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Abstract
An open boundary algorithm for weakly compressible Smoothed parti-

cle hydrodynamics (WCSPH) numerical models is presented. Open bound-
ary conditions are implemented by means of buffer regions whereby physical
quantities are either imposed or extrapolated from the fluid region using a
first-order accurate SPH interpolation. A unique formulation has been de-
veloped which can be used for inflow, outflow, and mixed open boundary
conditions. The extrapolation process from the fluid domain encompasses
quantities such as velocity, density, pressure and also free-surface elevation.
The algorithm has been parallelized for both CPU and general-purpose on
graphics processing units (GPGPU) and it has been tested against the 2-D
reference solutions of flow past a cylinder and open channel flow. Finally, its
capability to simulate 2-D and 3-D complex flows such as water waves and
flow past a surface-piercing extraterrestrial submarine is demonstrated.
Keywords: SPH, inlet, outlet, open boundary, free surface, CFD
2010 MSC: 76M28, 65Y05, 65Z05

1. Introduction1

Smoothed particle hydrodynamics (SPH) is a numerical method originally2

developed for astrophysical modeling [1, 2] and later adapted for free-surface3
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flow simulations [3, 4]. In recent years, the use of SPH as a predictive tool4

has become more significant due to its application to several different in-5

dustrial and environmental problems [5, 6]. Capabilities such as simulating6

interface flows, strong nonlinearities, and fluid-structure interactions in the7

presence of moving objects are some of the reasons behind its effectiveness as8

a computational fluid dynamics (CFD) technique [7, 8, 9, 10, 11]. However,9

despite the increasing success of SPH numerical schemes, there are differ-10

ent areas where further development is still required in order to increase the11

number of applications that can benefit from a SPH approach, see [12, 13]12

for a comprehensive review.13

One of such areas is represented by the discretization of boundary con-14

ditions, which due to the Lagrangian nature of the SPH numerical scheme15

are more complicated than in established Eulerian approaches. Particularly,16

inflow and outflow boundary conditions represent a necessity in various fluid17

dynamics simulations in order to limit the size of the computational domain18

to a region of interest while avoiding spurious oscillations that can compro-19

mise the simulation accuracy. Robust open boundaries are thus a required20

tool to simulate several engineering and environmental problems, such as21

fluid flow in rivers and channels. They are also essential for coupling SPH22

schemes with other numerical models [14, 15].23

The topic of open boundaries in SPH has been previously addressed by24

different authors. A non-reflecting open boundary formulation for internal25

flows has been proposed by Lastiwka et al. in [16], adopting Riemann in-26

variants and, more recently, by Alvarado-Rodríguez et al. in [17], adopting a27

different formulation based on an anisotropic wave equation for the velocity28

field at the outlet. Vacondio et al. [18] introduced open boundary conditions29

in the framework of an SPH model for shallow water equations, also adopting30

Riemann invariants. Federico et al. [19] presented an implementation of open31

boundary conditions for weakly compressible SPH scheme suitable for free-32

surface flow. All different approaches cited above are based on the creation33

of buffer layers for inflow/outflow regions where buffer particles are created34

and deleted. Ferrand et al. [20] introduced a different approach based on the35

generalization of the semi-analytical boundary conditions method to impose36

unsteady open boundaries in a weakly compressible SPH model. Further-37

more, different open boundary formulations in the framework of incompress-38

ible SPH (ISPH) models have been proposed in literature [21, 22, 23].39

The main objective of the present work is to develop robust and accurate40

open boundary conditions that can be implemented in a weakly compressible41

2
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SPH parallel solver to simulate real engineering problems with free-surface42

flows. The algorithm has been developed in the framework of the established43

open-source solver DualSPHysics [24], which incorporates modeling capabil-44

ities for both CPU and GPU computing. The code encompasses some of the45

most advanced and well known optimizations of the CUDA architecture, as46

well as GPU optimizations that are relevant to the SPH method, see [25] for47

more details. The code has also been validated for use on more than one48

device (multi-GPU SPH) [26], allowing simulations of free-surface problems49

with a total number of particles exceeding 109 on just 64 graphics cards.50

The approach based on buffer layers has been herein adopted because it51

can be efficiently parallelized on hybrid architectures and applied to both52

2-D and 3-D simulations. Buffer regions prevent errors generated by the53

kernel truncation near the boundaries and particles inside the buffer areas54

are created and/or deleted to prevent the formation of voids. To enforce55

flow conditions at the boundaries, velocity and/or pressure can be assigned56

to the particles inside the buffer region. The algorithm is developed in such57

a way that physical information of the buffer particles can also be extrapo-58

lated from the fluid domain using a first order consistent procedure based on59

ghost points located in the fluid domain near the boundary. Additionally, a60

methodology to extrapolate (or impose) time-varying free-surface elevation in61

the buffer regions has been developed, allowing the generation of free-surface62

waves while minimizing the reflection of numerical noise into the fluid.63

This unique open boundary condition formulation can be used to im-64

pose inflow/outflow boundary conditions according to the different physical65

quantities imposed and/or extrapolated from the flow field. The process of66

extracting physical quantities from the inside of the fluid domain to the buffer67

particles allows to convey time-dependent pressure fluctuations and 2-D/3-D68

vortex structures across the boundaries, preventing disturbances from dif-69

fusing into the fluid. One of the novelties of the proposed algorithm is that70

there is no distinction between an inflow and an outflow buffer since the same71

class of particles is used in both cases. A buffer layer can be both inlet and72

outlet depending on the type of problem to be solved, and thus on how the73

properties of these particles are calculated. Another novel aspect is repre-74

sented by the ability of the present formulation to enforce unsteady velocity75

and pressure profiles and/or pressure and velocity gradients along any given76

direction in the buffer regions, as well as unsteady free-surface elevation.77

The manuscript is organized as follows: after a brief review of the main78

principles behind SPH interpolations in Section 2.1 and a summary of the79

3
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weakly compressible SPH (WCSPH) equations in Sections 2.2 and 2.3, the80

proposed open boundary algorithm is discussed in detail in Section 3. Sub-81

sequently, open boundary conditions are employed to simulate flow past a82

circular cylinder at different Reynolds numbers in Section 4.1, open chan-83

nel flow with a convergence analysis in Section 4.2 and wave generation in84

Section 4.3. Finally, Section 4.4 presents an application of the algorithm to85

model the 3-D flow past the Titan submarine, designed by NASA to navigate86

the liquid hydrocarbon seas of Saturn’s largest moon. Some conclusions and87

future work are drawn in Section 5.88

2. SPH formalism89

Smoothed particle hydrodynamics is one of the most advanced particle90

methods in numerical hydrodynamics, particularly suited for the simulation91

of flow with a free surface and characterized by large gradients. In the next92

subsections a brief description of the SPH formalism and properties is pre-93

sented, as well as the most relevant equations for WCSPH.94

2.1. Mathematical Background95

The discretization of the computational domain in SPH is made through96

a set of Lagrangian points, identified as particles. Each particle has material97

properties (e.g. velocity, density, etc.) and retains flow information at its98

location in the computational space. The particles also act as interpolation99

points at which the convolution of a field function evaluated at neighboring100

particles with a smooth interpolant (kernel) provides an approximation of101

that same function at the target particle. The two SPH interpolation steps102

performed on a generic function, f(x), are provided below:103

〈f(x)〉 ,
∫

Ω
f(x′)W (x− x′, h) dx′ (1)

〈f(xk)〉 =
N∑

l=1

ml

ρl
f(xl)Wk,l (2)

where x is the target position vector, x′ represents the position vector of a104

generic particle located within the kernel support Ω, N is the total number105

of particles inside the kernel domain centered at particle k, ml and ρl are106

4
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the mass and density of the interpolating particle l, and W is the kernel107

function, with (·)k,l = (·)k − (·)l. The angular brackets denote the SPH ap-108

proximation. The parameter h is the smoothing length, controlling influence109

of neighboring particles in the computation of f(x). A simple substitution110

of the generic function f(x) with the density function ρ(x), leads to the SPH111

density estimate for particle k, ρ(xk), given as:112

ρ(xk) =
N∑

l=1
mlWk,l (3)

which constitutes the starting point for deriving a set of conservation equa-113

tions in SPH, presented in the next section.114

2.2. Conservation Equations and Pressure Treatment115

In the present work SPH is used to simulate free-surface flow with small116

characteristic Mach number, thus compressibility effects are negligible. The117

continuity and Navier-Stokes equations in Lagrangian form for a weakly-118

compressible fluid are:119

dρ

dt
+ ρ∇ · u = 0 (4)

120 du
dt

= −1
ρ
∇P + g + 1

ρ
∇ · τ (5)

where d(·)/dt = ∂(·)/∂t + v · ∇(·), ∇ (·) is the gradient operator, ∇ · (·)121

is the divergence operator, u is the velocity vector, P is the pressure, ρ is122

the fluid density, g is gravity, and τ is the deviatoric component of the total123

stress tensor. Using the kernel and particle approximations in Equations (1)124

and (2), a set of conservation equations for WCSPH is obtained as follows:125

dρk
dt

=
N∑

l=1
mlukl · ∇kWk,l (6)

duk
dt = −

N∑

l=1
ml




Pl + Pk

ρl ρk


∇kWk,l − Πk,l


+ g (7)

5
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To provide a closure relation for pressure the following equation of state is126

employed:127

Pk = ϕ(κγk − 1) (8)

with κk = ρk/ρ0, γ being a coefficient and ρ0 being the fluid reference density.128

It is commonly accepted to adopt the values γ = 7 and ρ0 = 103 kg/m3 as129

optimal values for water simulations with WCSPH algorithms [27]. The130

coefficient ϕ controls the density variations within the limits imposed by131

stability criteria and is function of the numerical speed of sound c0 = c(ρ0),132

as explained in more details in [28, 29]. The term Πk,l in Equation (7)133

accounts for viscous and turbulent stresses and an expression is given by:134

Πk,l =



 4ν0xk,l · ∇kWk,l

(ρk + ρl)(x2
k,l + η2)


uk,l +


 τ

∗
l

ρl2
+ τ ∗k
ρk2


∇kWk,l


 (9)

where η = 0.1 h is used to avoid singularities in the denominator. Both135

laminar and turbulent stresses are considered. The laminar portion is given136

by the first term in Equation (9), with ν0 = µ/ρ0 being the fluid kinematic137

viscosity, and is based on the discretization proposed by Lo and Shao [30].138

Conversely, a large-eddy simulation (LES) approach is used to model the139

turbulent stresses, τ , in the second term of Equation (9), as proposed in [31].140

2.3. Other Relevant SPH Aspects141

DualSPHysics includes the capability of activating a corrective term in the142

continuity equation to weaken the high-frequency low-amplitude oscillations143

affecting WCSPH density fields due to the natural disorder of the Lagrangian144

particles. This diffusive term is added to the right-hand side of Equation (6)145

and has the form:146

2δhc0

N∑

l=1
ml

(
1− ρk

ρl

)
xk,l · ∇kWk,l

|xk,l|2
(10)

This represents the original δ-SPH term formulated in [32], with the param-147

eter δ used to tune the intensity of the diffusion (inactive when δ = 0).148

A second important aspect is anisotropic particle spacing, a critical stabil-149

ity issue in SPH as particles cannot maintain a uniform distribution in certain150

6
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flow conditions. The result is the introduction of noise in both the velocity151

and pressure fields, as well as the creation of voids in certain areas of the152

fluid domain. To address this issue, Xu et al. [33] have proposed a particle153

shifting algorithm. The algorithm has firstly been created for incompressible154

SPH, but can be extended to WCSPH models, as done by Vacondio et al.155

in [34, 35]. The shifting correction forces the movement of particles towards156

areas with lower particle concentrations, allowing the domain to maintain157

a near-uniform particle distribution and eliminating any voids that may oc-158

cur. An improvement on the initial shifting algorithm has been proposed159

by Lind et al. [36], where Fick’s first law of diffusion is used to control the160

shifting magnitude and direction. Assuming that the flux, i.e. the number161

of particles passing through a unit surface per unit time, is proportional to162

the velocity of the particles, a shifting velocity and subsequently a particle163

shifting distance, δr, can be modeled as:164

δr = −D∇C (11)

where D is the diffusion coefficient that controls the shifting magnitude and165

absorbs the constants of proportionality, and ∇C is the gradient of the par-166

ticle concentration. The latter is found using the SPH gradient operator,167

whereas D is computed following the approach proposed in Skillen et al.168

[37], wherein D = Ah|u|2. A is a dimensionless constant that is independent169

of the problem setup and discretization, h is the smoothing length, and | · |2170

indicates the 2-norm operator. The effectiveness of the shifting algorithm171

is strongly dependent on the kernel having a full support, and this clearly172

poses an issue in the vicinity of the free surface, where the kernel is trun-173

cated. The correction proposed in [36] limits the diffusion in the direction174

normal to the free surface, while allowing shifting in the direction tangent to175

the free surface. To check if a particle is in the vicinity of the free surface,176

the divergence of its position vector is calculated as:177

∇ · r =
N∑

l=1

ml

ρl
rk,l · ∇kWk,l (12)

and the result is compared with the threshold value of ∇ · r at the free178

surface, AT . In the present work AT is assumed equal to 1.5 in 2-D and 2.5179

in 3-D, as suggested in Lee at al. [38], Lind et al. [36], and Mokos et al.180

7
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[39]. If ∇ · r ≤ AT , the shifting distance in Equation (11) is multiplied by a181

correction coefficient, AFS, written as:182

AFS = ∇ · r− AT
AFK − AT

(13)

where AFK is the value of the divergence of the position in the case of a full183

kernel support, given by AFK = 2 in 2-D and AFK = 3 in 3-D.184

3. Open Boundary Algorithm Rationale185

Several types of boundary conditions are already available in DualSPHysics186

to simulate a variety of engineering applications. Some examples are the dy-187

namic boundary particles [40], floating bodies [7], SPH-DEM coupling [8],188

and periodic boundary conditions [41]. Nevertheless, none of these formula-189

tions is appropriate when the computational problem requires specific open190

boundary conditions to be enforced at the domain edges. The classic example191

of flow past an object is one of such cases, where usually an inflow velocity192

needs to be prescribed at the inlet while other velocity or pressure conditions193

can be either prescribed or extracted from the fluid domain at the outlet.194

To address this issue, an open boundary algorithm has been implemented in195

DualSPHysics. The sketch in Figure 1 briefly summarizes the working prin-196

ciples of the algorithm in the generic case of a fluid flowing near a buffer area197

identifying an open boundary. The innermost dashed curve represents the198

buffer threshold boundary, i.e. the fluid-buffer interface, followed by a layer199

of SPH particles used to enforce certain boundary conditions. The buffer200

width is chosen to equal or exceed the kernel radius so to ensure full kernel201

support for the fluid particles in the near proximity of an inlet or outlet.202

Two ways of providing the information to an open boundary are consid-203

ered: physical quantities are either assigned a priori or extrapolated from204

the fluid domain to the buffer zones (inflow and outflow) using ghost nodes.205

A similar idea is used in [42] to enforce closed boundary conditions. As can206

be seen in Figure 1, the position of the ghost nodes is obtained by mirroring207

the boundary particles into the fluid along a direction that is normal to the208

open boundary. In order to calculate fluid quantities at the ghost nodes, a209

standard particle interpolation would not be consistent due to the proximity210

of these points to an open boundary, which translates into the lack of a full211

kernel support. The method proposed by Liu and Liu [43] is thereby adopted212

8
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to retrieve first order kernel and particle consistency. The multi-dimensional213

first-order Taylor series approximation of the field function f(x) multiplied214

by the kernel function evaluated at particle k, Wk(x), and its first order215

derivatives, Wk,β(x), are given by:216

∫
f(x)Wk(x)dx = fk

∫
Wk(x)dx + fk,β

∫
(x− xk)Wk(x)dx (14)

∫
f(x)Wk,β(x)dx = fk

∫
Wk,β(x)dx + fk,β

∫
(x− xk)Wk,β(x)dx (15)

Here β is an index going from 1 to d, the total number of dimensions. Equa-217

tions (14) and (15) form a system of d + 1 equations in d + 1 unknowns, i.e.218

fk and fk,β. Using particle notation, the solution to this system is found as:219

fk =

∣∣∣∣∣

∑
l flWkl∆Vl

∑
l(xl − xk)Wkl∆Vl∑

l flWkl,β∆Vl
∑
l(xl − xk)Wkl,β∆Vl

∣∣∣∣∣
∣∣∣∣∣

∑
l f(x)Wkl∆Vl

∑
l(xl − xk)Wkl∆Vl∑

l f(x)Wkl,β∆Vl
∑
l(xl − xk)Wkl,β∆Vl

∣∣∣∣∣

(16)

fk,β =

∣∣∣∣∣

∑
lWkl∆Vl

∑
l flWkl∆Vl∑

lWkl,β∆Vl
∑
l flWkl,β∆Vl

∣∣∣∣∣
∣∣∣∣∣

∑
lWkl∆Vl

∑
l(xl − xk)Wkl∆Vl∑

lWkl,β∆Vl
∑
l(xl − xk)Wkl,β∆Vl

∣∣∣∣∣

(17)

These have been employed to find the value of fo at the open boundary given220

the corrected values of fk and fk,β at the ghost nodes:221

fo = fk + (ro − rk) · ∇̃fk (18)

where ∇̃fk is the corrected gradient calculated at the ghost nodes.222

As previously mentioned, one of the novelties of the proposed algorithm223

is that there is no distinction between an inflow and an outflow buffer since224

the same class of particles is used in both cases. A buffer layer can be both225

inlet and outlet depending on the type of problem to be solved, and thus226

on how the properties of these particles are calculated. For example, if the227

9
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buffer has to be used as an inlet, a velocity and water depth can be specified228

while the pressure or density can be extrapolated from the fluid particles.229

Figure 2 further illustrates the working principles of the open boundary230

algorithm. To define the reference surface for the placement of buffer parti-231

cles and ghost nodes, a series of fixed points is created along a user-defined232

curve in 2-D or surface in 3-D. Buffer particles are created along the normal233

direction to the open boundary, starting from the fixed points and only for234

depths below the defined water level. The latter can be either user-defined235

or extrapolated from the ghost nodes using the divergence of the position236

shown in Equation (12). A ghost node is considered above the free surface if237

∇ · r ≤ 1.5 in 2-D and ∇ · r ≤ 2.5 in 3-D. This procedure implicitly assumes238

that the water level computed inside the fluid domain via the ghost nodes239

is mirrored in the buffer zone. Buffer particles adjacent to the fluid domain240

are generated starting at half the value of the particle spacing from the fixed241

points, and continuing in the normal direction to the boundary until the full242

radius of the kernel function is covered. As shown in Figures 2b to 2d, when243

a buffer particle crosses the fluid-buffer interface it becomes a fluid particle244

and simultaneously a new boundary particle is initialized in the buffer at a245

position rnew:246

rnew = [rfluid − (rfluid − rfixed) · nfixed − Lb] rfixed (19)

where rfluid and rfixed are respectively the positions of the buffer particle247

converted into a fluid one and that of the associated fixed point, Lb is the248

buffer length (usually equal to 2h), and nfixed is the unit vector at the fixed249

point normal to the fluid-buffer interface, always pointing inside the fluid250

domain. The process is similar for the transition of fluid particles into a251

buffer region: when a fluid particle crosses a fluid-buffer interface it becomes252

a buffer particle and follows the flow conditions specified in the buffer. In this253

case there is no creation of new particles following this transition. Finally,254

when a buffer particle crosses the domain edge it is discarded from the com-255

putational space. Figures 2c and 2d show how changes in liquid depth are256

tackled by the algorithm: the maximum height of the buffer area is bounded257

by the largest vertical coordinate of the fixed points. On the other hand,258

the water level can be either imposed by the user or extrapolated from the259

near fluid. The extrapolated water level is computed as the maximum depth260

of the fluid particles as interpolated at a distance 2h from the inlet limit.261
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When the water level increases, new buffer particles are created to reach the262

new water level (Figure 2c). Conversely, when the water level decreases, any263

buffer particle above the water level is removed (Figure 2d).264

In addition to the most common use of the buffer regions for open bound-265

aries in SPH, the new algorithm presents a number of novel features that266

make it attractive for use in real engineering problems. One of these is267

the capability of enforcing unsteady velocity and pressure profiles and/or268

pressure and velocity gradients along a given direction in the buffer areas.269

Another, as previously mentioned, is the ability to simulate variable free-270

surface elevation, an essential aspect in flow with a free surface because of271

the presence of waves entering and exiting the computational domain. Fi-272

nally, an important feature that has been implemented is the dual behavior273

of buffer areas, whereby flow reversion is possible. When the velocity is ex-274

trapolated from the fluid domain it is also possible to handle mixed velocity275

fields, where some fluid particles are moving towards and some others are276

moving away the buffer region. This flexibility of the open boundary algo-277

rithm is particularly important when simulating flow with strong rotations278

or oscillating nature, such as pulsatile flow. The availability of the current279

algorithm on both the parallel CPU and GPU versions of DualSPHysics al-280

lows considerable speed-ups when the code runs on high-end graphics cards281

or CPU clusters. This is of utmost importance when simulating real-life engi-282

neering problems since it allows using a large number of particles to discretize283

and study high-resolution flow in complicated geometries within reasonable284

computational time.285

4. Results and Discussion286

4.1. Flow Past a Circular Cylinder287

Fluid flow past a circular cylinder is investigated to test the effectiveness288

of the proposed algorithm. This problem presents many numerical and ex-289

perimental solutions, see for example Liu et al. (1998) [44], Calhoun (2002)290

[45], Marrone et al. (2013) [42], Vacondio et al. (2013) [34], and is therefore291

suitable for benchmarking SPH results. A cylinder of diameter D = 0.1 m292

is centered at the origin of a 2-D Cartesian coordinate system O(x, y), as293

shown in Figure 3. The circular object is discretized by dynamic boundary294

particles [24]. The cylinder is surrounded by a viscous fluid filling a com-295

putational domain of dimensions 20D × 25D. These dimensions are chosen296

in accordance with those in [34] to minimize boundary effects and avoid a297
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cumbersome particle convergence study, which is instead left for the next298

study case. The fluid is initialized with a constant density, ρ∞ = 103 kg/m3,299

a constant x-velocity, U∞ = 1 m/s and a null y-velocity. The Reynolds300

number is defined as Re = U∞Dν−1, where ν is the kinematic viscosity in301

m2/s, systematically varied to span a range of Reynolds numbers between 20302

and 200. Two buffer areas are used to enforce inflow and outflow boundary303

conditions. The left buffer (Buffer 1) represents the inlet zone, having the304

same height as the fluid domain and a width of four particle layers. This305

is done to enforce full kernel support during the particle approximation. A306

Dirichlet boundary condition for the velocity is imposed in the inlet zone,307

with the y-velocity of the particles set to zero and the x-velocity set to the308

constant value U∞. The right buffer (Buffer 2) has the same dimensions309

as Buffer 1, however the velocity of the outlet particles is obtained by first310

extrapolating the fluid velocity at the respective ghost nodes and then ap-311

plying the linear correction described in Section 3. The same extrapolation312

process is utilized to compute the density, and hence pressure, of all buffer313

particles, thus no a priori density assignment is made anywhere at the open314

boundaries. The particle spacing is set to ∆x = 0.01D, giving 100 boundary315

particles across the cylinder diameter and approximately 5× 106 total SPH316

particles. The smoothing length is set equal to h = 1.5∆x. Particle shift-317

ing and delta-SPH are activated, the former being particularly important318

to obtain a near-uniform particle distribution in the wake, the latter used319

to weaken oscillations in the density field typical of the SPH method. As320

previously mentioned, the viscosity is varied to simulate different Reynolds321

numbers, particularly a steady case (Re = 20), a transitional case (Re = 50)322

and two unsteady cases (Re = 100 and Re = 200).323

Figures 4 to 6 depict close-up contours of several flow field variables at the324

same time instants for all simulated cases. Particularly, Figure 4 shows the325

dimensionless velocity magnitude, U∗ = u(x/D, y/D)U−1
∞ , Figure 5 shows326

the dimensionless pressure, P ∗ = 2P (x/D, y/D)ρ−1
∞ U

−2
∞ , and Figure 6 shows327

the dimensionless vorticity, ζ∗ = ζ(x/D, y/D)DU−1
∞ . Though the simulations328

are performed using a weakly compressible SPH formulation, it is noted how329

the pressure field obtained for different Reynolds numbers (see Figure 5) does330

not show any spurious oscillations. Moreover, the first order consistent ex-331

trapolation procedure based on the ghost nodes inside the fluid domain is332

able to convey von Karman vortices across the boundary without introducing333

any disturbance inside the fluid region, as noticed in Figure 6.334

A steady smooth wake, symmetric about the x-axis, can be observed be-335
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hind the cylinder for the case Re = 20. Stagnation areas can be identified336

upstream and downstream of the cylinder, where the fluid halts and recircu-337

lates, respectively. For Re = 50, the flow is transitioning into the unsteady338

regime, but is still in the steady and attached configuration. Contours in Fig-339

ures 4b, 5b and 6b show a longer wake as opposed to the previous case, with340

the symmetry starting to break along the x-axis. The line of zero vorticity341

has now started to warp, indicating the imminent onset of flow instability.342

Finally, for the unsteady cases Re = 100 and Re = 200, an oscillatory wake343

behind the cylinder is observed and expected, with the formation of the344

classical von Karman street. Contours of velocity, pressure, and vorticity345

highlight the presence of periodic counter-rotating vortices shed behind the346

cylinder. As predicted by the theory, the frequency of shed vortices and their347

rotational intensity are dependent on the Reynolds number since, as Re in-348

creases, a larger number of vortex cores is spotted in the same domain area.349

All results are in very good agreement with those in Liu et al. (1998) [44],350

Calhoun (2002) [45], Marrone et al. (2013) [42], Vacondio et al. (2013) [34].351

To better assess the quality of the results, the vortex shedding frequency,352

f , is calculated by measuring the period between the passage of a vortex353

core and a successive one at a given location and taking the inverse. Table354

1 reports calculated Strouhal numbers, St = fDU−1
∞ , for SPH simulations355

herein and in other literature works. A very close agreement with the cited356

literature can be noted, indicating that the physics of this problem is well-357

captured by SPH with the present open boundary implementation.358

Streamlines are also presented in Figure 7a for the case Re = 20 and359

Figure 7b for the case Re = 200. For the former, it is possible to observe a360

well-ordered flow with two symmetric counter-rotating vortices in the wake.361

Changes in the velocity sign allow to measure a separation angle of approxi-362

mately 42◦ from the upstream stagnation point, an excellent match with the363

result of 43◦ in [42] and 45.5◦ in [45]. Moreover, the length of the recircula-364

tion bubble is estimated at 0.94D, in very close agreement with the value of365

0.91D in [45]. Conversely, the unsteady case presents only one vortex core366

in the process of being shed as the flow becomes oscillatory and obviously no367

steady values for separation angle and bubble length can be provided.368

Figure 8 shows the drag and lift coefficients, CD = 2FDρ−1
∞ U

−2
∞ D−1 and369

CL = 2FLρ−1
∞ U

−2
∞ D−1, respectively, against the dimensionless time, tU∞D−1.370

Here FD and FL are the drag and lift forces, respectively. The drag coeffi-371

cient converges to a steady value of CD = 2.29 for Re = 20 and CD = 1.46372

for Re = 200, whereas a null lift coefficient is observed and expected for the373
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steady case, and CL = 0.693 for the unsteady case. Once again, very close374

agreement is seen with the results in Liu et al. (1998) [44], Calhoun (2002)375

[45], Marrone et al. (2013) [42], Vacondio et al. (2013) [34]. For the unsteady376

cases, the values of the vortex shedding frequency calculated earlier are also377

corroborated by the frequency of the lift force signal.378

Figure 9 depicts the dependence of the drag coefficient on the Reynolds379

number for all cases considered in this work and the results graphed in [46].380

An excellent overall match is observed, with a slight discrepancy for the381

higher Reynolds numbers, most likely due to the lack of higher resolution.382

It is remarked that, for the case of flow past a cylinder, the value of the383

smoothing-length-based Reynolds number, Reh = U∞hν−1, should be around384

the unity or less for proper outcome of SPH computation. Having kept the385

particle spacing fixed throughout the simulation campaign for simplicity, the386

Re = 200 case corresponds to a value of Reh ≈ 3, and therefore a slight387

overestimation of force coefficients may have resulted. Nevertheless the sim-388

ulations outcomes are largely satisfactory and prove the effectiveness of the389

implemented algorithm without the need of further investigating particle390

resolution. Finally, values of the lift coefficient are also presented in tabular391

form in Table 2 for both cases Re = 100 and Re = 200.392

4.2. Open Channel Flow393

Free-surface flow in a two-dimensional channel is studied next. The avail-394

ability of analytical solutions for this case allows to quantify any numerical395

errors and assess the quality of the implemented boundary condition algo-396

rithm. The channel, shown in Figure 10, has a depth H = 1 m, a length397

L = 8H, and is bounded by two buffer areas, similarly to the previous study398

case. Inflow and outflow boundary conditions are imposed on the left and399

on the right of the domain, respectively. The flow is gravity-dominated and400

presents a free surface, which requires a third flow variable to be determined401

at the open boundaries, the water depth. For both buffers the water depth is402

extrapolated from the fluid domain using the ghost nodes. At the bottom, a403

no-slip condition is enforced. Finally, the density of outflow particles is now404

assigned so that a hydrostatic pressure distribution is obtained and enforced405

at the outlet throughout the simulation.406

The fluid is initialized with a constant density ρ = 103 kg/m3, a null407

velocity in the y-direction, and a velocity in the x-direction given by the408

analytical solution [47]:409
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u(x, y) = u(y) = g
sinα
ν

(
yH − 1

2y
2
)

(20)

where g = 9.81 m/s2, α = 5◦ is the chosen channel slope, and a value410

ν = 0.0534 m2/s is assigned to the kinematic fluid viscosity to obtain a411

depth-based Reynolds number equal to Re = UavgHν
−1 = 100. Equation412

(20) is also used to initialize the left and right buffers and to define the inlet413

velocity during the simulation, whereas particles in bottom buffer (Buffer 3)414

are given a null velocity in all directions. As can be seen from Figure 10,415

a perfectly horizontal channel is adopted rather than an inclined one for a416

simpler implementation. Therefore, in order to properly simulate the grav-417

ity driven flow due to the presence of a 5-degree slope, the gravity vector is418

defined as g = {gx, gy} = {g sinα,−g cosα}.419

A convergence study is carried out by choosing an initial value of the420

particle spacing equal to 2H/25 and successively halving it until an accept-421

able match with the analytical solution is observed. Figure 11 presents the422

percent error between the analytical and numerical velocities as a function423

of the dimensionless depth H∗ = y/H, calculated as:424

% Error = |uSPH(x0, y)− u(y)|
Uavg

× 100 (21)

where:425

Uavg = 1
H

∫ H

0
u(y)dy = g

sinα
ν

H2

3 (22)

Different markers correspond to different particle spacings (2H/25, H/25,426

H/50, H/100), returning an average number of particles over the depth equal427

to 12.5, 25, 50, and 100, respectively. The smoothing length-to-particle spac-428

ing ratio is constant and equal to 1.5, and δ = 0.1 is employed to activate429

δ-SPH. In all four cases the value of x0 is taken in the proximity of the out-430

let to allow for the largest error propagation as the fluid travels the entire431

domain before being sampled. A steady convergence rate is observed with432

an error that systematically decreases as the particle resolution is increased.433

The case H/100 shows an overall error within 1% of the average analytical434
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solution and is henceforth considered to obtain velocity and pressure profiles.435

The normalized horizontal velocity U∗ = u(x, y)/Umax is shown in Figure436

12 at several horizontal positions for both SPH simulation with resolution437

H/100 and theoretical predictions. Here Umax = u(x,H) = u(H) and is438

calculated from Equation (20), with each snapshot retrieved at the end of439

the simulation. Four different x-positions are considered, x/L = 0, x/L =440

1/3, x/L = 2/3, and x/L = 1. As the horizontal distance from the inlet441

region increases, an excellent agreement can still be observed between SPH442

and the theory. Specifically at the outflow, the farthest region from the in-443

flow area, the velocity of buffer particles matches the analytical solution to a444

great extent. This proves the effectiveness of the implemented algorithm in445

simulating flow with open boundaries without introducing numerical noise446

in the velocity field.447

Figure 13 shows the comparison of velocity contours for the analytical448

and numerical solutions at time 20 s. As expected, the velocity field is iden-449

tical in each panel, corroborating the quantitative results above. Close-up450

contours of dimensionless pressure P ∗ = 2Pρ−1U−2
max are also presented in451

Figure 14 with a focus on the domain edges: the pressure distribution in the452

vicinity of the two buffer areas is shown at time t = 20 s. In both regions the453

algorithm is actively used to extrapolate specific flow quantities using the454

linear correction. No trace of noise or other instability can be seen, further455

highlighting the correct functioning of the implemented algorithm.456

4.3. Wave Generation457

The capability of the proposed open boundary algorithm of generating458

waves is hereby investigated. A numerical tank is simulated where regular459

waves are generated first by using a piston-type wavemaker, a common ap-460

proach for wave generation in SPH, and then by using the new open boundary461

formulation. The computational domain is sketched in Figure 15, with an462

initial water depth of d = 0.27 m. Regular water waves of height H = 0.1 m,463

with period T = 1.3 s and wavelength λ = 1.89 m, are propagated along a464

6-m-long tank with a 1:5-sloped dissipative beach at the end, in order to ab-465

sorb the reflected waves and analyze only the incident waves. These regular466

waves belong to Stokes’ second-order wave theory, hence numerical results467

can be compared with theoretical predictions. Several numerical gauges are468

placed throughout the computational domain. Three wave gauges are placed469

at the free surface, a = 1 meter apart from each other and 2a meters (WG470

1), 3a meters (WG 2), and 4a meters (WG 3) away from the generation area.471
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These measure the instantaneous free-surface elevation, η, over time. Addi-472

tionally, a fourth gauge, dv, is placed 0.15a meters below WG 1 to measure473

the orbital velocities at that position. Altomare et al. (2017) [48] suggest474

that a good balance between simulation accuracy and computational time is475

achieved with a particle spacing equal to H/10. Therefore the particles are476

initially spaced 1 cm away, leading to a total number of 18,000 SPH parti-477

cles. As for previous cases, the ratio of the smoothing length to the particle478

distance is set to 1.5, and a value of 0.1 is assigned to the δ-SPH coefficient.479

Two different SPH simulations are performed; one case with a moving480

piston, created as a column of dynamic boundary particles with their motion481

imposed such that the desired waves are generated; the second case uses a482

buffer area to create the same waves by simultaneously imposing the velocity483

and the water depth in Buffer 1, while extrapolating the density from the484

fluid domain interior.485

Figures 16 and 17 present theoretical and numerical results for assessing486

the correct generation and propagation of waves via the open boundary for-487

mulation proposed herein. Free surface elevations are shown in Figure 16; the488

results from both SPH simulations (piston and I/O) match the theoretical489

solution to a good extent, indicating that the waves are properly generated490

in both cases. Orbital velocities are then compared in Figure 17; although491

the horizontal velocity is slightly underestimated by SPH, results in both492

panels seem to provide a satisfactory accuracy. Therefore, the two numerical493

solutions are in good agreement, indicating that the buffer algorithm imple-494

mented in this study can generate and propagate waves with at least the495

same level of accuracy of the piston-type wavemaker.496

A snapshot of the horizontal velocity contours (Ux) taken at t = 7.40 s497

is shown in Figure 18. The top panel depicts the two-dimensional flow field498

obtained with the use of the moving piston, whereas the bottom panel shows499

the same contour plot for the inlet/outlet formulation. It can be noticed how500

the same velocity patterns and free-surface profiles are observed when using501

the two approaches. Results in Figures 16 to 18 confirm the effectiveness of502

the proposed open boundary conditions algorithm for monochromatic waves.503

One of the advantages of using open boundaries to propagate waves into the504

SPH domain is the ease of coupling with other models, such as mesh-based505

codes or wave propagation models that can provide the velocity field or the506

depth time series to be imposed in the buffer zone to achieve correct in-507

let/outlet behavior for wave generation. A coupling approach based on the508

presented algorithm can be an alternative to, for example, the one used in509
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[49], where the boundary particles of a piston move according to the velocity510

provided by another model, resulting in deformation and displacement of the511

piston in long simulations.512

4.4. Flow Past the Titan Submarine513

The last case presented is the study of the three-dimensional flow around514

the hull of the NASA Phase 1 submarine [50], a conceptual vehicle designed515

to navigate the hydrocarbon seas of Saturn’s largest moon, Titan. The use of516

CFD in a mission of this kind is critical as it can provide important feedback517

for navigation techniques and ideal locations and depths, and also suggest518

design modifications to increase the efficiency of the overall mission. Pre-519

liminary CFD simulations for this problem can be found in [51, 52], where520

the submarine is moved at a constant speed of 1 m/s in a large tank made521

of SPH fluid particles. The open boundary formulation implemented in this522

work becomes central in simulations of this kind because it allows lower com-523

putational time by selecting a smaller numerical domain where the submarine524

is still and the fluid moves with certain conditions imposed at the domain525

boundaries.526

Figure 19 illustrates the initial configuration with the submarine operat-527

ing in surfaced conditions. During the mission this is expected to happen528

around 14 hours per day to allow direct-to-Earth communication. A rect-529

angular fluid domain with dimensions 8 × 5 × 1.8 m3 is used, while the530

submarine has a length overall of 6 m and is initially sinked 0.6 m below531

the free surface. Buffer 1 is the inflow area, with assigned speed U∞ = 1532

m/s and density extrapolated from the fluid domain, whereas Buffer 2 is the533

outflow area with assigned speed U∞ = 1 m/s and assigned density such to534

retrieve a hydrostatic pressure distribution. In both buffers the free-surface535

level is extrapolated from the ghost nodes. Particle spacing, fluid proper-536

ties, Titan’s gravitational acceleration, and other simulation parameters are537

chosen to match those in [51, 52] for comparison of the simulation results.538

Similar to other cases presented in this work, the ratio of smoothing length539

to particle spacing is 1.5 and δ = 0.1 for δ-SPH.540

Figure 20 shows the normalized free-surface elevation, η/Z, where Z is541

the submarine total height. A bow wave is generated and expected, with542

shape and elevation in close agreement with the results obtained in [51, 52].543

The deck of the submarine is covered with a layer of liquid resulting from544

run-off of the bow wave. Due to the relatively low speed of the submarine545

during navigation at the free surface, part of the liquid is able to rest on top546
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of the submarine at this draft. To better quantify the results, the total hy-547

drodynamic force acting on the hull opposing motion in the forward direction548

as well as the vertical force are plotted in Figures 21a and 21b, respectively.549

The hydrodynamic drag in Figure 21a convergences at around 192 N after550

about 4 seconds of simulated physical time. This value is an excellent match551

with the 194 N found in [52]. The vertical force in Figure 21b is normalized552

with respect to the weight of the liquid displaced by the submarine hull,553

with a value around the unity observed for the majority of the simulation554

time. The submarine is therefore operating in the displacement hull regime.555

The downward trend notable towards the final instants of the simulation is556

likely due to the forcing effect of the liquid accumulating at the bow, thus557

accounting for the slight drop in fluid buoyant force.558

Some quantitative information about the simulation and algorithm effi-559

ciency can be found in Table 3. About 13% of the computational time is560

dedicated to the open boundary treatment, with 250 particles on average561

generated every time step. The cost needed to enforce open boundary condi-562

tions in DualSPHysics is therefore acceptable. Additionally, a 108× speed-up563

is calculated with respect to adopting the simulation approach in [52], mainly564

due to having reduced the number of SPH particles by more than one order565

of magnitude. This proves the importance of open boundary conditions for566

the solution of this kind of CFD problems.567

5. Conclusion568

In this paper, a novel methodology for open boundary conditions in SPH569

has been presented and implemented in the open-source code DualSPHysics.570

The model is based on the use of buffer layers near the open regions of the571

computational domain. Particle in these buffers are used as a means of en-572

forcing certain boundary conditions. Specifically, flow variables belonging to573

buffer particles can be either assigned a priori or extracted from the fluid do-574

main using a first-order accurate ghost-nodes based method. For the velocity575

and density of the buffer particles, the available options are to impose a given576

profile, either constant or variable over time, or to interpolate from the fluid577

domain interior. Moreover, the water depth in the buffer can be imposed to578

be constant, follow a variable input, or alternatively be extrapolated from579

the free-surface level in the fluid domain in the vicinity of the buffer.580

The algorithm presents many novelties, such as the ability to convey phys-581

ical information from the fluid domain to the boundary with an accurate and582
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consistent procedure. Additionally, the availability of free-surface extrapola-583

tion and time-varying free-surface elevation in the buffer regions allows the584

simulation of wave generation and other free-surface flows with minimal re-585

flection of numerical noise into the fluid domain.586

The proposed algorithm has been tested successfully against a variety587

of 2-D and 3-D test cases. Results from these simulations corroborate the588

effectiveness of the presented open boundary formulation in modeling com-589

plicated fluid problems, such as three-dimensional flow past a ship hull or590

wave generation. The algorithm performs well also when coupled with other591

SPH features, such as particle shifting and δ–SPH.592

Future work will be focused on the implementation of hybridization tech-593

niques to couple DualSPHysics with other CFD codes using the open bound-594

ary algorithm implemented herein. It is expected that the availability of595

open boundary conditions in a highly parallel open-source SPH code will596

broaden the use of SPH in a range of engineering problems that are not597

readily solvable within the current DualSPHysics framework.598
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Table 1: Values of the Strouhal number for the unsteady cases.

SPH (Present) Liu et al. (1998) [44] Calhoun (2002) [45]
Re = 100 0.177 0.165 0.175
Re = 200 0.206 0.192 0.202

SPH (Present) Marrone et al. (2013) [42] Vacondio et al. (2013) [34]
Re = 100 0.177 0.168 0.175
Re = 200 0.206 0.200 -

Table 2: Values of the lift coefficient, CL, for the unsteady cases.

SPH (Present) Liu et al. (1998) [44] Calhoun (2002) [45]
Re = 100 0.322 0.339 0.298
Re = 200 0.693 0.690 0.668

SPH (Present) Marrone et al. (2013) [42] Vacondio et al. (2013) [34]
Re = 100 0.322 0.240 0.330
Re = 200 0.693 0.680 -

Table 3: Simulation specifications on a NVIDIA Tesla K80 with 24GB GDDR5.

Without OBC [52] With OBC
Domain Size 42× 21× 4 m3 8× 5× 1.8 m3

# of particles 6.7× 107 1.4× 106

Calculated force 194.29 [N] 191.8 [N]
Simulated physical time 12 [s] 12 [s]
Simulation total time 378.90 [h] 3.5 [h]

Speed-Up – 108x
GPU memory requirement ∼ 6 GB ∼ 0.7 GB
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Figure 1: Sketch of the implemented open boundary formulation.
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Implementation Scheme: Initial Configuration

Solid boundary particle

Fluid particle

Buffer particle
Fixed pointBuffer threshold

Water level

Normal vector

(a) Buffer area in its initial flow config-
uration.

Implementation Scheme: Particle Transition

Water level

Buffer threshold

Normal vector
Solid boundary particle

Fluid particle

Buffer particle
Fixed point

(b) Buffer evolution with unchanged wa-
ter depth.

Implementation Scheme: Enforcing the Water Depth

New water level

Buffer threshold

Normal vector
Solid boundary particle

Fluid particle

Buffer particle
Fixed point

(c) Buffer evolution with variable water
depth externally enforced.

Implementation Scheme: Extrapolating the Water Depth

Extrapolated water level

Buffer threshold

Normal vector

Solid boundary particle

Fluid particle

Buffer particle

Inactive buffer particle

Fixed point

(d) Buffer evolution with variable water
depth obtained from the fluid domain.

Figure 2: Sketch of the operating principles of the proposed algorithm for different free-
surface flow cases.
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Figure 3: Computational domain for 2-D flow past a circular cylinder.
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(a) Re = 20. (b) Re = 50.

(c) Re = 100. (d) Re = 200.

Figure 4: 2-D flow past a cylinder: velocity contours.
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(a) Re = 20. (b) Re = 50.

(c) Re = 100. (d) Re = 200.

Figure 5: 2-D flow past a cylinder: pressure contours.
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(a) Re = 20. (b) Re = 50.

(c) Re = 100. (d) Re = 200.

Figure 6: 2-D flow past a cylinder: vorticity contours.

(a) Re = 20. (b) Re = 200.

Figure 7: 2-D flow past a cylinder: streamlines.
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(a) Re = 20. (b) Re = 200.

Figure 8: Time history of drag and lift coefficients for flow past a circular cylinder.

Figure 9: Drag coefficient as a function of the Reynolds number for flow past a circular
cylinder.
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Figure 10: Computational domain for 2-D open-channel flow.

Figure 11: Percent error calculated against the analytical open-channel flow velocity for
different particle resolutions at time t = 20 s.
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(a) Inlet, x
L = 0. (b) x

L = 1
3 .

(c) x
L = 2

3 . (d) Outlet, x
L = 1.

Figure 12: Analytical (solid line) and SPH (circles) open-channel flow velocity profiles at
different x locations at time 20 s for simulation with resolution H/100.
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Figure 13: Contours of the velocity magnitude for the open channel flow with resolution
H/100: analytical solution (top) and numerical results at time 20 s (bottom) .
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Figure 14: Close-up of pressure contours for open-channel flow at t = 20 s with resolution
H/100.
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Figure 15: Computational domain for the 2-D wave tank.
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Figure 16: Comparison of theoretical and numerical free surface elevations at different
wave gauges for the wave generation study.

38



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Figure 17: Comparison of theoretical and numerical orbital velocities at the velocity gauge
for the wave generation study.
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Figure 18: Snapshot of the simulation with piston and I/O conditions at t = 7.40 s for the
wave generation study.
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Figure 19: Simulation set-up for flow past the Titan submarine.
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Figure 20: Contours of free-surface elevation around the Titan submarine.
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(a) Drag force, FD. (b) Normalized buoyant force, FV
ρgVs

.

Figure 21: Time history of fluid forces on the Titan submarine.
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