. Spectral methods were applied in [8] to find constant double bar-
rier option prices in the class of CEV models. The use of the boundary element
method to derive a suitable integral representation of the barrier option price has
been explored in [2, 12, 13, 28]. Finally, [20] addressed the question of pricing
time-dependent single and double barrier options when the underlying asset price
process is a linear diffusion with mild regularity conditions on its volatility func-
tion. The approach in [20] is entirely probabilistic and yields a representation
formula that is very close to ours, where the barrier premium can be expressed as
a sum of integrals along the barriers of the option deltas that come from solving a
system of Volterra integral equations of the first kind.

Another possible approach to pricing option contracts with time-dependent
parameters (e.g., volatility, interest rate, and dividends) is by the Mellin trans-
form. This approach has been applied to European options with general pay-
offs [25], American call and put options with approximate ordinary differential
equations (ODEs) for the optimal exercise boundaries [24], European options
where the underlying process is lognormal with jumps [17], and American options
with general payoffs giving exact integral equations and approximate ODEs for
the optimal exercise boundaries [26]. Yoon and Kim [30] use double Mellin trans-
forms to study European vulnerable options under constant as well as stochastic
interest rates assuming the Hull-White framework. Gzyl et al. [11] investigate the
use of Mellin transforms to non-standard option pricing models, characterized by
discontinuities in the terminal/boundary conditions and with time-varying param-
eters.

Transform methods and integral representation formulas allow the recovery of
option prices in semi-analytic form as a solution of a nonsingular system of lin-
ear equations obtained by discretization of Volterra integral equations rather than
from a numerical scheme for partial differential equations. An aim of this paper
is to reformulate the single barrier problem (as well as the double barrier prob-
lem to be given later) into a more general framework which allows for an integral
representation of the solution based on the Mellin transform. In the case of knock-
out barrier options, this formula lends itself to the following interesting financial
interpretation: the barrier option price is decomposed into the corresponding Eu-
ropean option value minus a barrier premium. Under suitable assumptions, the
integral formula is obtained after solving a system of coupled Volterra integral
equations of the first kind for which some possible numerical approaches are sug-
gested. Our approach applies to both single and double barrier problems with
(i) time-dependent barriers, (ii) time-dependent parameters, (iii) possibly nonzero
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rebates and (iv) general payoffs.

For ease of exposition, let us consider the case of a single barrier option. Let
B(t) > 0 denote the barrier at time 7 > 0 and R > O the rebate. Denote by v, the
European option pricing function such that at expiry 7" > 0 the payoff function is
x—ve(x,T), where xe Ry = [0,00). The active domain I(t) is defined to be either
(0,B(t)) or (B(t),0). Outside the active domain, the option value is equal to R
in the case of knock-out barriers and equal to the corresponding European option
price in the case of knock-in barriers. Then the different types of barrier options
are characterized by their specific active domain, payoff condition, and boundary
condition (BC) as follows:

(1) payoff | BC atx = B(r)
down-and-out | (B(t),0) | ve(x,T) R
up-and-out (0,B(t)) | ve(x,T) R
down-and-in | (B(t),) R ve(B(t),1)
up-and-in (0,B(1)) R ve(B(t),t)

The PDE formulation for the single barrier problem takes the form of a final-
boundary value problem. We have

ZLv(x,t) =0, xel(t), te][0,T), (1.1)
where
ov 1 5 5 0% ov
Lv(x,t) = E(X,l‘) + 56(1‘) x ﬁ(x,t) + [r(2) —D(t)]xa(x,t) —r(t)v(x,1)

is the generalized Black-Scholes operator. Here, the risk-free rate r, the dividend
yield D, and the volatility ¢ are continuous functions of ¢, where o(f) > 0 and
D(t) = 0 forall t € [0,T]. The final condition is

e I(T). (1.2)

ve(x,T) for knock-out options,
v(x,T) = . .
R for knock-in options,

The option value at the barrier is

R for knock-out options,

v(B(t),t) = { te|0,7). (1.3)

ve(B(t),t) for knock-in options,

We shall assume that ¢ — B(t) is sufficiently regular and that (1.1)—(1.3) is a well-
posed problem. Our goal here is to derive an integral representation of the solu-
tion, validated by numerical simulations, and leave the proof of well-posedness as
future work.



The outline of the paper is as follows. In Section 2, we summarize preliminary
results coming from the use of the Mellin transform in option valuation. In Sec-
tion 3, we provide an integral representation formula for the single barrier problem
and we pose suitable assumptions on the auxiliary functions f and g involved in
the formulation. In Section 4, some possible numerical approaches to the solution
of the Volterra integral equation are suggested and the validity of our represen-
tation formula is checked by numerical simulation. In Section 5, the extension
to the double barrier problem is briefly sketched, and brief concluding remarks
are given in Section 6. The proofs of theorems and other results are given in the
Appendix.

2 Preliminary results

In this section, we summarize some results obtained as a consequence of using the
Mellin transform in option valuation [17, 24, 25, 26]. We begin by defining useful
auxiliary functions [24]. Let

_logx+ ['[r(t) — D(7) + 6(1)%/2] d7
- [/ o(7)*dz]!/2 ’

logx+ ["[r(t) — D(1) — o(1)?/2]dt
bt = [ o(02de]1?

Zl(X,t,I/t)

It follows that
xe ™ I PEIN (2 (x,1,u)) — e~ H OGN (5 (x, 1,u)) = 0,

where N is the cumulative distribution function of a standard normal random vari-
able. The Black-Scholes kernel was defined in [25, 24] by

e Ji'r(r)de v xe— Ji'D(r)dt v
[f,”G(r)sz]l/z (ZZ(xat7u)) = [ftuG(T)sz]l/z (Z](X,l,l/t)).

It is straightforward to show by direct differentiation of the right-hand sides that

R )

y dy y 2.1
1 X 0 — [fr(t)de X -
- | —-tu)=—|—e N N{z| —,tu )

y y dy y

The Mellin transform f at & € C of a function f : R — R is defined to be

H(x,t,u) =

A

7@ = [E
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provided the improper integral converges at £. Moreover, if we define the Mellin
convolution f =g of two functions f and g defined on R by

| X
(Froe = [ <r(%)stan
0y y
then it can be shown that a convolution property holds: (f+g)(&) = f(&)8(&).
It was shown in [25] that the solution of the final value problem
Lve(x,t) =0, xeRy, 1€][0,T),

2.2
ve(x,T) given, xeR,, (2.2)

where . is the generalized Black-Scholes operator and x — ve(x,T) is a given
payoff function, is expressed as

0
wen) = [ 1 (f,t,T) Ve T)dy.
0 y

Yy
It follows that the European option pricing function is the Mellin convolution
of the Black-Scholes kernel and the payoff function. Two particular important
examples are the call and put vanilla options. For a call payoff ve(x,T) = max(x —
E,0), where E > 0 is the exercise price, with the aid of (2.1) we obtain that

Vean(x,1;E,T) zxe_ftTD(T)dTN (zl (%,t,T))

(2.3)
_Ee N r(mdty (Zz (f t T))
E’ b )
while for a put payoff ve(x,T) = max(E — x,0), we have
VPUt(x7t;E7 T)=Ee" a O8N <_Z2 (ﬁat, T))
E (2.4)

—xe*ffTD(T)dTN (—zl (%,t,T)) .

When r, D, and o are constants, (2.3) and (2.4) are of course the well-known
Black-Scholes formulas.

Remark 2.1. We observe that

1
- ()—C,I,T> =Gy, T;x,t),
y y

where
e~ Ji'r(r)dr
Y2z [/ o (1)2dt]!/?
~ {log(y/x) — J'[r(r) - D(z) — o(1)*/2] d7}?
" e"p( 2[o(n)de )

is the Green’s function associated with the final value problem (2.2).

G(y,u;x,t) =
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More generally, suppose that (x,z) — f(x,7) and x — g(x) are Mellin trans-
formable functions with respect to x. Then it was shown in [26] that the formal
solution of the nonhomogeneous final value problem

.i”v(x,t)zf(x,t), XERJ” IE[O,T),
V(X,T) :g(x)7 xeRy

is given by
T rooq X
v(x,1) = vo(x,1) — / / Ly (—,t,u) £, u)dydu, 2.5)
t JO Yy y
where o1
vo(x,1) = / — A ()—C,t,T> g(y)dy. (2.6)
0y y

3 An integral representation formula for the single
barrier problem

Recall from Section 1 that the single barrier problem can be expressed as
ZLv(x,t) =0, xel(t), te][0,T),
v(x,T) given, xel(T), (3.1)
v(B(t),t) given, te[0,T],

where I(t) = (0,B(t)) or I(t) = (B(t),20). We can embed the first two equations
in (3.1) into the nonhomogeneous problem

fv(x,t)zf(x,t), XER-H lE[O,T),

v(x,T)=g(x), xeR, (52)
provided that we assume the following:
(i) f:R4 x[0,T) — R is such that
flx,t)=0, xel(t), te[0,T). (3.3)
(i) g: R4 — R, is a suitable extension of the payoff condition such that
glx)=v(x,T), xel(T). (3.4)

Although x — v(x,T) is defined in (3.1) only on I(T), in fact it can be ex-
tended to all of R since it is either the European payoff function v, (x, T')
(knock-out options) or the rebate R (knock-in options). Alternatively, we
can define g(x) = 1;(7)(x)v.(x,T) for x € R, where 14 is the indicator func-
tion of the set A.



Our first result provides an analytical representation of the solution to (3.1).
The proof of this theorem is given in Appendix A.

Theorem 3.1. ForxeI(t) andt € [0,T), define

T
) =)= [ §% (;t) (v, 10) dyd
+ u

(3.5)
©1] X
Vo(X,t):/ - X _7t7T g(y)dya
0oy y
where g : R, — Ry is a Mellin transformable function that satisfies (3.4) and
h:Ry x[0,T) — R is Mellin transformable with respect to the first argument and
satisfies the linear integral equation

vo(B(t),1) = v(B(1),1) = /, ' /R " i%f (@,t,u> h(y,u)dydu, 1€0,T).

Yy
(3.6)

Then (3.5) satisfies (3.2) with f(x,t) = 1g ;) (x)h(x,1) and hence the single bar-
rier problem (3.1).

Remark 3.2. Consider the case of a down-and-out barrier option with constant
barrier B and no rebate R = 0. By choosing

flxt) =xq(x,1)8(x=B), gx) = 1) (X)v(x,T),

where (x,¢) — ¢(x,t) is a suitable auxiliary function and J is the Dirac delta dis-
tribution, and using (2.5)—(2.6), we recover the integral formulation in [13]:

o) T
v(x,1) =/long(z,T;logx,t)v(eZ,T)dz—/t p(logB,u;logx,t)q(B,u)du.

Here, p(z,u;logx,t) = yG(y,u;x,t) is the transition probability density function of
the log-price z = logy of the underlying asset. The proof is given in Appendix B.

We wish to find a more general formulation for the barrier option pricing prob-
lem that allows for different choices of the functions f and g, as well as a deeper
financial understanding. Even though there are many ways to extend the func-
tion x — v(x,T) outside I(T) to give g, this should not matter since ultimately the
integral equation (3.6) for h appropriately “adjusts” the expressions in (3.5).

In particular, in the case of knock-out barrier options, taking g equal to the
payoff of the corresponding European option ve(x,T), we see that formula (3.5)
lends itself to the following interesting financial interpretation: the barrier option
price is decomposed into the corresponding European option value vy minus a
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barrier premium. A similar result was obtained by a probabilistic approach in
[20]. As an example, consider the call payoff g(x,T) = max(x — E,0). Then
the barrier option price is given by (3.5), where vy is the European call pricing
function. For comparison, when r, o, and B are all constant (with D =0, R = 0,
and B < E), the down-and-out call pricing function from [29] is

~(2r/0*~1) [ B?
v(x,t) =vo(x,t) — (%) Vo (7,t> :

This is of course valid only for x € (B,c0) and 7 € [0, T].

It is clear therefore that the solution of the single barrier problem (3.1) re-
duces to the solution of the integral equation in (3.6), which is not tractable in
general. To simplify further, suppose that % is linear in x and has time-dependent
coefficients, i.e.,

hix,t) = ho(t) +xhi (1), xeR., tel0,T).

This choice is partly motivated by analytical tractability, but also because in the
American option pricing problem [26], whose formulation is related to the formu-
lation of the barrier option pricing problem given here, this form for 4 is related
to the value of the option pricing function in the exercise region.

We have the following consequence (proved in Appendix C) of Theorem 3.1
when £ assumes a linear functional form in x:

Corollary 3.3. Following the same notation as in Theorem 3.1, with v defined as
in (3.5), suppose that h(x,t) = ho(t) + xh(t). Then h satisfies

t B(u

+B(r) /t Lo lrn@any (izl (%,t,u)) hy () du,

where the plus and minus signs correspond to the active regions I(u) = (0,B(u))
and 1(u) = (B(u), ), respectively. It follows from (3.5) that the barrier option
pricing function is

v(x,1) = vo(x,1) — / SCILY (m (ﬁm)) ho(u) du

t

T u
—x/l e~ iP(dry (izl (ﬁ,t,u)) hy (u) du.

Remark 3.4. In Corollary 3.3, we observe that (3.7) provides a single condition
for the two functions Ao and /;; hence there remains an extra degree of freedom.
We can consider two special cases:

voB(e),1) v(B().1) = [ Loy (m (it))’t’u))how)du 3.7)

(3.8)



(a) h does not depend on x;

(b) h depends on x but we impose the continuity condition 4(B(t),t) = 0 across
the boundary.

Case (a). Suppose that & does not depend on x, i.e., h(t) = 0 forz € [0,T). Then
the barrier option pricing function using (3.8) is given by

v(x,1) = vo(x,1) — /tTho(u)e_ﬂur(T)dTN (izz (%,t,u)) du, (3.9)

where hg : [0,T) — R satisfies the Volterra integral equation of the first kind

T u B(t
vo(B(t),1) —v(B(1),1) = / e Jir(®dry (izZ (%,t, u)) ho(u)du. (3.10)
t u
Case (b). On the other hand, suppose that 4 depends on x but satisfies the conti-
nuity condition h(B(t),7) = 0 across the boundary. Thus ho(t) = —B(t)h;(t) for
t € [0,T) and the barrier option pricing function using (3.8) is expressed as

v(x,t) = {Vo(xyf) — ST (u)vean (x, 3 B(u),u)du  if I(t) = (0,B(r)),

VO(xJ)+ftThl(“)Vput(x,t;B(u),u)du if 1(t) = (B(t),0), (3.1

where v, and vy are obtained by replacing E by B(u) and T by u in (2.3) and
(2.4), respectively. The function h; : [0,7) — R satisfies the Volterra integral
equation of the first kind

I by ()vean(B(e),2:B(u),u)du  if I(t) = (0,B(r)),

—flThl(u)vput(B(t),t;B(u),u)du if I(t) = (B(t),0).
(3.12)

vo(B(t),1) — v(B(1)1) = {

4 Numerical approximations and results
Theorem 3.1 suggests some possible numerical approaches to the problem of bar-
rier option pricing. From Remark 3.4, if & is assumed to be linear in x, then the

problem reduces to solving Volterra integral equations of the first kind, i.e., either
(3.10) or (3.12). Such integral equations have the general form

/ " K h(a)du = w(t), 1€ [0.T), @.1)

where w and K are given functions and the function /4 is to be approximated over
[0,7). We remark that although (4.1) does not necessarily hold at r = 7', from the
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left-hand side we would expect that lim,_,7— w(z) = 0. For instance, this con-
dition is naturally met in (3.10) and (3.12) for knock-in barrier options when
g(x) = ve(x,T). Standard regularity assumptions on K(¢,u) and w(t) guarantee
the existence and uniqueness of the solution to (4.1). In cases when the condition
is not generally met, no classical solution can exist to both Volterra integral equa-
tions (3.10) and (3.12) and we have to look for a solution in distribution spaces.

It is well known that Volterra integral equations of the first kind are ill-posed
mathematical problems whose solution is rather unstable, i.e., it is strongly de-
pendent on the data in the sense that slight perturbations of the forcing function w
may give rise to arbitrarily large variations in the solution /. Nevertheless, useful
and meaningful solutions can be obtained with the aid of suitable stabilizing or
regularizing procedures.

Because of their simplicity, direct methods, that is methods based on replacing
the integral in (4.1) by a numerical quadrature, are usually preferred. Linz [18]
showed that approximations to Volterra integral equations of the first kind can
be obtained by certain simple numerical quadrature rules. However, many of the
higher order quadrature methods lead to unstable algorithms so that lower order
formulas are to be preferred.

Moreover, when considering numerical methods for integral equations, partic-
ular attention should be paid to the character of the kernel K, which is usually the
main factor governing the choice of an appropriate quadrature formula or system
of approximating functions. Assume for simplicity that the functions r,D, ¢ are
constant and B(¢) is differentiable and analyze the nature of the integral equation
into more details. In Case (a), the kernel

K(t,u) = e "N ((r -D- o%)m)

(0

is a smooth function such that K(t,¢) = 1/v/2m # 0. This, in principle, allows
us to convert the integral equation (3.10) by differentiation to one of the second
kind and solve for A(-) by successive iterations or by more sophisticated iterative
schemes based on Newton’s method. For this type of equations, instabilities are
appreciably less severe and the numerical solution presents less computational
difficulty.

In Case (b), the kernel!

K(t,u) = vean(B(t),t;B(u),u)

is such that K(z,¢) = 0. Moreover, suppose that we indicate by Acay(x,#;E,T) and
Ocan(x,t; E,T) the Delta and Theta at (x,7) of a European call option with strike

' Assuming I(t) = (0,B(t)); the case I(t) = (B(t),0) is similar.

10



E and expiry T. The first derivative
K (t,t) = }ti_)n}Acau(B(t),t;B(u),u)B/(t) + Ocan (B(2),t; B(u), u)

does not exist. This prevents us from reformulating the integral equation as one
of the second kind and complicates the numerical solution of the integral equation
(3.12).

Keeping all these considerations in mind, we propose a different numerical
procedure and we solve the Volterra integral equation of the first kind (4.1) by
a collocation method, paying special attention to the choice of the collocation
points.

Consider a uniform decomposition of the time interval [0, 7] with time step
length At = T /M and M a positive integer:

ty =kAt, k=0,1,... .M. 4.2)
We choose piecewise continuous basis functions
(pk(u):H(u—tk,l)—H(u—tk), ME[O,T], k=1,....M, 4.3)

where H denotes the usual Heaviside step function, to approximate / by

M
h(u) =Y crr(u), (4.4)

k=1
where the constants cq,...,cy are to be determined. Next we choose as colloca-
tion point 77 =#;_; on each subinterval [t;_1,t;] for j =1,...,M. Substituting

the approximation (4.4) into (4.1) and evaluating it at the collocation points, we
obtain the system of equations

T M
/ Kehu) | Y o) | du=w(es), j=1,..,M.
1 k=1
We can rewrite this system as
M
Zaj’kaij, j=1,...,M7
k=1
where

T
‘%k:[;K@?W¢M@d% bi=v(t}), jk=1,.. M.

J
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The coefficients a;  can be simplified to

I
aj,kZ/ K(t;,u)du, jk=1,....M 4.5)

max(t_1.%)

and numerically evaluated. Thus we generate a linear system Ac = b, where

ay adiz2 a3 0 aium
0 ap azs -+ daM C1l V(tik)
A= 0 0 assz -+ asym , €= , b=
: : ST cm v(ty)
0 0 0 o AM M

Note that @y (u) = 0 for u < #;_y or u > t;. For j >k, a;; = 0 because 17 >t in
(4.5) and therefore A is an upper triangular matrix.?

Once the linear system Ac = b has been solved numerically for cy,...,cy,
the approximate solution of the integral equation (4.1) is expressed as in (4.4).
This will be h = hg in (3.10) and & = h; in (3.12). Then the corresponding 4 is
substituted into (3.9) and (3.11), respectively, to estimate the barrier option price
through numerical quadrature.

To illustrate our results, let us consider the particular case of a put option with
a single constant up-and-out barrier and no rebate. Thus

I(t)=(0,B), g(x)=max(E—x,0), v(B,t)=0.

We consider the two cases of Remark 3.4:
Case (a). Equations (3.9) and (3.10) simplify to

T u
v(x,t) = vpu(x, 1 E, T) —/t ho(u)e™ i (P 4Ty <z2 <%,t,u>> du,

T u
vou(B,1:E,T) = / e~ KON (20 (1,1,1)) () du.

t

Case (b). Equations (3.11) and (3.12) become
T
v(x,t) = vpu(x,1;E,T) —/ hy () vean (x,2; B, u) du,
t

T
vput(B,t;E,T)z/ hy (u)vean (B,t; B,u) du.
t

ZMoreover, if the kernel K depends only on the difference between its arguments, namely,

* _ *
K(t7,u) = K(|t] —ul),

then the matrix entries are equal along the same diagonal (i.e., the matrix is of Toeplitz type)
and therefore we can compute only the last column and solve the system simply by backward
substitution.
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As already remarked above, we would expect that lim,_,7— w(r) = 0 in (4.1).
However, when we choose g to be the payoff function of a European put op-
tion fulfilling the condition (3.4), it may be the case that B < E and therefore
vput(B,T;E ,T) # 0. Nevertheless, for the numerical approximation, we never
solve equation (4.1) at t = T but refine the mesh in (4.2) and solve (4.1) at a point
ty; approaching 7.

The previous issue suggests that we reconsider the fulfillment of the Volterra
equation in a weak sense, and hence we consider a third case:

Case (c). Referring to (3.10), the starting boundary integral equation becomes

T T T
/ vou (B, 1:E, T)w(t) dt = / w(1) / e~ TN (2 (1,1,4)) o (i) duds
0 0 t
(4.6)
for a suitable test function y. Then hg in (4.6) is approximated by a Galerkin
method, e.g., by considering the same piecewise constant functions (4.3) as test
functions: for j = 1,...,M, we have

T T T,
/ vou(B,1:E, T) (1) dt = / 0;(t) / e~ KON (25 (1,1, 10)) ho(u) dudr.
0 0 t

With constant parameters and barrier, the analytical solution is known from
[15] to be

(Ee"T=ON(y; + (6 —2A0)VT —1)
— xe PT-ON(y; —2A0/T —1)
+xe T (B/x)AN(—y1)
v(x,t) =9 —Ee"T=)(B/x)**"2N(—y, + 6\/T —1) ifB<E, 4.7)

Vpur(x, 13 E, T) 4 xe ™ P70 (B/x)N(—y»)
—Ee"TD(B/x)*2N(—y,+o/T —1) ifB>E,

where A = (r— D+ 62/2)/0? and

X 2
RN, = L,

Setting the option expiry at T = 1, the strike price E = 3, the interest rate r =
0.1, and the volatility o = 0.2, we can check the validity of our numerical results
at the evaluation time ¢ = 0.

In Table 1, we want to observe the efficiency of the three different approaches,
namely, Cases (a), (b), and (c), in relation to the position of the barrier with respect
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B Case (a) Case (b) Case (¢)

40]84x10710 15%x10°1 1.7x107%
31 [21x107°1 46x1079 2.3x10798
3.0(53%x10797 53x10797 3.5x107%
20[14%x107% 14%x107% 41x10%
20[1.4x107% 1.4x107% 6.1x1079

Table 1: Maximum absolute errors achieved over the interval [0, B] by the three
different approaches, for different barrier values above and below the strike
price E = 3.

to the strike price. The listed values represent the maximum errors at equally
spaced points x; = iAx with Ax = 0.1 and i = 0, 1,...,B/Ax, having considered a
uniform time interval decomposition by M = 2!0 time steps. The approximation
gets worse as the barrier diminishes and becomes lower than the strike price. The
accuracy of the numerical results is comparable among the three cases but Case (c)
requires a greater computational effort due to a further numerical integration that
is not compensated by a meaningful gain in accuracy.

1074
3 15 10
25}
g 2 i
& o
8 157+ 5
3 3
1r o 057t
o =
05|
0 : : : 0
0 0.5 1 15 2 0 0.5 1 15 2

X

Figure 1: On the left: put up-and-out option value (numerical approximations and
exact values overlap). On the right: absolute error produced in Case (a).
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Figure 2: Absolute errors produced for Cases (b) and (c) on the left and on the
right, respectively. The plot for Case (c) is displayed in logarithmic scale.

Figures 1 and 2 show the option value and the absolute errors obtained by the
three approaches over the interval [0, B) in the worst case when B = 2. While the
errors achieved by the first two approaches are of the order of 10~* for most of the
asset values, in Case (c) the errors are overall smaller except close to the barrier
where they become quite large.

In Table 2, giving the barrier the critical value B = 2, we want to observe
the convergence towards the exact solution refining the time discretization. The
listed values represent the maximum errors obtained over the x-grid x; = iAx,
i=0,1,...,B/Ax, with a smaller step Ax = 0.05, having considered a uniform
time interval decomposition by an increasing number M of time steps. For all of
the three methods the error is reduced as M grows but Case (c) is more affected by
end effects: in Cases (a) and (b), halving At entails halved errors, while the con-
vergence rate for Case (c) is strongly conditioned by the presence of the barrier.
In fact, since the approach for Case (c) concentrates the greatest part of the error
close to the barrier as shown in Figure 2, computing the errors at points over a
finer x-grid gives worse results because the grid points x; get closer to the barrier.
This explains why the error worsens when refining the x-grid (compare the last
row of Table 1 and the third row of Table 2).

As observed and numerically investigated also in [12], the extension to time-
dependent parameters and/or barrier is straightforward as well as the application
of these numerical approximations to call options and knock-in barriers. Moreover
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M | Case (a) Case (b) Case (¢)

28 155%x107% 55%x107% 1.6x107%
29 128x107% 28x107% 54x1002
201 14%x107% 14%x107% 3.1x10792
21169%x107% 6.9x107% 2.6x 1079
212135%x107% 35%x107% 7.6x107%

Table 2: Maximum absolute errors achieved by the three different approaches for
B =2 and E = 3, refining the time discretization grid.

the obtained numerical results validates the possibility of directly quantifying the
gap between barrier options and vanilla option values (barrier premium).

5 An integral representation formula for the double
barrier problem

In this section, we extend the results for the single barrier problem (3.1) to a
double barrier problem. Let a: [0,7] — R and b : [0,7] — R be continuous
functions such that 0 < a(z) < b(t) < o for all 7 € [0,T]. Consider the final-
boundary value problem

Lv(x,t) =0, xe(a(t),b(r)), te]0,T),
v(x,T) given, x€ (a(T),b(T)), (5.1)
v(a(t),t),v(b(t),t) given, t€[0,T].

We can embed the first two equations in (5.1) into the nonhomogeneous prob-
lem

Lv(x,1) = Lo oy (0B (x,1) + Lp(y 0y (AT (x,0), xRy, 1€[0,T),

V(xaT):g(x)7 XER-H

(5.2)

where g(x) = v(x,T) for x € (a(T),b(T)) and the functions (x,7) — h~(x,t) and
(x,t) — h™(x,r) are to be determined. Using (2.5), (2.6), the solution of (5.2) for
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x€ (a(t),b(t)) and t € [0,T) is

v(x,1) = vo(x,1) —/T /a(”) Ly (’-‘,t,u) 7 (y,u) dydu
//OO 1%(-,z,u)h+( ) dydu, (5.3)
vo(x,1) = /O A (y,t,T) 2(y)dy.

Evaluating (5.3) at x = a(t) and x = b(¢) and using the third equation in (5.1), we
see that A~ and h* satisfy the system of linear integral equations

vola(t),1) — // ;5/( ,t,u) = (y, ) dydu
/ /OO lf(ﬁ,t,u)iﬁ(y, ) dydu,

vo(b(1),1) — // %( ,t7u> ~(y,u) dydu
L

Remark 5.1. The single barrier problem (3.1) can be obtained as a limiting case
of the double barrier problem (5.1). More specifically, if a(r) = B(z), b(t) = o,
and ht(x,t) = 0, then we have the single barrier problem when I(t) = (B(t),,)
if we assume that only v(a(t),t) is given. Moreover, if a(t) = 0, b(t) = B(t), and
h™(x,t) = 0, then this leads to the single barrier problem when I (r) = (0,B(z)) if
we assume that only v(b(z),t) is given.

(5.4)

As in the integral equation (3.6) for the single barrier problem, to simplify (5.4)
we can make the assumption that 4~ and h™ are linear functions of x, namely,
h*(x,t) = hy (t) + xhi (t), where the four functions iy and hi (t) are to be de-
termined. Results analogous to those of Corollary 3.3 and Remark 3.4 can also
be obtained in a straightforward manner, leading to a system of coupled Volterra
integral equations of the first kind.

6 Concluding remarks

In this article, we used a Mellin transform approach to derive exact integral repre-
sentations for single and double barrier option prices with time-dependent barriers
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and parameters. The integral representation formulas are expressed in terms of so-
lutions of Volterra integral equations of the first kind. Numerical approaches were
proposed to solve these types of integral equations, and results of simulations
yielded excellent results when benchmarked with known exact pricing formulas
for special cases.

Mellin transform techniques have been used to price European and American
options under standard and jump-diffusion dynamics for the underlying asset [17,
24, 25, 26], as well as the inverse problem of implied volatility estimation [17].
In this article, they were applied to another class of exotic path-dependent options
known as barrier options. Hence the Mellin transform can be seen as an emerging
useful technique that expands the practitioners’ toolbox.

Two future research directions that arise from our results here are (i) proof
of well-posedness for single and double barrier problems as formulated here,
(i) application of Mellin transform techniques to other important classes of exotic
and/or path dependent options.
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Appendix

A Proof of Theorem 3.1

Proof. Taking f(x,t) = 1g () (x)h(x,t), where 14 is the indicator function of the
set A, it is easy to see that (3.5) follows from (2.5), (2.6) as v, restricted to x € (¢)
and ¢ € [0, T], satisfies the first two equations in (3.1). Evaluating (3.5) at x = B(r)
and using the third equation in (3.1) yields (3.6). ]

B Proof of Remark 3.2

Proof. Substituting f, g, and G in (3.5), and recalling Remark 2.1, we get

0 T o0
v(x,t) = /B G(y, Tx,)v(y, T) dy - / /O G (yyu:%,1)yq (v, )8 (y — B) dydu
o0 T
~ [ GO, 1) by~ [ G(Bwsx.0)Ba(Bou) du.
B

t
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With the change of variable z = logy, we obtain

[¢) T
y(x%,1) = /k)gBG(eZ,T;x,t)v(eZ,T)eZdz— /t G(B, s x,1)Bq(B, ) du.

But e*G(e*,u;x,t) = p(z,u;logx,t) and BG(B,u;x,t) = p(log B,u;logx,t); hence

oo T
v(x,1) —/] p(z,T;logx,t)v(ez,T)dz—/t p(logB,u;logx,t)q(B,u)du.

ogB
]
C Proof of Corollary 3.3
Proof. Using the assumption for &, we see that
/ —%( (t),t,u> h( )dyho(u)/ - X (@,t,u) dy
RJr\I( ) +\I( ) y (Cl)

The identities in (2.1) give

/R+\I(u) i% (?,t,u) dy = e hr(Ddry (izz (%,WD
Lo () =g (s (55 1))

where the plus and minus signs correspond to the cases I () = (0,B(u«)) and I (u) =
(B(u),0), respectively, and we use the property that N(z) + N(—z) = 1 for all
z € R. Substituting these integrals into (C.1) yields (3.7). U

and

CU
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