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Electro-thermal Device Interaction in SPICE
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Abstract—An innovative modelling methodology for the sim-
ulation of electro-thermal interaction in power devices, based
on Neural Networks (NNs), is shown. The suitability of NNs
in modelling the complicated non-linear, temperature dependent
characteristic that power electronics devices feature, is shown.
The proposed methodology is particularly suited to be imple-
mented in electrical simulators. The approach can be divided
in two parallel steps: firstly, NNs are used to describe the
complex, highly non-linear electro-thermal characteristic of the
considered device; secondly, a non-linear RC-based thermal
model is generated, with a method published in a previous work.
These two sub-systems are coupled together in order to achieve a
self-consistent electro-thermal model. The modelling results are
validated against experiments with very satisfactory results. The
technique is explained in detail; advantages and limitations of
the method are then discussed.

Keywords: Electro-thermal modelling, Neural Networks,
Simulation, Compact modelling

This work has not been submitted elsewhere.

I. INTRODUCTION

Electro-thermal simulation is well known to be the most
appropriate way to simulate the dynamic of an electron device
under operating conditions; it is usually implemented in an
electrical simulator by coupling two subsystems, the first
describing the thermal behaviour of the device (which in
general depends on technology, packaging, and assembly), the
second the electro-thermal behaviour of the device itself. Fig. 1
shows the system architecture of the simulation setup.

Fig. 1. Block diagram of a fully-coupled electro-thermal MOSFET model.

Thermal models are usually made by combinations of
thermal resistors and capacitors which describe the heat
propagation through the structure. It is possible to classify
these compact models (also referred to as lumped since heat
propagation is actually modelled by lumped elements), under
two categories: physical and empirical ones.

Physical models tend to be complicated and more difficult
to generate and handle, because they are strictly linked to the
real structure and therefore carry physical sense. Empirical
models aim only at replicating a certain response of the
system, they are hence quicker to solve but no physical sense
can be attributed to them. Examples of different approaches
can be found in the work of Szekely [1]-[3] (about the RC
transmission line heat propagation, the Network Identification
Deconvolution and the concept of structure function) and
by the DELPHI project work on the Boundary Conditions
Independence (BCI) [4], [5]. Many compact model approaches
are purely linear [6]-[10]; to overcome this limitation, the
method developed in [15] is used in this work, which is based
on Finite Element Method (FEM) models [11]-[14].

Despite the great availability of device electro-thermal mod-
els provided by manufacturers, it is always useful to dispose
of methodologies to generate models tailored on the own
application, for instance, to improve numerical stability, model
flexibility of use, and so on.

This work deals with the generation of an electro-thermal
simulation setup based entirely on empirical models. An
electro-thermal analytical model of a MOSFET is developed
by using Neural Networks (NNs); this solution is especially
suited to improve convergence in electrical simulators.

Usage of NN in circuit modelling is nowadays a well
established methodology, examples of which can be found
in several works whose application focuses on different top-
ics like behavioral modelling, electro-magnetic compatibility
modelling, and device modelling [27]-[32]. In general, NNs
are used to learn the behaviour of a circuit, so that the network
is able to replicate its behaviour without implementing the
actual circuit. This offers of course an advantage in terms of
simulation speed.

Although modern electrical simulators allow the defini-
tion of models based on Look-Up Tables (LUTs), if too
many models in the schematic are defined by LUTs, the
simulator might experience difficulties in converging. The



NN must develop an analytical function which can describe
the ID = f(VGS , VDS , T ) measured characteristic. NNs are
advantageous in such tasks since:

• the user does not need to devise an analytical formula
which fits the characteristic of the device;

• the complexity of the analytical formula can (to a certain
extent) be reduced to the minimum necessary;

• thanks to the availability of NN-orientated frameworks in
free programming languages like python, automation of
the process is straightforward to implement, and netlist
writing can be easily performed.

The main drawback to such approach relates to extrapolation;
the model derived from the NN fits well the original data
within the range of values used to train it, however, extrapo-
lation has always to be carefully considered and it might lead
to grossly wrong results.

The demonstration of such approach is carried out by
using an ad-hoc developed board, where several devices are
soldered and operated in conditions where strong self-heating
is induced. This means, a strong electro-thermal feedback is
expected, and a SPICE model of the board is to be built. The
following sections will detail the followed procedure and recall
the necessary concepts about neural networks.

II. ARTIFICIAL NEURAL NETWORK ARCHITECTURE

An Artificial Neural Network (ANN) is a powerful tool
inspired by brain modelling studies [17]-[19], here a few basic
concepts are recalled for sake of readability. ANNs are used
thanks to their capability of learning a certain input-output
relation (image classification, function fitting, and so on). A
typical ANN is represented in Fig. 2.

Fig. 2. Simple ANN with input layer, hidden layer and output layer.

Basic components

Any ANN is composed by neurons connected by synapses.
A neuron implements the learning function by its activation

function fAN (x); commonly used functions are hyperbolic
tangent or sigmoid, amongst many other. The simplest ANN
architecture is composed of three neuron layers: input layer,
hidden layer, and output layer, as shown in Fig. 2. Bias neurons
can be added to improve the training process. Input neurons
accept input variables, output neurons describe the output
variables, while hidden neurons are those which are actually
responsible for the training process.

Application and ANN training

A physical phenomenon can in general be expressed by an
analytical formulation F , a function which accepts n inputs
and returns m outputs:

y = F(x) → [y0, . . . , ym−1] = F([x0, . . . , xn−1]) (1)

However, in many cases F is not known, but only the
observation of its response yi to a certain input vector xi

can be observed (with i being the i-th observation which can
be obtained during an experiment); only a set S of (x,y)
observed input-output points is therefore known. The task of
an ANN is to learn the relation expressed by the set S and
end up with an approximated G function which can capture
such behaviour. Usually, S = St ∪ Sv , where St is used as a
training set, and Sv as verification set, to check if G can predict
sufficiently well the behaviour described by the unknown F .
Eventually, the learning process is completed if the following
error becomes smaller than a certain threshold ε0:

ε =
∑
i

∥∥∥∥G(xi)−Fi(xi)

∥∥∥∥2 =

=
∑
i

∥∥∥∥G(xi)− yi

∥∥∥∥2 < ε0 (2)

Clearly i ranges over all the points available in the training
set St. Each synapse features a weight, which varies during
the ANNs’ training process. This is actually what makes the
ANN flexible: the values of the weights is modified during
each backpropagation learning step until the convergence
criterion is satisfied. At this point, the ANN is defined by its
topology, that is, how many neurons on how many layers, their
connections and the weights for each of these connections. In
this work, a Multi-Layer Perceptron (MLP) is used as network
topology.

ANN mathematical description

For the ANN to be implemented in a circuit simulator, its
analytical formula must be retrieved. This step is explained for
a MLP with 1 hidden layer, being the formulation more and
more complex, the higher the number of inner layers used.
It is also possible to demonstrate (universal approximation
theorem, [20]) that a single-hidden layer MLP is sufficient
to approximate any function to any accuracy (provided a
sufficient number of hidden neurons are used). Referring to
Fig. 2, where I = 2 input layer, H = 3 hidden layer, O = 1



output layers are present, inspection of the network returns the
following analytical formulation:

y0 = fAN

(H−1∑
p=0

wo0,hp · hp

)
=

fAN

(H−1∑
p=0

wo0,hp
· fAN

( I−1∑
q=0

whp,iqxq

))
(3)

A single hidden layer with H between 6 and 10 neurons is
tipically used (more neurons allow a better level of approxi-
mation) [21], [22].

A. Final remarks about choosing and training the ANN

This section wants to provide some insights behind the
rationale with which the ANN has been chosen and trained.
It has to be mentioned that no exact rules exist in order
to decide exactly how complex the ANN must be for a
certain application. Usually, an ANN with one hidden layer
is chosen, therefore its main structure is at least defined. This
is also due to the fact that for such an ANN, the process
of retrieving its analytical formulation (the combination of
weights and activation functions) is pretty straightforward,
while the complexity of the formulation increases with the
number of hidden layers. This choice is supported by the
Universal Approximation Theorem.

Once the topology is fixed, the number of hidden layers has
to be chosen. This is a trial-and-error process, which is best
achieved by training different ANNs at the same time and see
which one provides the best approximation with the minimum
amount of hidden neurons, and with and without bias. Usually,
adding bias neurons (such as in Fig. 3, see next section for
more details) adds flexibility in the ANN’s response.

Regarding the training, it is generally implemented by the
chosen tool and it is transparent to the user. In this work a GUI-
based tool has been used, however, the process can be moved
to programming tools such as Python, which offers many
libraries to deal with ANN with various degrees of simplicity
and performance. A parallel investigation, only mentioned
here, has been done using Pybrain [26], a python module
which offers a very user friendly Application Programming
Interface (API) to the development and usage of ANNs.

III. APPLICATION OF ANNS TO MOSFET
ELECTRO-THERMAL MODELLING

In this work, an MLP has been used to reconstruct an
analytical formulation for the electro-thermal model of a
given MOSFET. In particular, the following relation had to
be reconstructed:

y = F(x) ⇐⇒ ID = F(VGS , VDS , Tj) (4)

where Tj is the average channel temperature in the device. An
ANN with 3 inputs and 1 output will be necessary. Its structure
is shown in Fig. 3. In order to model the drain current of
a power MOSFET, MLP with bias, which are networks with
constants neurons [23], and sigmoid activation functions, were

Fig. 3. MLP topology used to model the chosen MOSFET. In red the biasing
neurons.

used. The MLP network has a fixed topology to simplify the
extraction of the weights. Fig. 3 shows the MLP found to be
suitable in this case, with normalization functions at the inputs
and de-normalization function at the output (indicated by N
and N−1 blocks, respectively). Quantities should always be
normalized when operating with ANNs. In this work, the ANN
is used to fit only the static ID characteristic of the device;
any switching behaviour is therefore neglected. This aspect
is considered and discussed at the end of the paper, where
a possibility to extend this approach to modelling of electric
transients as well is proposed. In Fig. 3 the neurons named i3
and h9 are bias neurons for the input layer and the hidden
layer, respectively. Bias neurons are not strictly necessary,
but they add flexibility to the function implemented by the
ANN. It is in general suggested to try to train two different
ANNs, one without and one with bias neurons. Normally, only
one bias neuron per layer has to be added. They do not add
significant computational burden to the overall network, being
just one neuron per layer needed. In this work, their presence
was found to be beneficial for the fitting and therefore they
have been included. They are basically introducing a degree of
freedom in the fitting routine, which is otherwise performed
with normalized functions which output values belong to [0, 1].

A. Collection of the measurement data

Once set the MLP topology, it is necessary to train the net-
work so that a set of weights w can be obtained. In this work,
the training of the ANN was carried out via backpropagation
and the software tool Neuroph [24]. This software allows to
extract the trained network and to convert the data in SPICE
format. The training set was collected by measurements made
with a HP4142B semiconductor parameter analyzer. To set
the desired temperature, the test board was put in a DY110
Angelantoni Temperature and Climatic Test Chamber. Pulsed
sweep measurements has been set to avoid the device self-
heating, triggering them at thermal stationary states, when the
temperature of the chamber is stable and it is the same on
the whole system under test. The test bench architecture to
measure the training set is shown in Fig. 4.



Fig. 4. Block diagram of the test bench used to measure the drain current
ID = f(VGS , VDS , T ) for the MOSFET as Device Under Test (DUT in the
schematic).

The MOSFET drain [33] was connected to the power supply
by RD = 4.7 Ω. In addition to the resistance RD, in the
model, it was important to consider the parasitic resistance RS

due to copper tracks, solder joints and cables between board,
chamber, and power supply. Parasitic resistances at the source
might influence VGS especially in cases such as this where
the device was biased with VGS values just slightly above the
gate threshold voltage. In this case, a value of 72 mΩ was
measured, and then the actual circuit to consider is the one in
Fig. 5.

Fig. 5. Schematic of the circuit made to validate the electro-thermal model.

Results of the learning process

The device was then characterized and the family of output
curves where saved, thus generating the training set S. A
complete set of data ID = f(VGS , VDS , T ) was obtained
by extracting the device’s output characteristic for different
temperatures. Temperature was swept between [20, 120] oC in
steps of 20 oC, VDS between [0, 3] V in 0.05 V steps, and VGS

between [2, 2.5] V with steps of 0.05 V. Half of the dataset was
used for training, while the remaining half for verification.
Every second point in VDS was taken to create the training
set. For instance, if VDS were swept between [0, 3] with steps

of 0.1 V, the points at VDS = 0, 0.2, 0.4, . . . , 3.0 would be
used for training, while VDS = 0.1, 0.3, 0.5, . . . , 2.9 would
be used for verification. Scrambling the dataset can be also
recommendable, because it somehow forces the ANN to learn
over a less structured pattern and therefore reaching a more
stable set of weights. This set is then used to train the ANN as
described and the comparison between measured and learned
curves is shown in Fig. 6. A note regarding the limited range
of voltages used to characterize the devices. The work wants
to focus on the modeling of the self-heating in the device and
this can be achieved in an easier way by keeping the device
in a high-ohmic biasing condition, which means keeping the
gate overdrive VGS − Vth low, where Vth is the MOSFET’s
threshold voltage. The limitation in VDS , instead, comes from
the fact the used Source-Measurement-Unit (SMU) is limited
to a maximum current of 10 A. This means, SMU compliance
is reached pretty soon when VGS > 2.3 V and VDS > 3÷4 V,
where the device enters fully Ron mode. In any case, the part
of the characteristic which is more demanding to be fitted
is indeed for low VGS and VDS , therefore the admittedly
reduced range does prove anyway the flexibility of the ANN
for such task. As shown, the agreement between simulations

Fig. 6. Comparison between measurement (red dots) and ANN-learned model
(black lines) for two different ambient temperatures (20oC, top and 120oC,
bottom) for different gate-source voltages, VGS = (2.1, 2.25, 2.4, 2.5)V.

and measurements is excellent, thanks to the number of fitting
parameters made available by the ANN. Summarizing, the



procedure to build the temperature dependent electrical model
using MLP is the following:

1) collect accurate raw data that describe the electrical
behaviour of the device by measurements at well-known
temperatures;

2) normalize the raw data to create a training set for the
MLP;

3) train the MLP: if the error does not decrease to an
acceptable value, the topology will be changed adding
a neuron in the hidden layer;

4) build the MLP SPICE model using the extracted
weights; this means using a behavioural voltage-
controlled-current-source (VCCS) which implements the
analytical formula that the ANN describes.

IV. THERMAL MODELLING

The process of determining a suitable thermal model for
the considered structure is fully described in [15]; here, just
a short summary of the methodology is shown. Basically, the
thermal model to be coupled to the electro-thermal MOSFET
model previously described must model the device junction
temperature.

Fig. 7. Non-linear Foster thermal network.

To do so, a combined approach is developed, where infrared
thermal measurements are used to tune a three-dimensional
Finite Element Model, from which the thermal transient re-
sponses are extracted. The test fixture used in this work is
shown in Fig. 8. For a complete description of the setup, the
experimental results and the thermal modelling process, the
reader should refer to [15] which describes the full work in
detail.

The non linearities of the system are captured by a single
RC Foster network, whose resistive terms are temperature-
dependent. The temperature dependence of the terms is ob-
tained by a set of thermal impedances, each of which ex-
tracted at different power dissipation levels. The topology of
the obtained network is that depicted in Fig. 7. For further
details about the method, the reader is invited to refer to the
mentioned work.

V. COUPLED ELECTRO-THERMAL SIMULATION

Once the electro-thermal and the thermal model are built,
they can be coupled in order to obtain a self-consistent
SPICE electro-thermal model able to reproduce the fully-
coupled electro-thermal behaviour of a heat source as a power
MOSFET on a board, as done here to demonstrate the validity
of the new proposed method. The main advantage of the

Fig. 8. Manufactured board to investigate self-heating and mutual-heating
effects between the different transistors. Reprinted from [15].

proposed methodology is the capability to produce extremely
accurate models, even without a deep knowledge of the device
structure. The self-consistent [16] electro-thermal model built
with this methodology can be directly simulated through a
SPICE simulator [25]. A SPICE-based approach is desirable
in case mission profiles have to be simulated [16]. The
implementation of the fully-coupled simulation setup consists
of the following two blocks:

1) a non-linear Foster network that simulating the non-
linear thermal behavior;

2) an MLP network simulating the electro-thermal MOS-
FET behavior.

The non-linear Foster network is built using standard SPICE
capacitors and SPICE behavioral models (B-Models), in or-
der to model the temperature dependent thermal resistances.
Differently, the electrical model based on MLP is modeled



through a unique B-Model (which implements the analytical
function to which the ANN converged). The final circuit which
is simulated is shown in Fig. 9.

Fig. 9. Schematic of the simulated circuit where the behavioural model of
the MOSFET is defined in terms of the analytical function that the ANN
implements.

VI. VALIDATION AND RESULTS REVIEW

Some tests on the analysed device were devised to a
steady-state comparison between measurements and SPICE
simulations. FEM simulations were used to reconstruct the
channel temperature in the device, being inaccessible from the
measurement point of view [15]. The error was evaluated for
VDS , ID and the channel temperature increase ∆T , respec-
tively, according to the following formulas:

|EV %| = |VDS ,meas − VDS ,sim |
VDS ,meas

× 100 (5)

|EI%| = |ID,meas − ID,sim |
IDS ,meas

× 100 (6)

|ET ,FEM%| = |∆TFEM −∆Tsim |
∆TFEM

× 100 (7)

|ET ,meas%| = |∆Tmeas −∆Tsim |
∆Tmeas

× 100 (8)

The thermal error is calculated with respect to a reference
value which is either measured (when available) or FEM-
simulated, depending on the fact if this reference temperature
was either accessible by measurements (e.g. infrared thermog-
raphy on the surface), or necessarily extracted by tuned FEM
simulations (in case of an internal temperature, accessible only
via FEM simulation tuned on thermal measurements). The
simulations performed with the proposed method showed good
results, because for each comparison, the error never exceeds
10%, as can be seen in TABLE I. Considering that no fitting
parameters are used in this approach, and that a fully coupled
electro-thermal dynamic is solved, an error below 10% is
acceptable. It is also necessary to note that the highest error
occurs at low VDD , for low power dissipation conditions: this
means that in this case, the absolute level of the quantities
involved is anyway small. To show the capability of the
model in a transient situation, the test case VGG = 2.3 V
and VDD = 3 V is simulated, with the results shown in

TABLE I
ERRORS ON VDS , ID AND THE CHANNEL TEMPERATURE INCREASE IN

THE SELECTED CASE STUDIES.

VDD VGG |EV %| |EI%| |ET%|
4 2.15 5.2 2.1 2.5
3 2.15 2.8 2 0.2
2 2.15 2.4 2.8 1.4
4 2.3 8 1.2 4.8
3 2.3 7.8 1.3 4.5
2 2.3 8.2 1.1 4.5
4 2.45 6.9 0.2 3.9
3 2.45 1.4 0 2.1
2 2.45 10.4 0.2 8.3

Fig. 10. Simulation of such pulse takes very few minutes on a
typical simulation workstation, compared to the few hours it
would take to solve the thermal model only by Finite Element
simulations.

Fig. 10. Transient simulated dissipated power and transient channel tempera-
ture increase of the MOSFET M3 applying a biasing step with VGG = 2.3V
and VDD = 3V.

Here the self-heating of the device starts to be visible
already after 1 ms, where the power dissipated by the device
starts to drop. Since the electrical bias remains unchanged
during time, the device will progressively decrease its power
dissipation, since channel conductivity will decrease with
temperature.

VII. LIMITATIONS AND FURTHER DEVELOPMENT

The proposed approach shows an alternative way to generate
a device model based on measurements. The reasons to follow
such path can be the unavailability of accurate models, need
of tuning a model on a specific device, solving convergence
problems, just to mention some. In this section however the
limitations of such approach are discussed.

Firstly, the developed electro-thermal model of the MOS-
FET is a static one, meaning that no electrical-transient effects
are considered. In the overall model, the thermal transients
are considered to be the most relevant ones, and the electrical
ones are neglected. This means, that in a typical MOSFET
model such as in Fig. 11, the ANN-description is limited to
the transconductance generator, that is, its DC characteristic
(such model can be used also for large-signal simulations).
The effect of internal parasitic capacitances is not accounted
by the ANN.



Fig. 11. Simple transient model of a MOSFET with the part modelled by
ANN enclosed by dashed line.

The limitation in missing the parasitic capacitances CGS

and CGD will result in a model unable to model the transient
dynamic at the gate or the Miller effect, this might be of
concern if the device is used in a high frequency DC/DC
converter or in a linear amplifier, for instance.

Provided that a gate input model is present, the MOSFET
model can also be used in switching applications and switching
losses would be accounted (at the moment, the ANN model
does not include such parameters). Without a gate model,
switching losses cannot be accounted for, because the device
would respond immediately to any change in VGS . However,
the addition of a suitable gate model will enable the accounting
of switching losses, since the electro-thermal feedback is
always active, also when VDS is falling due to the rise of
VGS and viceversa.

Concluding, the lack of a gate model which accounts for
the dynamic of VGS does not allow the model in is current
form to account for switching losses. The addition of input
capacitances would fill this gap and enable the model to
account for temperature-dependent switching losses. This is a
topic that will be addressed in future extensions of this work.

VIII. CONCLUSIONS

In this paper, a methodology to implement MOSFET fully
coupled, electro-thermal simulations based on compact, em-
pirical models has been shown. The novelty of this approach
resides in the usage of Artificial Neural Networks as a tool
to obtain an analytical description of a complicated device,
when only a LUT is available; LUT are in general unsuited
for electrical simulators, leading to convergence problems. The
proposed method solves this issue. The proposed methodology
has shown very good results. The electrical model devel-
oped via MLP demonstrated to be an alternative to SPICE
MOSFET model, with a good agreement with measurements.
In fact, the MLP SPICE implementation demonstrated to be
an easy alternative to complex models. Moreover, this kind
of approach can be applied to any other electronic device.
Finally, the combination of such MLP-based model with a
non-linear thermal model, returned very good results once
compared to measurements, without showing any convergence
problem. The model at the moment is limited to slow electrical
transients due to the lack of an input gate model. The addition
of such input gate model, to be addressed in future extensions

of this work, will enable the model to account for temperature-
dependent switching losses as well.
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