
09 July 2024

University of Parma Research Repository

Meta-Analysis for Correlating Structure of Bioactive Peptides in Foods of Animal Origin with Regard to
Effect and Stability / Maestri, Elena; Pavlicevic, Milica; Montorsi, Michela; Marmiroli, Nelson. - In:
COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY. - ISSN 1541-4337. - 18:(2019), pp. 3-30.
[10.1111/1541-4337.12402]

Original

Meta-Analysis for Correlating Structure of Bioactive Peptides in Foods of Animal Origin with Regard to Effect
and Stability

Publisher:

Published
DOI:10.1111/1541-4337.12402

Terms of use:

Publisher copyright

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available

Availability:
This version is available at: 11381/2850921 since: 2022-01-07T12:59:25Z

Blackwell Publishing Inc.

This is the peer reviewd version of the followng article:

note finali coverpage



mailto:Aptara_ops_support@aptaracorp.com


http://get.adobe.com/reader/




Author Query Form

Journal CRF3

Article crf312402

Dear Author,

During the copyediting of your manuscript the following queries arose.

Please refer to the query reference callout numbers in the page proofs and respond to each by marking the necessary comments using the PDF annotation tools.

Please remember illegible or unclear comments and corrections may delay publication.

Many thanks for your assistance.

Query No. Description Remarks

Q1 Author: Please confirm that forenames/given names (blue) and surnames/family names (ver-
milion) have been identified correctly.

Q2 Author: Please verify that the linked ORCID identifiers are correct for each author.

Q3 Author: Please check authors’ affiliations as typeset for correctness.

Q4 Author: Please check whether the edits in the sentence “For example, in 2012, EFSA rejected
advertising . . . ” retain the intended meaning.

Q5 Author: As per style short title of more than 40 characters is not allowed. Please supply a short
title of up to 40 (including any spaces between words and punctuation marks) characters that
will be used as the running head.

Q6 Author: Should the term “GP IIb-IIIa” be changed to “GP IIb/IIIa”

Q7 Author: Please provide the expanded form of “ROS”

Q8 Author: Please check whether the edits in the sentence “Cytotoxic activity and apoptosis have
been assessed . . . ” retain the intended meaning.

Q9 Author: Please provide the expanded form of “MAPK”

Q10 Author: Figure 5 is cited in the text, but the manuscript has only 3 figures. Please check.

Q12 Author: Reference “Chou, 2011” has been cited in the text, but it has not been included in
the Reference List. Please provide full publication details.

Q11 Author: Please suggest should “//” be changed to the preceding value of column or row in
Table 4.

Q13 Author: Reference “Ulluwisheva et al. (2011)” has been cited in the text, but it has not been
included in the Reference List. Please provide full publication details.

Q14 Author: Should the term “Immunorepertoires” be changed to “Immune repertoires”.

Q15 Author: Please check reference “Shlemov, Bankevich, Bzikadze, & Safonova, 2016” as typeset
for correctness.

Q16 Author: Please check reference “Steinman & Hemmi, 2006” as typeset for correctness.

Author: Please confirm that Funding Information has been identified correctly.

Please confirm that the funding sponsor list below was correctly extracted from your article: that it includes all funders and that the text has been matched to the correct FundRef
Registry organization names. If a name was not found in the FundRef registry, it may not be the canonical name form, it may be a program name rather than an organization name,
or it may be an organization not yet included in FundRef Registry. If you know of another name form or a parent organization name for a “not found” item on this list below,
please share that information.



FundRef Name FundRef Organization Name

FP7 Research Potential of Convergence Regions FP7 Research Potential of Convergence Regions

FP7 Food, Agriculture and Fisheries, Biotechnology FP7 Food, Agriculture and Fisheries, Biotechnology



CRF3 crf312402 Dispatch: October 10, 2018 CE:

Journal MSP No. No. of pages: 28 PE: Tom O’Brien

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Meta-Analysis for Correlating Structure of
Bioactive Peptides in Foods of Animal Origin with
Regard to Effect and Stability
Elena Maestri , Milica Pavlicevic, Michela Montorsi, and Nelson MarmiroliQ1

Abstract: Amino acid (AA) sequences of 807 bioactive peptides from foods of animal origin were examined in
order to correlate peptide structure with activity (antihypertensive, antioxidative, immunomodulatory, antimicrobial,
hypolipidemic, antithrombotic, and opioid) and stability in vivo. Food sources, such as milk, meat, eggs, and marine
products, show different frequencies of bioactive peptides exhibiting specific effects. There is a correlation of peptide
structure and effect, depending on type and position of AA. Opioid peptides contain a high percentage of aromatic AA
residues, while antimicrobial peptides show an excess of positively charged AAs. AA residue position is significant, with
those in the first and penultimate positions having the biggest effects on peptide activity. Peptides that have activity in vivo
contain a high percentage (67%) of proline residues, but the positions of proline in the sequence depend on the length
of the peptide. We also discuss the influence of processing on activity of these peptides, as well as methods for predicting
release from the source protein and activity of peptides.

Keywords: amino acids, food processing, functional food, health effect, in vivo activity

Introduction
Although the concept of functional foods was already intro-

Q2

duced in 1984 (Arai, 1996), consumer acceptance has been hin-
dered by the lack of an official definition (Siró, Kápolna, Kápolna,
& Lugasi, 2008). Japan’s Ministry of Health and Welfare has la-
beled functional foods as “foods for specified health uses,” for
example, food that also has beneficial effects on health. Since then
commissions such as FuFoSE (Functional Food Science in Europe;
Diplock et al., 1998) and the Commission of the European Com-
munities (Annunziata, Misso, & Vecchio, 2009, June) have tried
to define a scientific basis for health claims, type of food modifi-
cation, and nutrients added, as well as to establish the influence of
production processes on the health effects of food. Claims that can

Q3

be considered as “functional,” for foods having beneficial effects
on health, and as “reduction of disease risk claims” where daily
consumption reduces the risk of particular diseases (Roberfroid,
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2002) have been reviewed by the European Food Safety Authority
(EFSA).

Functional foods often contain an added ingredient with con-
firmed health effects (Menrad, 2003; Niva, 2007). However, cer-
tain functional foods contain naturally occurring constituents with
known bioactive effects (Eckert et al., 2013; López-Expósito,
Quirós, Amigo, & Recio, 2007; McGregor & Poppitt, 2013;
Suetsuna, 1999). During digestion or processing of these foods,
proteins are degraded to peptides, which may have a positive ef-
fect on human health (Moughan, Rutherfurd, Montoya, & Dave,
2014). These are called bioactive peptides, short amino acid (AA)
sequences, usually 2 to 20 residues (Sarmadi & Ismail, 2010), that
are released from a source protein either during technological
processing of the food or during in vivo digestion (Korhonen &
Pihlanto, 2007).

Several review papers list various health effects of bioactive pep-
tides from foods of animal origin (Aneiros & Garateix, 2004;
Bhopale, 2016; Lafarga & Hayes, 2014; Nguyen, Johnson, Busetti,
& Solah, 2015; Udenigwe & Howard, 2013; Yu, Yin, Zhao, Chen,
& Liu, 2014; Zambrowicz et al., 2015) and these characterized
bioactive peptides have been incorporated into databases such as
BIOPEP (Table S1). However, most of these databases cover pep-
tides of specific length, origin, and/or health effect. BIOPEP in-
cludes all bioactive peptides from foods, regardless of their health
effect or size, but a literature search can reveal additional peptides
not present in the list.

Interest in functional food is rapidly extending as knowledge
grows about effects of bioactive peptides on human health, which
has led not only to the development of new dietary supplements

C© 2018 Institute of Food Technologists®
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How does amino acid sequence of peptide influence its biological activity? . . .

and medicines, but also to the employment of hydrolysates in
food technology. For instance, fish protein hydrolysates might be
used as functional ingredients due to their enhancement of protein
solubility, emulsification ability, and gelling activity (Chalamaiah,
Rao, Rao, & Jyothirmayi, 2010). Egg white protein is applied as a
food plasticizer (Rao, Rocca-Smith, Schoenfuss, & Labuza, 2012)
and as a clarifier in alcoholic drinks (Yu et al., 2014).

Bioactive peptides are also produced from waste and by-products
of meat, fish, and various other seafood species (Harnedy &
FitzGerald, 2012; Khiari, Ndagijimana, & Betti, 2014; Kim &
Mendis, 2006; Lordan, Ross, & Stanton, 2011; Suarez-Jimenez,
Burgos-Hernandez, & Ezquerra-Brauer, 2012).

Many dietary supplements containing bioactive peptides have
been developed, such as BioGro, PeptiPlus, Lactium, Valtyron,
Lapis Support, Calpis, Evolus, PeptACE, and Levenorm, as well as
drugs like Molval, Thymosin beta-4, Pexiganan, Osteotide, C12
Peption, Bonito Peptide, Lupron, and Lantus (Fosgerau & Hoff-
mann, 2015; Harnedy & FitzGerald, 2012; Udenigwe & Howard,
2013; Uhlig et al., 2014). Many therapeutic peptides and proteins
have been approved by the U.S. Food and Drug Administration
(FDA; https://crdd.osdd.net/raghava/thpdb/index.html, accessed
March 2018).

As numerous bioactive peptides are found in milk, special in-
terest has focused on the introduction of bioactive peptides in
infant formulas (Raikos & Dassios, 2014); however, due to strict
regulation (Lönnerdal, 2014), any claimed effect must be well doc-
umented and verified by EFSA. For example, in 2012, EFSA re-
jected advertising from a Finnish company that claimed tripeptidesQ4
IPP and VPP from milk have antihypertensive effects (Jauhiainen
et al., 2010), in part because of the short half-lives of these peptides
(Foltz, van der Pijl, & Duchateau, 2010).

Because of the complexity of isolation and purification
from their natural sources, design and production of synthetic
bioactive peptides have become an exciting field of research
(Goodwin, Simerska, & Toth, 2012; Kolomin, Shadrina, Slomin-
sky, Limborska, & Myasoedov, 2013; Sun, 2013). Although bi-
ological and chemical syntheses of these peptides present major
challenges (Goodwin et al., 2012; Groß, Hashimoto, Sticht, &
Eichler, 2016), several synthetic bioactive drugs, such as Cetapril,
Acthrel, and Angiomax, are available on the market (Vlieghe,
Lisowski, Martinez, & Khrestchatisky, 2010).

When evaluating the potential activity of any food, several char-
acteristics must be taken into consideration, because the digestion
process will yield different types and/or numbers of peptides from
a particular food matrix. The first question is whether a source
protein will release a given peptide. Furthermore, in order to be
bioactive, a peptide must be stable (for example, not degraded dur-
ing the gastric and intestinal phases of digestion), be transported
from the gut lumen into the enterocytes, and from enterocytes
into blood, and finally exhibit biological activity under physio-
logical conditions. All these characteristics depend on the specific
sequence of the peptide.

Often the activity of a whole protein hydrolysate is determined
rather than the activities of its component peptides (Liaset et al.,
2009; Pan, Wu, Liu, Cao, & Zeng, 2013; Sakanaka, Tachibana,
Ishihara, & Raj Juneja, 2004; Shimizu et al., 2009).Thus, which
sequence exhibits a given effect is unknown. Variation of con-
ditions during preparation of hydrolysates, for example, pH, en-
zymes involved, and temperature, could lead to different peptide
mixtures, making it harder to assign specific effects to individual
peptides; also, hydrolysates can have a stabilizing effect on par-
ticular peptides. Therefore, one important question is whether a

purified peptide still shows the required activity. Since peptides
and/or hydrolysates are often tested in vitro, an additional problem
is to establish a correlation between in vitro and in vivo activities.
Complexities in the preparation and processing of foods, com-
bined with purification and testing of peptides, make predictions
of activity and release from a given food quite difficult.

This review attempts to correlate peptide sequences with their
activity and stability, but we also discuss mechanisms related to
a particular activity, factors influencing transport and stability of
peptides in vivo, and also the effects of processing.

Animal food is rich in bioactive peptides, with considerable
variation depending on the source. Figure 1 shows the process of
compiling our initial dataset, together with datasets for individ-
ual analyses. We used the BioPep database, as the most complete
dataset available, with a survey of the literature to identify non-
listed sequences, sources of peptides, and inhibitory or effective
concentration values where obtainable. Starting with 3000 known
bioactive peptides, we compiled a list of 807 sequences found
in food of animal origin (Table S2). Bioactive peptides derived
from cyclic peptides, such as different classes of defensins (Jenssen,
Hamill, & Hancock, 2006), were also included in the analysis
(Table S2). Peptide hormones are usually a better source of bioac-
tive peptides in plants (Maestri, Marmiroli, & Marmiroli, 2016;
Sánchez & Vázquez, 2017; Schaller, 2001) compared to animals,
where hormones, such as insulin, glucagon, and so on, are ubiq-
uitinated and their constituent AAs are used for synthesis of other
endogenous peptides and proteins (Ferro, Hyslop, & Camargo,
2004; Glickman & Ciechanover, 2002).

Peptide length varies from 2 to 40 AAs. For each peptide, we
have listed its source, specific bioactive effect, AA sequence, and
whether in vitro or in vivo effects have been described. We assessed
effects on activity of AA type using the chi-square test, while
effects of AA position were evaluated using univariate ANOVA.
Additionally, for those peptides showing in vivo activity, we high-
light which AA residues and which positions in the peptides were
crucial for stability.

Proteolytic Production of Bioactive Peptides
The so-called “classic” approach to assess activity of a bioactive

peptide involves proteolysis of a target source protein, fractiona-
tion and identification of peptides, activity testing, and synthesis to
confirm bioactivity. Proteolysis of source proteins usually involves
application of digestive enzyme preparations, although bacteria
(especially lactic acid bacteria; Pessione & Cirrincione, 2016) and
in some cases yeast (Rai, Kumari, Sanjukta, & Sahoo, 2016) can
also be used. Choice between enzymatic digestion and microbial
fermentation to obtain a protein hydrolysate depends on the food
source and has a major impact on the type and activity of peptides
formed (Korhonen & Pihlanto, 2003, 2006). Although enzymatic
hydrolysis offers greater specificity and reproducibility, the em-
ployment of different bacterial strains and changes in conditions
during fermentation can lead to a variety of peptides with different
activities (Korhonen, 2009; Pessione & Cirrincione, 2016). This
is relevant when using yeast as a starter culture, since carboxypep-
tidase and aminopeptidase exhibit synergistic action (Ferreira &
Viljoen, 2003) releasing a higher number of peptides than treat-
ment with either alone.

Fractionation and purification of extract is often performed
combining filtration, usually ultrafiltration or nanofiltration,
with a chromatographic technique, such as size-exclusion chro-
matography (Alemán, Giménez, Pérez-Santin, Gómez-Guillén, &
Montero, 2011), ion-exchange chromatography (Duan et al.,

2 Comprehensive Reviews in Food Science and Food Safety � Vol. 0, 2018 C© 2018 Institute of Food Technologists®
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How does amino acid sequence of peptide influence its biological activity? . . .

Figure 1–Flow chart followed during selection of peptides and analyses of effects of type and position of amino acid on biological activity.

2014), gel permeation chromatography (Babij et al., 2014), and
RP-HPLC (reverse-phase HPLC; Hernández-Ledesma, Amigo,
Ramos, & Recio, 2004).

Due to sensitivity and reproducibility (Tamvakopoulos, 2007),

Q5

mass spectrometry (MS) remains the best method for the quantifi-
cation of bioactive peptides. However, there are several problems
with using MS for detection and quantification of bioactive pep-
tides. Although this technique is rather sensitive and accurate,
concentration of some of these peptides in food products may be
below its detection limit. Another problem arises when digestion
process (prior to MS) generates nonactive peptides from endoge-
nous proteins. Since these proteins are abundant in hydrolysate,
they can interfere with signal coming from bioactive peptides and
prevent correct determination of their concentration (Dallas et al.,
2015; Tsakelidou et al., 2017). Additionally, identifying peptides
from the plethora of MS data could be challenging.

Health Claims Related to Bioactive Peptides
Literature reports present different classifications of bioactive

peptides (Table 1): it is important to note that classification is not
uniform and definitions of effects also show variations.

Antioxidative peptides minimize damage to lipids, nucleic acids,
and proteins caused by free radicals. Chalamaiah, Dinesh Kumar,
Hemalatha, and Jyothirmayi (2012) and Najafian and Babji (2012)
define an antioxidant broadly “as any substance that consider-
ably delays or inhibits the oxidation of a substance.” However,
since one of the main causes in food deterioration is the oxida-
tion of lipids, along with production of peroxides, aldehydes, and
short-chain fatty acids, definitions of antioxidant bioactive pep-
tides focus on avoidance of lipid oxidation (Ryan, Ross, Bolton,
Fitzgerald, & Stanton, 2011; Yu et al., 2014). Antioxidant pep-
tides are also involved in the protection of developing diseases,
such as artherosclerosis, that are partially caused by oxidation of
lipoproteins (Salvayre, Negre-Salvayre, & Camaré, 2016). Anti-
hypertensive peptides are involved in regulating blood pressure.
Since angiotensin-converting enzyme (ACE) plays a major role in
the regulation of blood pressure by converting angiotensin I to
angiotensin II, which acts as a vasoconstrictor, these peptides are

sometimes referred as ACE inhibitors (Smacchi & Gobbetti, 2000;
Wada & Lönnerdal, 2014).

Strictly, antimicrobial peptides act like antibiotics, for example,
by providing protection during bacterial infection. However, pep-
tides reported as antimicrobial in the literature also include antifun-
gal peptides, antiviral peptides, and peptides active against proto-
zoa (Bhopale, 2016; Gomez-Guillen, Gimenez, Lopez-Caballero,
& Montero, 2011; Kim & Wijesekara, 2010; Najafian & Babji,
2012). Thus, antibacterial peptides may exhibit antiviral and an-
tifungal activity (Avrahami & Shai, 2004; Boman, 2003; Gordon,
Romanowski, & McDermott, 2005; Makovitzki, Avrahami, &
Shai, 2006; Skerlavaj, Benincasa, Risso, Zanetti, & Gennaro,
1999), and all 3 types of peptide share a similar mechanism (Brog-
den, Ackermann, McCray, & Tack, 2003; Hancock & Sahl, 2006;
Klotman & Chang, 2006; Mulder, Lima, Miranda, Dias, & Franco,
2013; Théolier, Fliss, Jean, & Hammami, 2014). Antimicrobial
peptides exhibit their effect primarily through activation of in-
nate immunity (Epand & Vogel, 1999; Shai, 1999), but it has
been shown that antimicrobial peptides also activate the adaptive
immune response through modulation of cytokine release, pro-
liferation of different subgroups of leukocytes, chemotaxis, and
activation of proteases (Bals, 2000; Ho, Sung, & Chen, 2012; Tu,
Ho, Chuang, Chen, & Chen, 2011). Therefore, antimicrobial pep-
tides might also be considered as a subclass of immunomodulatory
peptides.

Antithrombotic peptides prevent aggregation of platelets and
formation of blood clots by inhibiting fibrinogen binding to re-
ceptor GP IIb-IIIa on the platelet surface. Due to structural sim- Q6
ilarities among fibrinogen, fragments of κ-casein, and fragments
of lactotransferrin (Clare & Swaisgood, 2000; Jollès et al., 1986;
Meisel, 1997; Nagpal et al., 2011; Rutherfurd & Gill, 2000), milk
is considered to be a rich source of antithrombotic peptides.

Immunomodulating peptides are difficult to define, due to their
variety of effects and often overlapping mechanisms of action.
They are peptides that affect the immune response of an organ-
ism in the presence of an antigen. This effect could be viewed
as an activation/deactivation of innate (nonspecific) or adaptive
(acquired) immunity. However, to distinguish effects on innate

C© 2018 Institute of Food Technologists® Vol. 0, 2018 � Comprehensive Reviews in Food Science and Food Safety 3
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Table 1–A list of the different classifications of bioactive peptides as reported in papers and reviews (updated March 2018).

Main bioactivities (always
presented in reviews)

Common bioactivities (often
presented, but not always) Less frequent bioactivities (referring to specific actions)

� ACE inhibitory
(antihypertensive)

� Antioxidant
� Antimicrobial

(FitzGerald & Murray, 2006;
Gomez-Guillen et al., 2011;
Hernández-Ledesma, Quirós, Amigo,
& Recio, 2007; Korhonen, 2009;
Madureira, Tavares, Gomes, Pintado,
& Malcata, 2010; Meisel, 1998;
Nagpal et al., 2011; Najafian & Babji,
2012; Silva & Malcata, 2005)

� Hypolipidemic
� Mineral binding

(osteoprotective)
� Anticancer
� Antithrombotic
� Anti-inflammatory
� Immunomodulatory
� Opioid

(Aimutis, 2004; Baldi et al., 2005;
Baltíc et al., 2014; Kim & Wijesekara,
2010; Mohanty & Mohapatra, 2016;
Pepe, Tenore, Mastrocinque, Stusio, &
Campiglia, 2013; Udenigwe &
Howard, 2013; Wang et al., 2010; Yu
et al., 2014)

� Antidiabetic (Hernández-Ledesma et al., 2014;
López-Expósito et al., 2012; Ryan et al., 2011)

� Antisclerotic (Lafarga & Hayes, 2014)
� Antiviral (Lordan et al., 2011; Schanbacher et al.,

1998)
� Anti-HIV (Ngo, Vo, Ngo, Wijesekara, & Kim, 2012;

Smacchi & Gobbetti, 2000)
� Antiappetizing (Park & Nam, 2015)
� Gut mucosa (often defined as part of

immunomodulatory; Hernández-Ledesma et al., 2014;
Hsieh et al., 2015)

� Antinociceptive (Hernández-Ledesma et al., 2014)
� Anti-alopecia (Yoshikawa, 2015)

and/or acquired immunity is difficult, because innate immunity
also regulates adaptive immunity through cell-to-cell interaction
and response to cytokine profiles (Iwasaki & Medzhitov, 2010,
2015; Parish & O’Neill, 1997). Furthermore, both innate and
acquired immunities are involved in the development of cancer
and in controlling apoptosis (Gajewski, Schreiber, & Fu, 2013;
Mantovani & Sica, 2010; Peng et al., 2007). Udenigwe and Aluko
(2012) define immunomodulatory peptides as those that “act by
enhancing the functions of the immune system, including reg-
ulation of cytokine expression, antibody production, and ROS-Q7
induced immune functions.” Meisel (1997) instead considers im-
munomodulatory peptides those that “stimulate proliferation of
human lymphocytes and phagocytic activities of macrophages.”
Schanbacher, Talhouk, Murray, Gherman, and Willett (1998)
also include antiproliferative peptides as immunomodulatory, al-
though in some reviews they are presented as a separate category
(Hernández-Ledesma, Garcı́a-Nebot, Fernández-Tomé, Amigo,
& Recio, 2014; López-Expósito, Amigo, & Recio, 2012; Ryan
et al., 2011). However, the immune system has a crucial role in
preventing and controlling proliferation of neoplasia (Chalama-
iah et al., 2014), and many papers confirm a relation between
immunosuppression and development of cancer (Cata, Wang,
Gottumukkala, Reuben, & Sessler, 2013; Godbout & Glaser, 2006;
Sephton & Spiegel, 2003; Seruga, Zhang, Bernstein, & Tannock,
2008; Terme et al., 2011; Whiteside, 2006). This relationship orig-
inates from changes in concentration and/or activity of some key
components of humoral and cellular immunity, including inter-
leukins and growth factors (de Jong, van Dienst, van der Valk, &
Baak, 1998; Goustin, Leof, Shipley, & Moses, 1986; Seruga et al.,
2008; Waugh & Wilson, 2008; Whiteside, 2006). Similarities be-
tween inflammation and carcinogenesis and higher concentrations
of proinflammatory cytokines present during the initial stages of
tumor formation (Bernstein, Blanchard, Kliewer, & Wajda, 2001;
Grivennikov & Karin, 2011; Seruga et al., 2008; Sporn & Roberts,
1986) have led to the conclusion that anti-inflammatory peptides
should also be considered as immunomodulatory. This is supported
by the anti-inflammatory peptides, which inhibit neutrophil ag-
gregation and regulate expression of adhesion molecules (such
asselectins and integrins) on the surface of leukocytes (Camussi,
Tetta, & Baglioni, 1990; Zouki, Ouellet, & Filep, 2000).

Opioid peptides bind to opioid receptors present in both the
central and peripheral nervous systems; they are involved in
the regulations of pain (Labuz, Celik, Zimmer, & Machelska,
2016; Madden, Akil, Patrick, & Barchas, 1977), a person’s mood
through their effect on dopamine release (Spanagel, Herz, & Ship-
penberg, 1990), drinking and feeding (Duraffourd et al., 2012;

Kaneko, Yoshikawa, & Ohinata, 2012; Reid, 1985), sleep (Wang &
Teichtahl, 2007), body temperature (Clark, 1979), stress responses
(Madden et al., 1977; Shavit, Lewis, Terman, Gale, & Liebeskind,
1984), sexual maturation by modulating secretion of luteiniz-
ing hormone (Blank, Panerai, & Friesen, 1979), taste preferences
(Drenowski, Krahn, Demitrack, Nairn, & Gosnell, 1992), and in
the development of the nervous system (Zagon & McLaughlin,
1991). They are usually referred to as opioid receptor ligands that
exhibit morphine-like effects, which can be inhibited by naloxone
(Meisel, 1998; Park & Nam, 2015; Silva & Malcata, 2005; Wada
& Lönnerdal, 2014).

Hypolipidemic peptides lower the levels of cholesterol and
other lipids in blood. Udenigwe and Howard (2013) defined the
hypolipidemic effect as changes in the rates of anabolism and
catabolism of cholesterol and lipids.

However, a single peptide frequently exhibits more than one
effect. This is due to interlinking metabolic pathways controlling
specific functions and to the fact that bioactive peptides might
serve as signaling molecules, thus functioning at the systemic
level (Boonen, Creemers, & Schoofs, 2009). For example, the
tripeptide VPP is classified as both antioxidative and antihyper-
tensive (Hernández-Ledesma, Miralles, Amigo, Ramos, & Recio,
2005). The link between antioxidative and antihypertensive ac-
tivities could be explained by the involvement of reactive oxygen
species in renal injuries that can affect both renin–angiotensin
and kallikrein–kinin systems, thus leading to hypertension (Shou,
Wang, Suzuki, Fukui, & Tomino, 1997). Since the ACE prod-
ucts angiotensin II and angiotensin III are involved in chemotaxis
and adhesion of monocytes and macrophages (Godsel, Leon, &
Engman, 2003) and in the activation of transcription factors
NF-kB and AP-1 (Ruiz-Ortega, Lorenzo, & Egido, 2000), an-
tihypertensive peptides could have an immunomodulatory ef-
fect. For example, milk-derived peptide TTMPLW shows both
ACE-inhibitory and cytomodulatory activity (Udenigwe & Aluko,
2012) and VPP, besides having antioxidative and antihyperten-
sive effects, also modulates adhesion of monocytes to vascular
endothelium, which is an immunomodulatory activity (Aihara,
Ishii, & Yoshida, 2009). Bali, Randhawa, and Jagg (2014) state
that opioids activate components of the renin angiotensin system,
thus influencing ACE inhibition: the milk-derived peptide YLLF
shows both antihypertensive and opioid-like activity (Antila et al.,
1991). Also, antimicrobial peptides, through their interaction with
components of adaptive immunity and interaction with multifunc-
tional enzymes like Ca2+-dependent phosphoesterase (Table 2),
exhibit immunological effects (Izadpanah & Gallo, 2005; Niyon-
saba, Nagaoka, Ogawa, & Okumura, 2009; Wang, 2014; You,
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How does amino acid sequence of peptide influence its biological activity? . . .

Table 2–Mechanisms and modes of action of peptides belonging to different classes of bioactivity (updated March 2018).

Mode of action

Bioactive effect
Direct interaction with
metabolite or organelle Effect on protein activity

Effect on gene
expression Other

Antihypertensive Production of NO through
modulation of
bradykinin-mediated
vasorelaxant pathways (Hirota
et al., 2011; Udenigwe &
Aluko, 2012)

Inhibition of
angiotensin-converting
enzyme (ACE;
Mart́ınez-Maqueda et al.,
2012).

Inhibition of renin and
endothelin-converting
enzyme (Udenigwe, 2014)

Decreased expression of
renal AT-II receptor
mRNA (Yu et al., 2014)

Antimicrobial Modulation of expression
for different genes in
monocytes, epithelial
cells, and other immune
cells involved in
chemo-attraction,
induction of
chemokines, and
differentiation
responses through
signal transduction,
promotion of
angiogenesis (Hancock
& Sahl, 2006)

Cell membrane
perforation, for
example, α-casein
peptide fragment (183
to 207; Ibrahim,
Sugimoto, & Aoki,
2000; López-Expósito,
Amigo, & Recio, 2008)
and/or disruption of
pathways or organelles
in parasite

Antioxidative Radical scavenging or metal
chelation, for example,
carnosine in meat (Sarmadi &
Ismail, 2010); inhibition of lipid
peroxidation through
enhanced interaction with
fatty acids (Byun, Lee, Park,
Jeon, & Kim, 2009);
sequestration of metal ions, for
example, ferrous ions with
casein phosphopeptides (D́ıaz
& Decker, 2004)

Antithrombotic Inhibition of platelet
aggregation, possibly due to
structural similarities
between κ -casein and
fibrinogen (κ -casein could act
as a competitive inhibitor of
fibrinogen for binding to
activated platelet;
Rutherfurd & Gill, 2000)

Hypolipidemic Removal of bile acids from
enterohepatic circulation
through formation of
complexes with peptides,
mainly via hydrophobic forces
(Udenigwe & Howard, 2013)

Inhibition of lipase (Kagawa
et al., 1996)

Inhibition of acylCoA:
cholesterol acyltransferase

(Wergedahl et al., 2004)
Inhibition of

glucose-6-phosphate
dehydrogenase, fatty acid
synthase and carnitine
palmitoyltransferase (Shimizu
et al., 2006)

Changes in signal transduction,
for example, lactoferrin
activation of CYP7A1
(Wakasa et al., 2011)

Elevated expression of
mRNA of proteins
involved in process of
fatty acid oxidation
(PGC-1a, UCP-1,
CPT1B, CPT2, MCAD,
LCAD, and so on; Liaset
et al., 2009)

Inhibition of cholesterol
micellar solubility
through formation of
complexes with bile
acids (Wakasa et al.,
2011)

Immunomodulatory Anticancer effect due to
inhibition of cell proliferation,
through conformational
changes in tubulin molecule as
result of formation of complex
with peptide (Panda et al.,
2000)

Cytotoxicity due to inhibition of
protein synthesis, through
binding toribosome-EF-1a
complex (Mayer & Gustafson,
2003)

Downregulation of signaling
cascades (Thell, Hellinger,
Schabbauer, & Gruber, 2014)

Inhibition of calmodulin
through association with
cyclosporine A–cyclophilin
complex and modulation of
activity of its substrate
(Matsuda & Koyasu, 2000)

Elevated expression of
genes coding Caspase 3
and Caspase 8 in tumor
cells (Su et al., 2014)

Downregulation of genes
regulated by NFAT
(nuclear factor of
activated T-cells; Hogan,
Chen, Nardone, & Rao,
2003; Thell et al., 2014)

Anti-inflammatory effect
due to changes of
adhesion of monocytes
to endothelia, through
modulation of
proinflammatory c-Jun
N-terminal kinase
pathway (Aihara et al.,
2009)

Antinociceptive effect due
to inhibition of
prostaglandin synthesis
(Tavares et al., 2013)

Opioid Binding to opioid receptors,
agonist (for example, αs1, β

casein) or antagonist (κ
casein; Pihlanto-Leppälä,
2000)
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How does amino acid sequence of peptide influence its biological activity? . . .

Udenigwe, Aluko, & Wu, 2010). As one example, the peptide
GFHI isolated from beef sarcoplasmic protein hydrolysates inhib-
ited growth of both Escherichia coli and Pseudomonas aeruginosa,
increased macrophage activity, and showed cytotoxic effects (Jang,
Jo, Kang, & Lee, 2008). Since angiotensin II promotes thrombosis
by increasing secretion of plasminogen activator inhibitor type 1
(Kucharewicz, Pawlak, Matys, Pawlak, & Buczko, 2002), a correla-
tion may exist between antihypertensive and antithrombotic activ-
ity of bioactive peptides. Several peptides, including κ-CN f (152-
160) and f (155-160; Gobbetti, Minervini, & Rizzello, 2004),
MAIPPKK (Marques et al., 2012), and YQEPVLGPVRGPF-
PIIV (Rojas-Ronquillo et al., 2012), have both antihypertensive
and antithrombotic effect. Since inflammation-inducing tumor
necrosis factor and interleukin 1-α also play roles in tissue factor
expression, and thus in initiation of thrombosis (Esmon, 2003),
many anti-inflammatory peptides also exhibit antithrombotic ef-
fects, including egg-derived peptides IQW and LKP (Majumder
et al., 2015). Due to the link between innate and acquired immu-
nity, immunomodulatory peptides also show antimicrobial activity.
Dolastatin 10, isolated from marine sources, has both antitumor
(Beckwith, Urba, & Longo, 1993) and antimicrobial activities (Pet-
tit, Pettit, & Hazen, 1998), while the peptide RRWQWR derived
from lactoferricin has both antimicrobial and anticancer effects
(Richardson, de Antueno, Duncan, & Hoskin, 2009). Certain
peptides, such as GFHI, DFHING, FHG, and GLSDGEWQ (iso-
lated from beef muscle), are multipotent, showing immunomod-
ulatory, antimicrobial, and antihypertensive activities (Jang et al.,
2008). Results suggest that opioids can act as cytokines (Peter-
son, Molitor, & Chao, 1998), and it is not uncommon for opi-
oid peptides to show immunomodulatory activity. Moreover, ca-
somorphine (FFVAPFPEVFGK) also stimulates phagocytosis by
murine peritoneal macrophages in vitro (Gill, Doull, Rutherfurd,
& Cross, 2000). Due to the involvement of lipids in the formation
of atherosclerotic plaques, hypolipidemic peptides often show anti-
hypertensive effect. Turpeinen et al. (2009, 2012) showed that IPP
and VPP peptides possess both antihypertensive and cholesterol-
lowering activities.

We have listed multi-active peptides in all categories for which
they show activity. Thus, effects of type and position of particular
AAs in multi-active peptides were assessed individually in different
categories, which allowed for a comparison of influence of AA
sequence on the different activities.

Lately, functional genomics and chemical biology have been
utilized to elucidate mechanisms of action of bioactive com-
pounds (Azad & Wright, 2012; Ho et al., 2011), which has led
to increased interest in the field of nutridynamics (Serrano, Jove,
Gonzalo, Pamplona, & Portero-Otin, 2015). Globally, bioactive
peptides can exhibit their activity in many ways: via direct in-
teraction with metabolites, by altering the activity of an enzyme,
and/or gene expression. Other mechanisms include changes in
solubility or facilitating perforation of microbial cell membranes.
Direct interaction with metabolites involves removal of pathway
intermediates or products through sequestration, chelation, scav-
enging or complexation, or production of signaling molecules like
NO. Altering activity or structure of key enzymes may change
metabolic flux through particular pathways and thus cause redis-
tribution of compounds into pathways with shared intermediates,
or modulate signal transduction pathways. Regulation of gene
expression may involve direct interaction with the promoter, si-
lencing (for example, methylation) or interference with RNA
processing. Some peptides, such as opioids and antithrombotics,
have a preferred mechanism; others utilize several mechanisms

more or less simultaneously. Table 2 lists mechanisms of action for
peptides with different biological activities. Immunologically ac-
tive peptides show the most variation, that is, they interact via the
greatest number of mechanisms; this complexity is partially due
to interlinking between pathways involved in the immunological
response.

The type of activity likely to be displayed by a bioactive peptide
is dependent on its source. Milk and milk products are character-
ized by a high frequency of ACE inhibitory peptides (Figure 2A),
while eggs, fish, and various other seafood have been found to
be good sources of antioxidative peptides (Figure 2B and 2C).
Meat and meat products have a high content of antimicrobial and
antithrombotic peptides (Figure 2D).

Measuring the Effects of Bioactive Peptides
Individual effects of bioactive peptides can be determined with

in vivo and in vitro assays. However, each assays measures only one
aspect of bioactive peptide activity, and each has its own limits
in terms of sensitivity, reproducibility, and presence of interfer-
ing compounds. Moreover, there is also a problem of correlation
between in vitro and in vivo results. Thus, several tests are usu-
ally performed simultaneously and the majority of methods are
modified for particular food matrixes.

Antihypertensive activity
In vitro tests of antihypertensive activity usually involve mea-

surement of ACE inhibition, expressed either as percentage of in-
hibition or as by IC50 values—the concentration of inhibitor that
causes 50% loss of enzyme activity. Mechanisms of action of the in-
hibiting peptide are deduced by assessing in vitro inhibition patterns
(Balti et al., 2015; Duan et al., 2014), by in silico location of the
binding site using software such as Q-SiteFinder (Hayes, Stanton,
Fitzgerald, & Ross, 2007), or by molecular docking with align-
ment of peptides and assessment of bond formation between pep-
tides and enzyme (Duan et al., 2014). In vivo tests for measuring an-
tihypertensive activity monitor the changes in systolic and diastolic
blood pressures in spontaneously hypertensive rats (SHR; Babij
et al., 2014; Contreras, Carrón, Montero, Ramos, & Recio, 2009;
Lee, Qian, & Kim, 2010). Usually the effect of antihypertensive
peptides on blood pressure is compared to antihypertensive drugs,
such as captopril. In vitro assays use different substrates: hippuryl-
histidine-leucine, furanacroloyl-phenylalanine-glycine-glycine, or
o-aminobenzoylglycyl-p-nitro-L-phenylalanyl-L-proline (Alemán
et al., 2011; Castellano, Aristoy, Sentandreu, Vignolo, & Toldrá,
2013; Phelan, Khaldi, Shields, & Kerins, 2014), and consequently
they use different methods for enzyme product detection: RP-
HPLC, spectrophotometry, and capillary electrophoresis (Byun &
Kim, 2002; Garcia-Tejedor et al., 2014; Lee, Cheng, Enomoto, &
Nakano, 2006). When correlating in vitro and in vivo antihyperten-
sive tests on peptides, their stability has to be considered (Boutrou,
Henry, & Sanchez-Rivera, 2015; Vermeirssen, Van Camp, & Ver-
straete, 2004). For example, Garcı́a-Tejedor et al. (2014) found
that longer peptides liberated during milk fermentation (such as
DPYKLRP), which showed significant ACE-inhibitory activity in
vitro (IC50 = 30.5 μM), were almost completely hydrolyzed during
simulated gastric digestion. However, gastric digestion can liber-
ate more active, but smaller, peptides from longer sequences. For
example, Miguel, Aleixandre, Ramos, and Lopez-Fandiño (2006)
showed that 2 peptides from ovalbumin hydrolysate, YAEERYPIL
and RADHPFL, showed relatively small ACE-inhibitory activities
(IC50 = 446 and 521 μM, respectively), but in vitro after simulated
gastric digestion, with liberation of products YPI and RADHP,
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How does amino acid sequence of peptide influence its biological activity? . . .

Figure 2–Frequency of different categories of bioactive peptides in particular food sources: (A) milk and dairy products, (B) meat, (C) eggs, and (D)
marine products. Categories of bioactive effects are reported in the legend.

a significant decrease in systolic blood pressure was obtained
(21.7 mm Hg and 32.13 mm Hg after 4 hours). But, even if a pep-
tide is stable during simulated gastric digestion, activity can differ
between in vitro and in vivo tests. Ren et al. (2011) reported that,
although VSPVW from hydrolysate of porcine hemoglobin shows
high ACE-inhibitory activity in vitro (IC50 = 0.254 mg/mL) and is
stable under simulated gastric digestion, its administration in SHR
led to only a small decrease of systolic pressure (only 4.9 mm Hg
after 15 hours). This indicates that there is more than one mech-
anism by which antihypertensive peptides can exert their effect
(Table 2; Majumder & Wu, 2015; Marques et al., 2012; Martı́nez-
Maqueda, Miralles, Recio, & Hernández-Ledesma, 2012). More-
over, the effects of antihypertensive peptides strongly depend on
race, age, and gender of examined subjects (Cicero, Gerocarni,
Laghi, & Borghi, 2011).

Antioxidative activity
In vitro antioxidative tests are generally divided into 2 categories

based on their mechanisms: involving either hydrogen atom trans-
fer (HAT) or electron transfer (ET) (Di Bernardini et al., 2011;
Sarmadi & Ismail, 2010). Oxygen radical absorbance capacity is
among the most popular HAT methods. The most-used ET tests
are the 1,1-diphenyl-2-picrylhydrazyl assay, the 2,2’-azino-bis-3-
ethylbenzthiazoline-6-sulfonic acid assay, and measurement of fer-
ric ion-reducing antioxidant power (Alemán et al., 2011; Bougatef
et al., 2009; Cheung, Cheung, Tan, & Li-chan, 2012; You et al.,
2010). These tests are measuring very different parameters and
consequently express antioxidative activity very differently. There-
fore, correlation between results is hindered. Antioxidant activity
can also be measured using lipid oxidation and peroxidation with
the β-carotene bleaching assay and the thiobarbituric acid-reactive
substances assay (Bougatef et al., 2009; Meister Meira et al., 2012).

Unfortunately, antioxidative activities of peptides have rarely been
tested in vivo and this is a major issue, because it has been shown
that antioxidative activities of duck egg hydrolysate diminished af-
ter simulated gastric digestion (Ren, Wu, Li, Lai, & Xiao, 2014).
Few in vivo tests have been performed that show activities of the
enzyme involved in response to oxidative stress, such as catalase,
superoxide dismutase, glutathione peroxidase, glutathione trans-
ferase, or the concentration of malondialdehyde, the final product
of lipid peroxidation (Ding et al., 2011; Nazeer, Kumar, & Ganesh,
2012).

Antimicrobial activity
Like antioxidative activity, antimicrobial activity is rarely tested

in vivo. For in vivo testing, antimicrobial peptides are usually added
to food or a food matrix, and in these conditions, the presence
of compounds such as verbascoside and glycerophosphoinositol
lysine changes the stability of peptides and also exerts synergistic
effects (Tang et al., 2011; Vercelli et al., 2015). However, Ding,
Liu, Bu, Li, and Zhang (2012) showed that Pt 5 peptide (phosvitin-
derived peptide, which consists of C-terminal 55 residues of
phosvitin) exerts an antibacterial effect against Aeromonas hydrophila
in zebra fish. Bateman et al. (1996) found in an ex vivo experi-
ment that MPCSCKKYCDPWEVIDGSCGLFNSKYICCREK
peptide isolated from rat kidney not only affected the volume
of villi cells in the jejunum of guinea pigs, but also stimulated
synthesis of corticosterone (Table 2). Activity against microorgan-
isms may be measured in a variety of ways, which again makes
comparing results difficult.

Immunomodulatory activity
Due to the variety of mechanisms of activity of immunomod-

ulatory peptides (Table 2), different assays target different aspects
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of their antiallergenic, cytotoxic, antiproliferative/anticancer, or
anti-inflammatory activities. The innate (nonspecific) immune re-
sponse can be assessed through activation of complement, phago-
cytosis, activity of natural killer (NK) cells, mast cells, dendritic
cells, and neutrophils (Beutler, 2004; Galli, Borregaard, & Wynn,
2011; Medzhitov & Janeway, 1997). Adaptive immunity response
may be evaluated determining lymphocyte proliferation and con-
centration of subpopulation of T and B cells (Pancer & Cooper,
2006; Steinman & Hemmi, 2006). However, responses of innate
and adaptive immunities are often linked through signaling by
cytokines (Luster, 2002) or cell-to-cell interactions, for example,
cooperation of dendritic cells and T lymphocytes in antigen pre-
sentation (Liu, 2001; Steinman & Hemmi, 2006) or involvement
of certain cell types or groups of cells, such as NK cells (Moretta,
Marcenaro, Parolini, Ferlazzo, & Moretta, 2008; Vivier, Raulet,
Moretta, & Caligiuri, 2011), complement (Carroll, 2004), or neu-
trophils (Rosales, Demaurex, Lowell, & Uribe-Querol, 2016).

Due to the complexity of mechanisms and to variability of in
vivo responses (Leroux-Roels et al., 1994; Table 2), focusing on
specific changes in either innate or adaptive immunity leads to
incorrect conclusions about peptide activities, which can be cor-
rected by measuring changes in both adaptive and innate immuni-
ties (Maestri et al., 2016). Anti-inflammatory activity can be deter-
mined in vivo by the paw edema test, measuring swelling (as change
in volume) after injection of inflammatory substance (Tavares et al.,
2013), or in vitro by monitoring macrophage activity using chemi-
luminescence assays (changes in respiratory burst; Tompa et al.,
2011), cytokine secretion (usually by ELISA; Tompa et al., 2011),
or by monitoring monocyte adhesion to vascular endothelium
(Aihara et al., 2009). Antiallergenic properties are measured in vitro
determining IgE content by the reverse enzyme allergosorbent,
ELISA, or enzyme allergosorbent tests (Falagiani et al., 1999; Wig-
otzki, Steinhart, & Paschke, 2001), or in vivo by measuring indexes
of spleen and thymus status, such as changes in weight, hemolysin
content, changes in optical density as a result of macrophage ac-
tivity, and release of histamine from mast cells (Pan et al., 2013).
Cytotoxic activity and apoptosis have been assessed measuring cellQ8
viability and proliferation by staining, (3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide assay, acid phosphatase assay,
neutral red uptake assay, lactate dehydrogenase assay, incorpora-
tion of [3H] thymine, NK assay, or JAM test (Bateman et al.,
1996; Chalamaiah et al., 2014; Hagiwara, Shinoda, Fukuwatari,
& Shimamura, 1995; Hou et al., 2014; Repetto, del Peso, &
Zurita, 2008; Richardson et al., 2009; Rodrı́guez Saint-Jean et al.,
2013; Yang, Sinai, & Kain, 1996), apoptosis by the annexin V test
and caspase assay (Green & Steinmetz, 2002; Hartmann, Wal,
Bernard, & Pentzien, 2007), mitochondrial transmembrane po-
tential (Hartmann et al., 2007; Richardson et al., 2009), or DNA
synthesis and damage (Hsien, Ho, Lai, & Yen, 2002).

Correlation between in vitro and in vivo tests varies depending
on the aspect of immunomodulatory activity, which is monitored
(Clay, Hobeika, Mosca, Lyerly, & Morse, 2001). Thorpe et al.
(2013) concluded that different cytokine subpopulations had dif-
ferent comparability with in vivo results. Leroux-Roels et al. (1994)
reported that lymphocyte proliferation measured using the hep-
atitis B antigen-specific lymphoproliferative assay showed a high
correlation (>95%) between results in vitro and in vivo. Devel-
opment of a CFSE method (carboxyfluorescein diacetate succin-
imidyl ester) to measure lymphocyte proliferation (Quah, Warren,
& Parish, 2007) allowed for a better correlation, whereas measure-
ment of cytokine release and direct cytotoxicity showed a lower
correlation with in vivo findings (Clay et al., 2001). These poor

correlations with in vivo results are attributed to inaccurate evalua-
tion of cytokine profiles in tumor cells and to relative insensitivity
of cytotoxic assays (Clay et al., 2001). Experiments were performed
either ex vivo or in vivo in mice and rats, but due to differences in
the immunological response between mice and humans (Mestas &
Hughes, 2004; Zschaler, Schlorke, & Arnhold, 2014), correlating
responses between these species remain uncertain.

Hypolipidemic activity
Similarly as for antioxidative and immunomodulatory peptides,

hypolipidemic peptides can exert their effect through different
mechanisms (Table 2). For several of those mechanisms, such as
removal of bile acids or inhibition of cholesterol solubilization,
concentration of present peptides is of crucial importance. Tests for
hypolipidemic activity measure different metabolic stages in blood,
liver, and feces, or measure metabolite concentration and/or en-
zyme activity or changes in functionality. Functionality tests by
monitoring, for example, arterial stiffness via pulse wave analy-
sis (Turpeinen et al., 2009), pancreatic exocrine activity (Kagawa,
Matsutaka, Fukuhama, Watanabe, & Fujino, 1996), taurocholate
capacity, micellar solubility and absorption of cholesterol (Nagaoka
et al., 2001), or speed of β-oxidation in liver mitochondria (Liaset
et al., 2009), may help to elucidate the actions of particular peptides
or to evaluate the risk of developing disease, such as atheroscle-
rosis. Changes in metabolite concentrations as the final effect of
bioactive peptides can be assessed, whereas measuring changes in
activity of key enzymes allows identification of metabolic path-
ways, which are affected by particular peptides. Measurement of
concentration of triglycerides, phospholipids, and total choles-
terol in blood and liver may be done either by chromatography
or by enzymatic kits (Liaset et al., 2009; Shimizu et al., 2006),
while profiling of fatty acids in liver is done by HPLC or GC
methods (Liaset et al., 2009). Changes in activity of enzymes in-
volved in synthesis of fatty acids or their transport can highlight
changes in metabolic flux and elevated or decreased risk of devel-
opment of hyperlipidemia (Liaset et al., 2009; Wergedahl et al.,
2004).

Opioid activity
Opioid activity is measured in vitro by the dissociation constant

of opioid to opioid receptor complexes or by maximal binding
capacity of peptide to opioid receptor (Antila et al., 1991; Meisel,
1986). Since adenylate cyclase is sensitive to opioid concentration,
due to opioid-induced changes in the MAPK signaling pathway Q9
(Al-Hasani & Bruchas, 2011), opioid activity can also be mea-
sured by inhibition (or stimulation) of adenylate cyclase activity
(Zioudrou, Streaty, & Klee, 1979). Another method is testing the
antagonistic effect of opioid peptides on inhibition of muscu-
lar contraction (Chiba, Tani, & Yoshikawa, 1989; Zioudrou et al.,
1979). Opioid activity is rarely measured in vivo; in some cases, ob-
servation of behavioral patterns has been used (Belyaeva, Dubynin,
Stovolosov, & Kamensky, 2008).

Antithrombotic activity
There are generally 2 types of tests for determining antithrom-

botic (anticlotting) activity depending on whether the effect is
measured in vivo or in vitro. For in vivo measurements, percent-
age inhibition of thrombosis is measured after intravenous ad-
ministration of peptide in lesions formed in arterial endothelium
using lasers (Bal dit Sollier et al., 1996; Rojas-Ronquillo et al.,
2012; Rutherfurd & Gill, 2000; Shimizu et al., 2009). In vitro tests
measure effects of peptides on different stages of the coagulation
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process. The activated partial thromboplastin time test is used to
evaluate activity of coagulation factors in the presence or absence
of anticoagulants, but it is known to have a nonlinear response
(Gribkova et al., 2016). The influence of anticoagulants inactivat-
ing coagulation factor can be measured via specific factor activity
tests, the intrinsic factor tenase (FXase) assay, or by assay of pro-
thrombinase (Jung & Kim, 2009; Rajapakse, Jung, Mendis, Moon,
& Kim, 2005). Inhibition at later stages of thrombosis can be mon-
itored by platelet activation and adhesion tests, as well as by the
fibrinogen binding assay (Jollès et al., 1986; Mazoyer et al., 1990;
Rajapakse et al., 2005). Hemostatometry (shear-induced platelet
function) gives results comparable with in vivo tests (Yamamoto
et al., 2015). With the fibrin plate method, activity of fibrinolytic
enzymes can be measured (Jung, Je, Kim, & Kim, 2002). But in
terms of the mechanism of action of a given bioactive peptide, the
most instructive data are obtained by surface plasmon resonance
measuring the binding activity of peptide to coagulation factors
(Jung & Kim, 2009).

Correlating Peptide Sequence with Bioactive Effect
Difference in types and number of AA residues can affect sta-

bility and activity of peptides (Li & Yu, 2015). To test how the
frequency of particular classes of AA differed in bioactive pep-
tides exhibiting different medicinal effects, a chi-square test was
performed (Table 3). Taking data from Table S2, 807 peptide se-
quences were classified according to their activity and observed
frequency of particular types of AA. We classified AA residues
as aliphatic (glycine [G], alanine [A], leucine [L], isoleucine [I],
proline [P], and valine [V]), aromatic (tryptophan [W], pheny-
lalanine [F], and tyrosine [Y]), polar noncharged (asparagine [N],
glutamine [Q], methionine [M], cytosine [C], serine [S], and thre-
onine [T]), positively charged (histidine [H], arginine [R], and
lysine [K]), and negatively charged (aspartic acid [D] and glutamic
acid [E]; Table 3). The expected frequency of a particular type of
AA residues was calculated assuming a normal distribution using
the formula:

Expected frequency =
(number of amino acids in given group × total number of peptides with particular effect)

20
.

As seen from Table 3, for all types of AA, the chi-square
test showed significant differences from expected frequencies: χ2

(1, 7) = 468.01; 82.69; 96.72; 60.19; 105.51 for aliphatic, aromatic,
polar, and positively and negatively charged AAs, respectively.

High percentages of aromatic and aliphatic AA residues (Table 3)
in antihypertensive peptides are necessary for the formation of a
complex with ACE (Yousr & Howell, 2015). Similarly, for the
formation of stable complexes with opioid receptors, higher fre-
quencies of aromatic AA residues are required (Table 3). The
frequencies of both polar noncharged and aromatic AA are rela-
tively high in antioxidative peptides (Table 3); H, P, C, Y, W, F, and
M are all involved in the prevention of lipid peroxidation (Li &
Yu, 2015) and involved in electron and proton transfer (Chi et al.,
2015; Udenigwe & Aluko, 2011). Additionally, a high percentage
of hydrophobic AAs helps solubilization in a lipid environment and
allows for better access to hydrophobic targets (Yousr & Howell,
2015). In case of hypolipidemic peptides, L and K are crucial for
interaction with bile acids (Howard & Udenigwe, 2013). Their
complex formation involves hydrophobic bonds, which might
explain the relatively high frequency of aliphatic and positively
charged AA residues in hypolipidemic peptides (Table 3). An-

tithrombotic peptides act as competitive inhibitors for fibrinogen
(Table 2), and a higher frequency of charged AAs in antithrom-
botic peptides (Table 3) can be explained with the similarities
between AA composition of peptides and fibrinogen (Chabance
et al., 1995). But a single explanation for the different frequencies
of particular AA types for antimicrobial, and particularly for im-
munological peptides, is difficult because of the different modes
of action (Table 2).

However, not only the type of AA, but also its position in
the peptide can influence its activity. To correlate differences in
positions and proportions of individual AAs in the peptides, we
analyzed sequences using univariate ANOVA. The statistical sig-
nificance was decided assigning to each AA a numerical value for
unequivocal representation. The choice of values was made by
referring to tabulated values or scores taken from the literature.
The database AA index (www.genome.jp/aaindex/AA index/list
of indexes, accessed in August 2018) and the accompanying paper
by Tomii and Kanehisa (1996) list over 544 indexes and scores that
have been used to classify AAs on the basis of their biochemical
and physicochemical properties. Out of 46 indexes representing
the physical and chemical properties of each AA, we focused on
the scoring systems illustrated in Figure 5 section P of Tomii Q10
and Kanehisa (1996), choosing the index that showed the highest
number of significant correlations to other indexes in the database.
The rationale was to choose an index that could represent dif-
ferent properties of the AA. The index defined as “normalized
van der Waals volume" developed by Fauchère, Charton, Kier,
Verloop, and Pliska (1988) was considered the best for this pur-
pose, because it correlates to 28 other indexes and assigns different
numerical values to each AA, except for I and L, which have the
same value. The AA values assigned by this index ranged from 0
for G to 8.08 for W; a complete list of the values is reported in
Table S3. A subset of 649 peptides, of 2 to 10 AAs, was further an-
alyzed by assigning to each AA the value given by Fauchère index.
Since peptides longer than 10 AAs were represented by only a few
examples, they were not amenable to statistical analysis. For each

sequence, the values of Fauchère index corresponding to each AA
were computed and subjected to statistical analyses (by SPSS v.21),
taking into account the position of the AA in the sequence. As
suggested by Udenigwe (2014), position of AA in peptide was la-
beled depended from its distance from C-terminus. Thus, position
of AA next to C-terminus was labeled as –1, that on the second
position from C terminus as –2, and so on. Figure S1 shows the
distribution of the scores for each AA position in the subset of 649
peptides. The highest values (P < 0.001) corresponded to the AA
residues at the C-terminus and at the N-terminus. AA residues
position at the C-terminus had an average Fauchère index of 4.0,
whereas AAs at the N-terminus had an average index of 3.9. To
compare peptides with different biological effects, we averaged the
scores for all sequences belonging to specific categories, calculating
all AAs at all positions (ANOVA, P < 0.0001; Figure S2). Opioid
peptides have a significantly higher average score, whereas an-
tithrombotic peptides have the lowest value. Thus, with univariate
ANOVA (Table 4), we showed that between categories of pep-
tides, the only significant position was the N-terminus AA, and
to a lesser extent, the AA next to the C-terminal residue. These
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Table 3–Distribution and frequencies of aliphatic, aromatic, polar non-charged, positive charged and negative charged amino acids in peptides with
different biological activities.

Amino acid type
Biological activity Aliphatic Aromatic Polar, noncharged Positively charged Negatively charged

Antihypertensive 49.93 14.49 17.58 12.85 5.14
Antimicrobial 46.78 11.76 25.04 21.68 5.71
Antioxidative 43.94 13.80 17.70 14.01 10.54
Antithrombotic 46.78 3.51 20.46 18.72 10.52
Hypolipidemic 60.00 4.00 8.00 14.00 14.00

Immunomodulatory
49.63 14.46 16.99 14.16 4.77

Opioid 46.92 28.85 17.84 4.41 1.99
χ2 value 486.01 82.69 96.72 60.19 105.51
Degrees of
freedom

1,7 1,7 1,7 1,7 1,7

Significance ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

∗∗∗P < 0.001

results are in agreement with results obtained using quantitative
structure-activity relationship modeling (Chou, 2011).Q12

Univariate ANOVA showed that the opioid peptides had a sig-
nificantly higher value, 5.4, for AA at the N-terminus with re-
spect to other classes of peptides (Table 4), which is consistent
with the finding that opioid peptides are characterized by high
percentages of aromatic AAs, especially for those located at the N-
terminus (Kostyra, Sienkiewicz-szapka, Jarmoowska, Krawczuk,
& Kostyra, 2004; Meisel, 1998; Silva & Malcata, 2005). Aromatic
AAs (Y, P, and W) have the highest value of the Fauchère index
(Table S3).

The analysis was carried out independently for each class of
peptide length; nonparametric tests were applied due to deviations
from the normal distribution (Table S4). The N-terminal AA
shows significant differences in distribution in peptides of 4, 5, 7,
and 8 residues, with opioid peptides showing consistently higher
values, as reported in Table 4. The C-terminal AA is significant
in peptides of 2 and 5 AAs. Within dipeptides, the antioxidants
show significantly higher values in the 2nd AA. In 9 AA peptides,
2 positions are significant: opioid peptides have higher values for
AA minus 6, whereas antimicrobial peptides show higher values
in AA minus 7.

Additionally, we used the WebLogo tool (Crooks, Hon, Chan-
donia, & Brenner, 2004) to test frequencies of individual AA
residues in peptides of 2 to 10 AA residues. Distribution of AAs
at different positions was skewed; for instance, Y was prevalent in
the first position and P at intermediate positions (Figure S3).

The significance of some types of AAs at particular positions
is well documented in the literature. For example, antioxida-
tive peptides containing the LG sequence or with H close to
the N-terminus exhibit higher activity compared to antioxida-
tive peptides with the same sequences elsewhere in the chain
(Li & Yu, 2015; Zou, He, Li, Tang, & Xia, 2016). Similarly, pep-
tides with pronounced antihypertensive effect often have branched
AAs at the N-terminus and aromatic AAs at the C-terminus
(Li, Le, Shi, & Shrestha, 2004). Opioid peptides with marked
activity possess Y as the N-terminal AA because the pheno-
lic hydroxyl enhances opioid effects (Meisel, 1998). If secondary
structure is present, as for example with anticancer cationic am-
phiphilic peptides, which are characterized by the presence of an
α-helix, selectivity at individual residues on the basis of AA struc-
ture could both enhance activity and provide a stabilizing effect
(Schweizer, 2009).

Behavior of Bioactive Peptides in Humans
An interesting question when preparing functional food is:

should bioactive peptides, pre-prepared by enzymatic hydroly-

sis or fermentation, be added directly into food products? The
answer depends mainly on absorption and stability of bioac-
tive peptides (Brandsch, Knütter, & Bosse-Doenecke, 2008; Foltz
et al., 2010; Gao, Sudoh, Aubé, & Borchardt, 2001; Jahan-Mihan,
Luhovyy, El Khoury, & Anderson, 2011; Renukuntla, Vadlapudi,
Patel, Boddu, & Mitra, 2013; Segura-Campos, Chel-Guerrero,
Betancur-Ancona, & Hernandez-Escalante, 2011). Factors influ-
encing peptide resistance to protease degradation and their ab-
sorbance from enterocytes into blood include:

Number and type of AA residues
There are 3 ways in which protein can enter the cell: paracellu-

lar, transcellular, and via specific transporters. Paracellular transport
is involved in transport of small molecules, such as glucose through
gaps between cells. The paracellular route is usually inaccessible
to peptides due to the existence of the tight junctions between
enterocytes (Assimakopoulos, Papageorgiou, & Charonis, 2011;
Stevenson & Keon, 1998). However, permeability of this tight
junction is dependent on Ca2+ levels and is different for differ-
ent epithelia; thus, permeability of tight junctions can be altered
temporarily to allow flow of water-soluble compounds (Arhewoh,
Ahonkhai, & Okhamafe, 2005).The preferred route is dependent
on the number of AA residues in the bioactive peptide. Pep-
tides with 2 or 3 AA residues might be absorbed into enterocytes
utilizing the PepT1 transporter (Brodin, Nielsen, Steffansen, &
Frokjaer, 2002) or in renal epithelia via either PepT1 or the ad-
ditional PepT2 transporter (Yang, Dantzig, & Pidgeon, 1999).
PepT1 and PepT2 belong to a family of proton-dependent
oligopeptide transporters, which use gradients created by Na+/H+
exchange to cotransport peptides with H+ ions (Newstead et al.,
2011). Son, Satsu, Kiso, and Shimizu (2004) showed in Caco-
2 cells that the peptide carnosine is transported via PepT1. The
major difference between PepT1 and PepT2 is that PepT2 is a
high-affinity transporter, while PepT1 is low-affinity. This dif-
ference in affinity stems from the different physiologies of in-
testines and kidneys. But not all di- and tripeptides enter via
Pep transporters. Again in Caco-2 cells and for the tripeptide
VPP, the paracellular route was preferred for transport; inhi-
bition of PepT1 did not interfere with transport of peptide
across the Caco-2 monolayer (Satake et al., 2002). Peptides
of greater than 3 or 4 residues are adsorbed via the tran-
scellular route, using receptor- or nonreceptor-mediated en-
docytosis (Segura-Campos et al., 2011). Peptides transported
via the transcellular route include bradykinin (RPPGFSPFR),
FRADHPFL, YPFPG, PFGK, and GGYR (Shimizu, Tsunogai,
& Arai, 1997).
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Figure 3–WebLogo representation of the distribution of individual amino acid residues in peptides showing activity in vivo. Color code: black—
hydrophobic AA (A, V, L, I, P, W, F, and M); red—acidic (D and E); blue—basic (K, R, and H); purple—neutral (Q and N); green—polar (G, S, T, Y, and C).
Height of the letter represents the frequency of amino acids at the given position.

Type of AA
Stability of peptides to proteolysis depends on the specific AA

residues present. It has been shown that peptides containing pro-
line and hydroxyproline residues are less prone to proteolysis in
the intestines: dipeptides and oligopeptides isolated from casein
and gelatine contain proline residues in the C-terminal region and
are therefore resistant to peptidases specific for this AA (FitzGerald
& Meisel, 2000); these results were confirmed in experiments by
van der Pijl, Kies, Ten Have, Duchateau, and Deutz (2008) who
showed that peptides rich in proline reach circulation intact. They
also found that the half time for elimination was at maximum
15 minute, suggesting this peptide could have an acute effect.

To test whether P was more frequent as compared to other AA
residues in bioactive peptides, we extracted 120 bioactive peptides
from Table S2 whose activity was tested in vivo. Percentages of
individual AAs in peptides of 2 to 9 residues were calculated and
their frequency was represented with the tool WebLogo (Crooks
et al., 2004; Figure 3). P was present in 67% of the sequences,
and 6.7% of these had PP doublets, which confer stability against
serum proteases (Foltz et al., 2007; Jambunathan & Galande, 2014).
This high percentage of P residues in stable peptides might be the
consequence of conformational changes, which reduce affinity
of proteases to such peptides (Apostolovic et al., 2016). How-
ever, the position of P depended on peptide length (Figure 3).
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Although P was located at the C-terminus in the majority of pep-
tides, in smaller peptides (tripeptides to pentapeptides), additional
P residues occurred at position minus 2; in larger peptides (6 to 9
AA residues), additional P residues are located at position minus 1
and at the position adjacent to the N-terminus. From WebLogo
results (Figure 3), it can be seen that PP sequences were more
frequent in heptapeptides to nonapeptides. However, this analy-
sis did not include a sufficiently large number of antioxidant and
antimicrobial peptides with an activity tested in vivo. Moreover,
peptides larger than 9 AA residues are rare, and therefore excluded
from the analysis.

Although the presence of P enhances stability toward proteases,
it also interferes with transport inside the cell; P-containing se-
quences (for example PA, PD, PS, PE, and PG) showed a low affin-
ity toward PepT1 (Vig et al., 2006). In addition, Chen, Pan, Wong,
and Webb (2005) discovered that, although tripeptide WWW dis-
plays high affinity to PepT1, it is not transported into the cell.
The factors that limit transport via PepT1 and PepT2 are not clear.
Moreover, the individual residues present at the C- or N-terminus
can affect stability of peptides. In Caco-2 cells, it was shown that
peptides of different sizes, in which the C- and N- terminals were
blocked, pass through the intestinal epithelium (Segura-Campos
et al., 2011). In addition, even a single AA residue can change en-
zyme activity; Quirós et al. (2009) showed that when penultimate
L in LHLPLP was substituted with G (giving peptide LPLPGP),
ACE-inhibitory activity increased 2-fold.

Overall charge of peptide
Studies in Caco-2 monolayers (Pauletti, Okumu, & Borchardt,

1997; Satake et al., 2002) showed that charge influences para-
cellular transport of peptides. In the case of larger peptides (for
example, hexapeptides), size is the limiting factor, while for tri-
or tetrapeptides, transport is charge-dependent in the order nega-
tively charged > positively charged > neutral. Yang et al. (1999)
showed that for dipeptides to be transferred into a cell, the overall
positive charge must be less than 2 units. This is consistent with
the transporter proton-coupling discussed below.

Concentration of bioactive peptides
As for all protein carriers, PepT1 and PepT2 show typical satura-

tion kinetics (Chen, Zhu, Smith, & Hediger, 1999; Sala-Rabanal,
Loo, Hirayama, Turk, & Wright, 2006; Sala-Rabanal, Loo, Hi-
rayama, & Wright, 2008); Chen et al. (1999) found that PepT2
couples transport of 1 peptide molecule to 2 H+, while PepT1
transports only 1 peptide per H+. These findings were confirmed
by experiments showing that the time of gastrointestinal absorp-
tion of casomorphins was dose-dependent (Jahan-Mihan et al.,
2011). However, Chen et al. (1999) monitored transport of ra-
dioactive labeled (D)F-(L)A and (D)F-(L)E and found that trans-
port of neutral and anionic dipeptides had different stoichiometries
for anionic peptides, substrate was cotransported with 3 proton
ions, while for neutral peptides, 2 protons were transported per 1
molecule of peptide.

pH
Energy for transport of bioactive peptides is derived from

the pH gradient across cell membranes and changes in pH can
affect their transport. Brandsch et al. (1997), in experiments
with Caco-2 cells, showed that treatments with both H+ and
diethylpyrocarbonate modulate the speed of transport. Since
diethylpyrocarbonate blocks the acceptor/donor function of
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histidine residues, these results lead to the conclusion that H plays
a crucial role in activity of PepT1 and PepT2.

Age of the studied organism
Changes in concentration and activity of digestive enzymes

during aging are well documented (Bauer et al., 2013; Green-
berg & Holt, 1986; Lindemann, Cornelius, el Kandelgy, Moser, &
Pettigrew, 1986); this can affect the kinetics of peptide degradation
(Barbé et al., 2014; Mandalari et al., 2009; Roufik, Gauthier, &
Turgeon, 2006). In vivo experiments with 15N-labeled casein and
lactoferrin (Drescher et al., 1999) showed that in suckling pigs, but
not in adults, lactoferrin is digested more slowly than casein. One
possible explanation for this result is that the gastrointestinal tract
of young pigs is not completely developed and therefore digestion
is slower. Similarly, in human infants, digestibility of lactoferrin is
slower compared to casein (Lönnerdal, 2014).

Nutrition
A high-protein diet results in a greater number of PepT1

molecules (Chen et al., 2005) and, therefore, in a higher number
of circulating peptides; there was an increase in PepT1 mRNA
when chickens were fed with 18% and 24% crude protein, while
feeding chickens with 12% crude protein resulted in a decrease in
PepT1 mRNA. Receptor-mediated transport was affected in both
cases. One possible explanation for this dependency was given by
Gilbert, Wong, and Webb (2008), who suggested that a possible
mechanism for regulation of the number of peptide transporters
might occur in response to direct interaction with substrate.

Moreover, for certain peptides although their effect can be ob-
served at the systemic level, there are tissues that preferentially
exhibit the effect. Matsui et al. (2004) found that the antihyper-
tensive peptide VY shows the highest degree of ACE-inhibitory
activity in abdominal aorta and kidneys.

Some naturally occurring modifications can also have a posi-
tive effect on protein stability. Picariello et al. (2013) found that
monophosphorylated derivatives of lactoglobulins showed stabil-
ity toward degradation in the gut; according to the authors’ in-
terpretation, these modifications increase the size of a peptide,
which in turns make the paracellular transport more plausible, even
though paracellular transport usually concerns smaller molecules.
Ulluwisheva et al. (2011) suggested that such change in permeabil-

Q13 ity might be due to interaction with intestinal bacteria. It should
be pointed out that higher stability of bioactive peptides may lead
to toxicity, due to their slower degradation (Hartmann & Meisel,
2007).

Impact of Food Processing Operations
Table 6 shows the main factors that influence bioactive peptides

during processing: temperature, pressure, hydrolysis, and fermen-
tation; these treatments change the structures of source proteins,
influencing the release of bioactive peptides and their stability and
adsorption in the gut lumen. Since stability toward gastrointestinal
proteases, adsorption into enterocytes, and transport from entero-
cytes into the circulation are necessary requirements for peptides
to exhibit their effects, changes in these parameters can result in
alteration of food properties, which is of crucial importance in
claims about food functionality.

Effect of thermal processing
Heat treatments are used in food industry to increase the safety

of products and to prolong shelf-life. Effects of heat processing are
greatly dependent on temperature applied and time of processing.

Generally, heat treatment results in the denaturing of proteins and
in subsequent aggregation of peptides due to formation of covalent
and/or noncovalent bonds (Rombouts et al., 2015). Such intra-
and intermolecular bonding can influence both digestibility and
absorption of the produced bioactive peptides (Wada & Lönnerdal,
2014). Additional factors that reduce digestibility, and thus lead
to a higher adsorption of bioactive peptides, are the possibilities
of racemization of L-AAs into D-isomers during heat treatment
(Hajirostamloo, 2010). Reactions enhanced by heat treatment,
such as the Maillard reaction, can have a detrimental effect on nu-
tritive value (Tamanna & Mahmood, 2015) but can also enhance
the availability (Jiang, Rai, O’Connor, & Brodkorb, 2013) and the
physiological effect of bioactive peptides. For example, conjuga-
tion of fragments from β-lactoglobulin with sugar residues during
the Maillard reaction can reduce allergenicity of cow milk (Bu,
Luo, Chen, Liu, & Zhu, 2013), a result that can be explained by the
destruction of epitope(s) (Thomas et al., 2007). Pretreatment heat
can enhance existing health effects of bioactive peptides: Adjonu,
Doran, Torley, and Agboola (2013) found that pretreatment at
temperatures higher than 90 °C enhanced ACE-inhibiting activ-
ity of a β-lactoglobulin fragment. Results of Jayatilake et al. (2014)
imply that treatment at low temperatures could also enhance the
anti-inflammatory action of whey proteins, due to higher reten-
tion of immunoactive proteins and factors, such as immunoglob-
ulins, lactoferrin, and growth factors (Nguyen et al., 2015). Other
factors that could be important include the type of heat source:
Gomaa (2010) found that microwave heating not only enhanced
antioxidative activity of β-lactoglobulin hydrolysate, but the same
hydrolysate also presented unique proteins, an indication that mi-
crowave treatment may have exposed new cleavage sites within the
protein. Since geometry of proteins in skim milk was also changed
during microwave heating (Tu et al., 2014), microwave treatment
can also enhance digestibility of milk.

Influence of enzymatic hydrolysis
The effect of enzymatic hydrolysis on activity of peptides ob-

tained from different food sources has been analyzed (Huang
et al., 2010; Lahart et al., 2011; Liaset et al., 2009; Liu,
Baggerman, Schoofs, & Wets, 2008; Möller, Scholz-Ahrens, Roos,
& Schrezenmeir, 2008; Morimatsu et al., 1996; Rizzello et al.,
2005; Stuknyte, De Noni, Guglielmetti, Minuzzo, & Mora, 2011).
Does enzymatic proteolysis result in peptides with improved effect
when compared to the activity of the whole protein? Table 5 lists
examples of activity in protein hydrolysates as compared to the
whole protein in different types of food products. It is evident
that in all cases, with the 1 exception of antioxidative activity of
eggs, protein hydrolysates had higher activity. It is also evident
that comparison of hydrolysate activities with those of source pro-
tein(s) is limited to only a few food sources, and that most of these
experiments were performed in vitro rather than in vivo.

The number and the structure of peptides released during
hydrolysis depend on type of enzyme(s) used and on reaction
conditions. For example, yak milk casein hydrolysate showed a
higher anti-inflammatory activity when prepared with Alcalase
and trypsin rather than when prepared with pepsin or papain
(Mao, Cheng, Wang, & Wu, 2011). Roufik et al. (2006) found
that β-lactoglobulin fragment 142 to 148 remains intact after incu-
bation with pepsin, but is strongly hydrolyzed after incubation with
chymotrypsin. When the antioxidative activities were compared
of different hydrolysates, obtained from tuna backbone protein, it
was found that the peptic hydrolysate exhibited the highest activ-
ity as compared to those obtained with Alcalase, chymotrypsin,
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Table 5–Differential effects of bioactive peptides in food subjected or not subjected to enzymatic pretreatment.

Effect Source of bioactive proteins
Bioactive peptides present in

hydrolysate Whole protein product

Antihypertensive Meat and meat products Hydrolysate of myosin (Nakashima et al.,
2002)

Milk and milk products Fermented milk (Chen et al., 2007; Quirós
et al., 2007; Tsai et al., 2008)

Extract from cheeses (Saito, Nakamura,
Kitazawa, Kawai, & Itoh, 2000)

Whey protein (Guo et al., 2009)

Low ACE inhibition of casein compared to
hydrolysates (Mao, Ni, Sun, Hao, & Fan,
2007; Mullally, Meisel, & FitzGerald,
1997)

Fish and fish products Hydrolysates of sardinella (Bougatef
et al., 2008)

Protein extract showed lower activity
compared to hydrolysate (Bougatef
et al., 2008)

Eggs Hydrolysate of egg white protein (Liu
et al., 2010)

Ovotransferrin had lower ACE inhibitory
activity compared to hydrolysates (Liu
et al., 2010)

Antimicrobial Meat and meat products Hydrolysate of bovine hemoglobin
(Froidevaux et al., 2001)

Milk and milk products Hydrolysates of casein (McCann et al.,
2006; McClean, Beggs, & Welch, 2014)

Extract of several cheeses showed no
antimicrobial activity (Rizzello et al.,
2005)

Fish and fish products Hydrolysate of phosvitin (Ding et al.,
2012)

Eggs hen egg lysozyme (Abdou, Higashiguchi,
Aboueleinin, Kim, & Ibrahim, 2007)

Antioxidative Meat and meat products Porcine protein hydrolysate (Yang et al.,
2013)

Milk and milk products Caseinophosphopeptide (Kim et al.,
2007)

Lower effect than for casein hydrolysates
(Mao et al., 2011)

Fish and fish products Tuna backbone protein (Je et al., 2007)
Eggs Hydrolysis of crude egg white (Dávalos,

Miguel, Bartolomé, & López-Fandiño,
2004)

Hydrolysate showed higher antioxidative
activity than ovotransferrin (Huang,
Majumder, & Wu, 2010)

Antithrombotic Meat and meat products Defatted pork meat (Shimizu et al., 2009)
Milk and milk products Hydrolysates of casein (Chabance et al.,

1995; Jollès et al., 1986;
Rojas-Ronquillo et al., 2012)

Fish and fish products n.a. n.a.
Eggs Egg white protein hydrolysate (Yang,

Wang, & Xu, 2007)
Hypolipidemic Meat and meat products Pork liver hydrolysate (Shimizu et al.,

2006)
Lower hypocholesterolaemic effect of

untreated pork meat compared to
papain hydrolysate (Morimatsu et al.,
1996)

Milk and milk products Hydrolysate of β-lactoglobulin (Nagaoka
et al., 2001)

Lower effect of casein compared to either
casein hydrolysate or fish protein
hydrolysate (Liaset et al., 2009;
Wergedahl et al., 2004)

Fish and fish products Fish protein hydrolysate (Liaset et al.,
2009; Wergedahl et al., 2004)

Eggs n.a. n.a.

Immunomodulatory
Meat and meat products Beef sarcoplasmic protein hydrolysates

(Jang et al., 2008)
Milk and milk products Casein hydrolysates (Lahart et al., 2011;

Stuknyte et al., 2011)
Lower effect compared to hydrolysate

(Lahart et al., 2011; Stuknyte et al.,
2011)

Fish and fish products Fish protein concentrate (Duarte,
Vinderola, Ritz, Perdigón, & Matar,
2006)

Lower effect compared to hydrolysate

Eggs IRW peptide from egg protein (Huang
et al., 2010)

Opioid Meat and meat products n.a. n.a.
Milk and milk products αs1-, β- and κ -caseins from bovine milk

(Antila et al., 1991; Pihlanto-Leppälä,
Antila, Mäntsälä, & Hellman, 1994)

Fish and fish products n.a. n.a.
Eggs n.a. n.a.

n.a., information not available.

Neutrase, papain, and trypsin (Je, Qian, Byun, & Kim, 2007).
In addition, activity of a hydrolysate might be dependent on the
pH at which it was obtained. Kim, Jang, and Kim (2007) found
that antioxidative activity of caseinophosphopeptides obtained by
hydrolysis with Alcalase at pH 8 was lower when compared to hy-
drolysates prepared under acidic conditions (pH 3 to 5). These
differences were due to changes in the contents of particular
AA residues. Interestingly, no direct correlation was found be-

tween degree of hydrolysis and immunological effect of casein
hydrolysate (Lahart et al., 2011). Extent of hydrolysis will also
affect the activity of peptides. For example, Miguel et al. (2006)
found that when LHLPLPL was hydrolyzed to LHLPLP, its ACE-
inhibitory activity increased, because LHLPLP is the true inhibitor
of the enzyme. The same observation was made when TQPKT-
NAIPY was hydrolyzed to TNAIPY (Ruiz, Ramos, & Recio,
2004).
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Table 6–Effect of temperature, pressure, enzymatic hydrolysis, and fermentation on stability and activity of bioactive peptides during food processing.

Bioactive peptides

Enzymatic hydrolysis Fermentation Thermal processing Pressure
- Type of enzyme used in

hydrolysis influences
degree of bioactive effect
(for example, pepsin
hydrolysate of casein
shows higher
antimicrobial activity
compared to hydrolysate
of trypsin and
chymotrypsin; McCann
et al., 2006).

- Extent of hydrolysis has a
variable influence on
activity (Lahart et al.,
2011), but hydrolysate is
more active (Mao et al.,
2011).

- Effect of fermentation is highly
dependent on type of
microorganisms used. (Marshall
& Tamime, 1997)

- Often used with proteases to
enhance production of bioactive
peptides (for example,
ACE-inhibitory peptides; Chen
et al., 2007).

- Proteinases from different strain
of Lactobacillus are unable to
produce bioactive peptides
themselves, but produce
oligopeptides that can generate
bioactive peptides after
digestion by pepsin and trypsin
(Gobbetti et al., 2002).

- Fermented products contain high
number of bioactive peptides,
relatively resistant to proteolysis
in simulated condition of
gastrointestinal digestion
(Kopf-Bolanz et al., 2014).

- Possibility of Maillard reaction
between the lysine residues and
carbohydrates (Korhonen,
Pihlanto-Leppäla, Rantamäki, &
Tupasela, 1998)—this might
lead to changes not only in
nutritional value, but also in
biological effect.

- Milk is especially prone to
undergo Maillard reaction (high
content of Lys residues and
lactose).

- Treatment with Alcalase and
increased temperature increases
content of sulfhydryls groups
(therefore, enhances
antioxidative effect) in porcine
plasma hydrolysate (Yang et al.,
2013).

- Heat treatment also enhances
antioxidative, ACE-inhibitory and
opioid properties of bioactive
peptides (Adjonu et al., 2013).

- Use of slightly higher
temperature during ripening
enhances ACE-inhibitory activity
in cheese (Sahingil et al., 2014).

- Low pressures usually induce
reversible changes such as
dissociation of protein-protein
complexes, the binding of
ligands and conformational
changes (Korhonen et al., 1998).

- High pressure treatment induces
irreversible denaturation and
reduces antigenicity of product
(Cheftel & Culioli, 1997; Messens
et al., 1997).

- High pressure treatment of
casein results in increase in both
hydrolysis by pepsin and
digestibility of β-lactoglobulin
(Zeece et al., 2008).

Influence of pressure
Pressure affects the functionality of food and has been tested

as a possible replacement for heat treatment to prolong shelf-life
and/or to enhance digestibility of allergenic proteins. During
high-pressure treatment, hydrogen and ionic bonds in protein
molecules are broken (Messens, Van Camp, & Huyghebaert,
1997), which in turn, facilitates digestibility of proteins (Zeece,
Huppertz, & Kelly, 2008) even more efficiently than heat
treatment (Hoppe, Jung, Patnaik, & Zeece, 2013). This may be
desirable for allergenic proteins, like ß-lactoglobulin or egg white
protein. Although the effects on bioactivity depend mainly on
the applied conditions, the structure of the whole protein may
also be important: Castellani, Guérin-Dubiard, David-Briand,
and Anton (2004) found that the irregular structure of phosvitin
makes it very resistant to high pressure and does not change its
iron-binding capacity, whereas Piccolomini, Iskandar, Lands, and
Kubow (2012) demonstrated that application of high pressure
for pretreatment of hydrolysates increases their antioxidant and
anti-inflammatory effects.

Influence of fermentation
The effect of fermentation on production of bioactive peptides

depends on several factors, the most significant being the struc-
ture of the food matrix (FitzGerald & Murray, 2006; Gobbetti,
Stepaniak, De Angelis, Corsetti, & Di Cagno, 2002), the impor-
tant bacterial strains, species, or genera, in both starter and adjunct
culture (Marshall & Tamime, 1997; Sahingil, Hayaloglu, Kirmaci,
Ozer, & Simsek, 2014), and the fermentation conditions includ-
ing duration, temperature, and pH (Chen, Tsai, & Sun Pan, 2007;
Guo, Pan, & Tanokura, 2009; Tsai, Chen, Pan, Gong, & Chung,
2008). Lactobacillus species or specific strains thereof are commonly
used for making fermented milk products, and even the type of
strain can influence not only the number of released bioactive
peptides, but also their activity. These differences are due to the
presence of different isomers of cell wall proteases in different bac-
teria (Hafeez et al., 2014), while activity of cell wall proteases may

differ across strains (Galia, Perrin, Genay, & Dary, 2009; Stuknyte
et al., 2011); however, it is not known whether peptides formed
in this way can remain intact long enough to exert their activity.
Some peptides are stable during homogenization and pasteuriza-
tion, including antihypertensive peptides RYLGY and AYFYPEL
(Contreras et al., 2009). Similarly, after ingestion of yogurt, bioac-
tive peptides with antioxidative activity obtained by digestion of α

and γ casein have been found in human blood (Chabance et al.,
1995). On the other hand, peptides like isracidin and casocidin
are degraded during fermentation and can only be added at the
very end of production, or to the final product (Sánchez-Rivera,
Martı́nez-Maqueda, Cruz-Huerta, Miralles, & Recio, 2014).

Prediction of Peptide Release, Stability, and Activity
The greatest challenges in formulating a novel bioactive food

are to predict which peptides will be released from a particular
protein, if they will be resistant to degradation by proteases, and
what their biological activity will be. Antunes, Andrade, Ferreira,
Nielsen, and Sarmento (2013) have discussed the application of
models to predict intestinal absorption of therapeutic peptides.

Experiments assessing activity of peptides are usually performed
in vitro; liberation of bioactive peptides from source protein is
determined with digestion models intended to simulate the con-
dition present in the gastrointestinal tract. Two types of digestion
models have been employed: static and dynamic. Static, or bio-
chemical, models imply that digestion phases (oral, gastric, and
intestinal) are performed in a single bioreactor without mimicking
mixing of food in the stomach or peristalsis in the gastrointesti-
nal tract. Static models differ in several important aspects: type
and concentration of enzyme used, number of steps and time of
particular phase of digestion, rate of stirring, and other parame-
ters (Hur, Lim, Decker, & McClements, 2011). Dynamic mod-
els include division into subcompartments, mimicking different
structures and functionalities in the gastrointestinal tract, and ac-
count for physical forces and changes in kinetics during digestion
(Thuenemann, 2015).
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Dynamic models represent a novel approach and have significant
advantages over static models, including accounting for the effects
of peristalsis and transition of proteins between different com-
partments of the gastrointestinal tract (Dupont & Mackie, 2015;
Picariello, Mamone, Nitride, Addeo, & Ferranti, 2013). Both static
and dynamic models neglect specific issues such as correlation
with in vivo models, accounting for different digestion times in
individual compartments depending on type of food, predigestion
processes in the mouth, and, very significantly, “matrix effects”
(McClements et al., 2015; Rein et al., 2013). Matrix effects are
crucial not only in determining the cleavage sites, but also the
kinetics of proteolysis (Barbé et al., 2014). Complex matrices,
which are degraded slowly, will release more bioactive peptides
(Hernández-Ledesma et al., 2004).

However, the biggest problem with in vitro models is correlation
with in vivo studies. In vitro systems, for standardization purposes,
employ purified enzymes, often alone or in combination with no
more than 2 or 3 additional enzymes. However, under physiologi-
cal conditions, factors such as pH, concentration of salts, presence
of isoforms or inhibitors, and activators of enzymes influence not
only speed of reaction, but also type of peptide produced. Differ-
ent conditions will result in release of different types of bile salt
emulsifiers, producing changes in emulsion structure and creating
problems of correlation with in vitro models (Marciani et al., 2007).
It is also necessary to consider the interaction between different
food components (for example, addition of sugars or lipids) and
component characteristics (for example, phosphorylation), which
can lead to changes in both digestibility and stability (Rein et al.,
2013).

Prediction of peptide release may also be carried out in silico
using the reverse genome engineering approach as an alternative
to testing a target protein for peptide formation and bioactiv-
ity (Panchaud, Affolter, & Kussmann, 2012). The first step is to
screen the protein databases for matches based on molecular sim-
ilarities and then perform virtual hydrolysis using tools such as
ExPASy Peptide Cutter and/or PoPS (Cavallo, 2003; Gasteiger,
2003). However, when mixtures of enzymes are used, it can be
unclear which of these enzymes has been responsible for hydrolyz-
ing the sample. Therefore, an additional tool, EnzymePredictor,
was developed by Vijayakumar et al. (2012), which can identify
the protein source of a particular peptide and the enzymes that
could have produced the peptide. The algorithms used to develop
this and other similar tools (such as CutDB and PROSPER) have
been reviewed and compared (duVerle & Mamitsuka, 2012).

Two general approaches for predicting bioactivity of peptides
exploit structural similarities with source proteins and peptides
of known activity and use matrices to correlate AA sequences
with individual effects. Some of the examples of peptide com-
ing from hormone degradation and/or digestion of well-known
proteins (such as lactoferrin or caseins) are given in Table S2.
Structural similarities between source proteins are mainly based
on the presence of evolutionary conserved domains and motifs
(Iwaniak & Dziuba, 2009). Databases, such as BioPep that allow
linking domains to major protein classes, could help in narrowing
down potential protein sources for peptides with desired bioactiv-
ity. Motif detection and classification is also possible using genetic
programming (Tomita, Kato, Okochi, & Honda, 2008). Gu and
Wu (2013) employed structure–function relationships for screen-
ing protein sources that could give peptides having a desired health
effect. They used quantitative structure–activity relationship mod-
els to predict food protein sources that could give antihypertensive
peptides. Additionally, it is possible to predict the occurrence of a

bioactive peptide sequence in a source protein using the Peptide-
Locator software (Mooney, Haslam, Holton, Pollastri, & Shields,
2013). Structural analysis is not limited only to the source protein.
For example, the PeptideRanker server can be used to determine
the probability that a specific peptide will be bioactive, based
on structural similarity, and with scoring into groups based on
likelihood for the particular bioactivity. This corresponds to the
“integrated approach” suggested by Udenigwe (2014).

Where sequences of bioactive peptides are already known, ma-
trices can be used to assign values (indexes) to AA residues, based
on their properties including hydrophobicity, molecular weight,
number of atoms, and so on. These indexes can then be used for
prediction using comparisons with sequences of known activity.
Though prediction of protein activity and subcellular localiza-
tion based on Chou’s pseudo AA composition (psAAC) is fairly
simple (Chou, 2001), the approach is more complicated when
applied to bioactive peptides. Georgiou, Karakasidis, Nieto, and
Torres (2009) made an attempt to modify Chou’s psAAC for the
classification of AAs, using the fuzzy clustering technique and 2
variables: Minkowski distance and NTV metric, as proposed by
Nieto, Torres, and Vazquez-Trasande (2003). Other researchers
evaluated the use of a replacement matrix to estimate the effect
of substituting one AA with another (Le & Gascuel, 2008). How-
ever, although each AA had been classified using an index based
on its physiochemical properties (Kawashima et al., 2008), it was
difficult to find any predictor that could take into account both
the type and the position of a particular AA. The position of an
AA is relevant because some AAs give rise to different secondary
structures (Malkov, Zivković, Beljanski, Hall, & Zarić, 2008; Sahu
& Panda, 2010) and these changes may affect protein function (Ng
& Henikoff, 2006). ReplacementMatrix software is available that
carries out maximum likelihood estimation of AA replacement
rates (Dang, Lefort, Le, Le, & Gascuel, 2011).

Also, algorithms and methods to assess specific bioactivities have
been developed. Combining bioinformatics with high through-
put sequencing has led to the generation of algorithms, such as
IgRepertoireConstructor (Safonova et al., 2015). Immunoreper-
toires are useful not only in prediction of immunomodulatory Q14
activity, but also for a better quantification and comparison of
peptides from different sources (Greiff, Miho, Menzel, & Reddy,
2015; Shlemov, Bankevich, Bzikadze, & Safonova, 2016).

Conclusions
We have assessed current understanding of structure–function

relationships for bioactive peptides of animal origin and show
that these peptides contain high levels of proline, which influence
their stability and uptake. We have also discussed the influence
of processing on activity of these peptides, as well as methods
for predicting their release from originating proteins. Interest in
functional foods is growing fast, but several key issues are still
unresolved. Standardization in digestion models is badly needed,
not only to compare scientific results, but especially to ensure
reproducibility and correlation between in vitro and in vivo results.
Additionally, some peptide activities, in particular antioxidative
and antimicrobial, have been tested only rarely in vivo, which raised
questions and doubts about their effects in humans. Methods for
testing peptide bioactivities are also extremely heterogeneous, not
only in the experimental methods, but also in the expression of
results. In addition, better uniformity in production is of crucial
importance if bioactive peptides are to become more useful as
components of functional foods.
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Barile, D., & de Moura Bell, J. M. L. N. (2015). Milk proteins, peptides,
and oligosaccharides: Effects against the 21st century disorders. BioMed
Research International, 2015, 146860. https://doi.org/10.1155/2015/146840

Hsien, C., Ho, Y., Lai, H., & Yen, G. (2002). Inhibitory effect of carnosine
and anserine on DNA oxidative damage induced by Fe2+, Cu2+ and H2O2
in lymphocytes. Journal of Food and Drug Analysis, 10(1), 47–54.

Huang, T., Shi, X.-H., Wang, P., He, Z., Feng, K.-Y., Hu, L., . . . Chou,
K.-C. (2010). Analysis and prediction of the metabolic stability of proteins
based on their sequential features, subcellular locations and interaction
networks. PloS One, 5(6), e10972. Retrieved from
https://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2881046&
tool=pmcentrez&rendertype=abstract

Huang, W.-Y., Majumder, K., & Wu, J. (2010). Oxygen radical absorbance
capacity of peptides from egg white protein ovotransferrin and their
interaction with phytochemicals. Food Chemistry, 123(3), 635–641.
https://doi.org/10.1016/j.foodchem.2010.04.083

Huang, W., Chakrabarti, S., Majumder, K., Jiang, Y., Davidge, S. T., & Wu,
J. (2010). Egg-derived peptide IRW inhibits TNF-α-induced inflammatory
response and oxidative stress in endothelial cells. Journal of Agricultural and
Food Chemistry, 58(20), 10840–10846. https://doi.org/10.1021/jf102120c

Hur, S. J., Lim, B. O., Decker, E. A., & McClements, D. J. (2011). In vitro
human digestion models for food applications. Food Chemistry, 125(1),
1–12. Retrieved from
https://www.sciencedirect.com/science/article/pii/S0308814610010241

Ibrahim, H. R., Sugimoto, Y., & Aoki, T. (2000). Ovotransferrin
antimicrobial peptide (OTAP-92) kills bacteria through a membrane
damage mechanism. Biochimica et Biophysica Acta, 1523, 196–205.

Iwaniak, A., & Dziuba, J. (2009). Analysis of domains in selected plant and
animal food proteins - precursors of biologically active peptides - in silico

approach. Food Science and Technology International, 15(2), 179–191.
https://doi.org/10.1177/1082013208106320

Iwasaki, A., & Medzhitov, R. (2010). Regulation of adaptative immunity bye
the innate immune system. Science, 327(5963), 291–295.
https://doi.org/10.1126/science.1183021.Regulation

Iwasaki, A., & Medzhitov, R. (2015). Control of adaptive immunity by the
innate immune system. Nature Immunology, 16(4), 343–353.
https://doi.org/https://doi.org/10.1038/ni.3123

Izadpanah, A., & Gallo, R. L. (2005). Antimicrobial peptides. Journal of
American Academy of Dermatology, 52(3), 381–390.

Jahan-Mihan, A., Luhovyy, B. L., El Khoury, D., & Anderson, G. H. (2011).
Dietary proteins as determinants of metabolic and physiologic functions of
the gastrointestinal tract. Nutrients, 3(5), 574–603. Retrieved from
https://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3257691&
tool=pmcentrez&rendertype=abstract

Jambunathan, K., & Galande, A. K. (2014). Design of a serum stability tag for
bioactive peptides. Protein & Peptide Letters, 21, 32–38. Retrieved from
https://www.researchgate.net/publication/259392870_Design_of_a_
serum_stability_tag_for_bioactive_peptides

Jang, A., Jo, C., Kang, K.-S., & Lee, M. (2008). Antimicrobial and human
cancer cell cytotoxic effect of synthetic angiotensin-converting enzyme
(ACE) inhibitory peptides. Food Chemistry, 107(1), 327–336. Retrieved
from
https://www.sciencedirect.com/science/article/pii/S0308814607008175

Jauhiainen, T., Pilvi, T., Cheng, Z. J., Kautiainen, H., Müller, D. N.,
Vapaatalo, H., . . . Mervaala, E. (2010). Milk products containing bioactive
tripeptides have an antihypertensive effect in double transgenic rats (dTGR)
harbouring human renin and human angiotensinogen genes. Journal of
Nutrition and Metabolism, 2010, 287030.
https://doi.org/10.1155/2010/287030

Jayatilake, S., Arai, K., Kumada, N., Ishida, Y., Tanaka, I., Iwatsuki, S., . . .
Kinoshita, M. (2014). The effect of oral intake of
low-temperature-processed whey protein concentrate on colitis and gene
expression profiles in mice. Foods, 3(2), 351–368.
https://doi.org/10.3390/foods3020351

Je, J.-Y., Qian, Z.-J., Byun, H.-G., & Kim, S.-K. (2007). Purification and
characterization of an antioxidant peptide obtained from tuna backbone
protein by enzymatic hydrolysis. Process Biochemistry, 42(5), 840–846.
Retrieved from
https://www.sciencedirect.com/science/article/pii/S1359511307000578

Jenssen, H., Hamill, P., & Hancock, R. E. W. (2006). Peptide antimicrobial
agents. Clinical Microbiology Reviews, 19(3), 491–511.
https://doi.org/10.1128/CMR.00056-05

Jiang, Z., Rai, D. K., O’Connor, P. M., & Brodkorb, A. (2013).
Heat-induced Maillard reaction of the tripeptide IPP and ribose: Structural
characterization and implication on bioactivity. Food Research International,
50(1), 266–274. https://doi.org/10.1016/j.foodres.2012.09.028

Jollès, P., Lévy-Toledano, S., Fiat, A. M., Soria, C., Gillessen, D., Thomaidis,
A., . . . Caen, J. P. (1986). Analogy between fibrinogen and casein. Effect of
an undecapeptide isolated from kappa-casein on platelet function. European
Journal of Biochemistry / FEBS, 158(2), 379–382. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/3732274

Jung, W.-K., & Kim, S.-K. (2009). Isolation and characterisation of an
anticoagulant oligopeptide from blue mussel, Mytilus edulis. Food Chemistry,
117(4), 687–692. https://doi.org/10.1016/j.foodchem.2009.04.077

Jung, W. K., Je, J. Y., Kim, H. J., & Kim, S. K. (2002). A novel anticoagulant
protein from Scapharca broughtonii. Journal of Biochemistry and Molecular
Biology, 35(2), 199–205. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/11999952

Kagawa, K., Matsutaka, H., Fukuhama, C., Watanabe, Y., & Fujino, H.
(1996). Globin digest, acidic protease hydrolysate, inhibits dietary
hypertriglyceridemia and Val-Val-Tyr-Pro, one of its constituents, possesses
most superior effect. Life Sciences, 58(20), 1745–1755. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/8637399

Kaneko, K., Yoshikawa, M., & Ohinata, K. (2012). Novel orexigenic
pathway prostaglandin D2-NPY system? Involvement in orally active
orexigenic δ opioid peptide. Neuropeptides, 46(6), 353–357.
https://doi.org/10.1016/j.npep.2012.10.003

Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T.,
& Kanehisa, M. (2008). AAindex: Amino acid index database, progress
report 2008. Nucleic Acids Research, 36(Database), D202–D205.
https://doi.org/10.1093/nar/gkm998

Khiari, Z., Ndagijimana, M., & Betti, M. (2014). Low molecular weight
bioactive peptides derived from the enzymatic hydrolysis of collagen after

C© 2018 Institute of Food Technologists® Vol. 0, 2018 � Comprehensive Reviews in Food Science and Food Safety 21

https://doi.org/10.1016/j.chroma.2004.07.025
https://www.sciencedirect.com/science/article/pii/S0958694613002860
https://doi.org/10.1002/jsfa.2063
https://doi.org/10.1016/j.idairyj.2005.12.012
https://www.ncbi.nlm.nih.gov/pubmed/21221598
https://doi.org/10.1016/j.cbpa.2010.10.023
https://doi.org/10.1074/mcp.M111.014720
https://www.ncbi.nlm.nih.gov/pubmed/12975316
https://doi.org/10.1016/j.ifset.2012.11.003
https://www.ncbi.nlm.nih.gov/pubmed/23108291
https://doi.org/10.1155/2015/146840
https://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2881046tool=pmcentrezrendertype=abstract
https://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2881046tool=pmcentrezrendertype=abstract
https://doi.org/10.1016/j.foodchem.2010.04.083
https://doi.org/10.1021/jf102120c
https://www.sciencedirect.com/science/article/pii/S0308814610010241
https://doi.org/10.1177/1082013208106320
https://doi.org/10.1126/science.1183021.Regulation
https://doi.org/https://doi.org/10.1038/ni.3123
https://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3257691tool=pmcentrezrendertype=abstract
https://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3257691tool=pmcentrezrendertype=abstract
https://www.researchgate.net/publication/259392870_Design_of_a_serum_stability_tag_for_bioactive_peptides
https://www.researchgate.net/publication/259392870_Design_of_a_serum_stability_tag_for_bioactive_peptides
https://www.sciencedirect.com/science/article/pii/S0308814607008175
https://doi.org/10.1155/2010/287030
https://doi.org/10.3390/foods3020351
https://www.sciencedirect.com/science/article/pii/S1359511307000578
https://doi.org/10.1128/CMR.00056-05
https://doi.org/10.1016/j.foodres.2012.09.028
https://www.ncbi.nlm.nih.gov/pubmed/3732274
https://doi.org/10.1016/j.foodchem.2009.04.077
https://www.ncbi.nlm.nih.gov/pubmed/11999952
https://www.ncbi.nlm.nih.gov/pubmed/8637399
https://doi.org/10.1016/j.npep.2012.10.003
https://doi.org/10.1093/nar/gkm998


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

How does amino acid sequence of peptide influence its biological activity? . . .

isoelectric solubilization/precipitation process of turkey by-products. Poultry
Science, 93(9), 2347–2362. https://doi.org/10.3382/ps.2014-03953

Kim, G., Jang, H., & Kim, C. (2007). Antioxidant capacity of
caseinophosphopeptides prepared from sodium caseinate using Alcalase.
Food Chemistry, 104(4), 1359–1365. Retrieved from
https://www.sciencedirect.com/science/article/pii/S0308814607001471

Kim, S.-K., & Wijesekara, I. (2010). Development and biological activities of
marine-derived bioactive peptides: A review. Journal of Functional Foods,
2(1), 1–9. Retrieved from
https://www.sciencedirect.com/science/article/pii/S1756464610000046

Kim, S., & Mendis, E. (2006). Bioactive compounds from marine processing
byproducts? A review. Food Research International, 39(4), 383–393.
https://doi.org/10.1016/j.foodres.2005.10.010

Klotman, M. E., & Chang, T. L. (2006). Defensins in innate antiviral
immunity. Nature Reviews Immunology, 6(6), 447–456.
https://doi.org/10.1038/nri1860

Kolomin, T., Shadrina, M., Slominsky, P., Limborska, S., & Myasoedov, N.
(2013). A new generation of drugs: Synthetic peptides based on natural
regulatory peptides. Neuroscience & Medicine, 4, 223–252.

Kopf-Bolanz, K. A., Schwander, F., Gijs, M., Vergères, G., Portmann, R., &
Egger, L. (2014). Impact of milk processing on the generation of peptides
during digestion. International Dairy Journal, 35(2), 130–138.
https://doi.org/https://doi.org/10.1016/j.idairyj.2013.10.012

Korhonen, H. (2009). Milk-derived bioactive peptides: From science to
applications. Journal of Functional Foods, 1(2), 177–187. Retrieved from
https://www.sciencedirect.com/science/article/pii/S1756464609000085
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activity of casein and α s2 casein hydrolysates against the infectious
haematopoietic necrosis virus, a rhabdovirus from salmonid fish. Journal of
Fish Diseases, 36(5), 467–481.
https://doi.org/10.1111/j.1365-2761.2012.01448.x

Rojas-Ronquillo, R., Cruz-Guerrero, A., Flores-Nájera, A.,
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