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Abstract

Accurate and timely provisioning of products to the customers is essential in

retail environments to avoid missed sales opportunities. One cause for missed

sales is that products are misplaced in the store. This can be addressed by

fast and accurately detecting those misplacements. A problem of current detec-

tion methods for misplaced products is their reliance on up-to-date planogram

information, which is often missing in practice. This paper investigates the

effectiveness and efficiency of outlier detection methods for finding misplaced

products without planograms. To that end, we conduct simulation studies with

realistic parameters for different store parameters and sensor infrastructure set-

tings. We also evaluate the detection methods in a real setting with an RFID

inventory robot. The findings indicate that our proposed MiProD aggregation

of individual detection methods consistently outperforms individual techniques

in detecting misplaced products.

Keywords: Data analysis, Sensors, Outlier detection, Inventory management

1. Introduction

A central challenge of daily operations in brick-and-mortar retail shops is

the timely and accurate provision of products to the customers. Retailers try

to avoid store execution errors, such as out-of-stock and inventory record in-
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accuracy that jeopardize their performance due to low on-shelf availability and

lost sales [13]. Ironically, there are also missed sales opportunities when prod-

ucts are not truly out-of-stock but have been misplaced. The term “misplaced

products”, also referred to as “out-of-shelf”, describes the situation where a

customer does not find on the shelf the product he/she wishes to purchase, even

though that product exists in the store, and thus it is not out-of-stock [39]. The

numbers are substantial, with misplaced products that can exceed 16 percent

of out-of-stock products [43]. Thus, the goal of retailers is to detect misplaced

products in a timely and accurate way.

One way to manage the misplaced product detection problem is to set up

real-time location systems (RTLS). RTLS continuously infer product positions

and movements in real time [50]. Even though different RTLS technologies

are available, it is often radio frequency identification (RFID) that is used as

a locating system technology [15, 45]. However, issues such as misplacements

cannot be readily observed in RTLS, but they need to be extracted from raw

data. For this knowledge extraction, it is often assumed that complementary

information is available, such as planograms [47]. Planograms are layout plans

that specify in detail where specific product types shall be placed in a retail

store. Although the benefits of planograms have been demonstrated in [11, 7],

planograms are hardly systematically and continuously maintained in practice.

This means that misplaced product detection with sensor data is required to

work even without planogram information. Currently, research into misplace-

ment detection without planograms is missing and it is unclear whether it is

feasible with the required level of accuracy.

In this paper, we address the research challenge of detecting misplaced prod-

ucts without planogram information. The proposed approach is called MiProD

(Misplaced Products Detection). The goal of MiProD is to detect products
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misplacements by relying only on potentially noisy RFID sensor readings. To

achieve this goal, MiProD systematically compares four different analytical

methods, namely (i) distance [18, p. 538f]; (ii) kNN – k-Nearest Neighbors

[22]; (iii) LOF – Local Outlier Factor [6]; (iv) GLOSH - Global-Local Out-

lier Scores from Hierarchies [9]. We investigate the accuracy of each of these

methods using simulation and a case study from a European fashion retailer.

Our results demonstrate the feasibility of misplaced product detection without

planograms, both in the simulated environment and in the industrial case. Also,

results from the case study suggest that MiProD can achieve a suitable level of

accuracy in everyday fashion and apparel retail operations.

The remainder of this paper is structured as follows. Section 2 describes the

background of misplaced product detection and relevant technologies. Section 3

describes our conceptual contribution of misplaced product detection without

planograms. Section 4 evaluates the method based on simulation experiments

and an application in a real-world fashion store. Section 5 critically discusses

the implications of this work. Section 6 concludes the paper.

2. Background

In this work, we define that a product that is not out of stock, but misplaced

in the wrong aisle or location is called misplaced product, cf. Raman et al. [43].

The problem of misplaced product detection can be formulated as an unsuper-

vised classification problem. Given a set of products and their sensed locations,

classify each product into (i) misplaced or (ii) not misplaced.

2.1. The Problem of Misplaced Product Detection

The problem can be illustrated using the planogram examples shown in

Figure 1. To organize its inventory, a retailer groups its assortment according

to classes. These classes are ordered such that customers can browse products
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by class on the sales floor. Assume that there are three product classes on the

sales floor: t-shirts, pants, and shoes. In Figure 1a, they are illustrated using

triangles, circles, and boxes arranged at different locations. Note that products

of one class can potentially have multiple positions on the sales floor, where

they are displayed (i.e., they can form multiple clusters). When using a sensor

infrastructure to locate products, the real positions are not known to the system.

In case of RFID-based sensing, reflections from metallic objects, occlusions of

other tags, and other disturbances can cause errors in location accuracy and

even missingness of reads of a tag [19]. Figure 1b illustrates that the natural

grouping of product classes from the system’s perspective can be blurry at the

boundaries of the product groups.

(a) Original inventory (b) Sensed inventory

1

3

2

(c) Inventory with 3 misplacements

1

31

2
2

(d) Sensed inventory w. misplacements

Figure 1: Conceptual illustration of the misplaced product detection problem.

The identification of the product classes as clusters becomes more difficult

when the initial order of products is disturbed, i.e., when some products are

misplaced. In Figure 1c, the arrows depict (customer induced) misplacements of

three products. Figure 1d shows how the RTLS might sense the inventory with
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misplacements. Here, the problem is to identify that products 1, 2, and 3 are

misplaced from the sensed information in Figure 1d. We identify the following

challenges: (i) missing reads (e.g., misplaced product 3 ), (ii) inaccuracies in

the sensing infrastructure that blur the product group boundaries, (iii) product

groups can have multiple distinct areas where they are placed.

Next, we describe RFID technology as an example that enables sensing of

products and look at general purpose solutions for outlier detection. These

foundations serve as building blocks for our proposed detection system.

2.2. Location Sensing Technologies

RFID and RTLS belong to a rich spectrum of sensor technologies that can be

used for location sensing. We refer to the survey by Farid et al. for an overview

on indoor localization techniques [20]. We focus on passive RFID tags, which

are the most accessible and affordable examples of location sensing technologies.

2.2.1. Radio Frequency Identification.

RFID [27, 29] is an acronym for radio frequency identification, a technology

for wireless communication that allows us to unequivocally identify objects or

people with an assigned tag. It has several applications. For instance, manage-

ment of supply chains, access control systems or tracking of animals [21].

A system using passive RFID technology is composed of three components:

(i) tags with a semiconductor chip and an antenna, (ii) readers that power

the tags and read their response signals and relay that data to a (iii) server.

Servers connect several RFID readers and centralize the gathered information

for processing. We assume that an RFID system is used to monitor the inventory

by location sensing. The readers can be fixed, hand-held, or mounted on robots.
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2.2.2. Location Sensing Methods

Location sensing with RFID can be achieved by multiple means, the most

common of which are trilateration [40], fingerprinting (also known as scene

analysis) [37], or triangulation [36]. In case of trilateration, multiple readers

with known positions receive a signal from the same tag. Typically the received

signal strengths would reflect the distance to the tag from the respective readers.

Thus, we can find a position on the map corresponding to the signal strengths.

In case of fingerprinting, the signal strengths of the readers are memorized as

fingerprints at multiple known positions. This is a preliminary calibration step,

also known as the off-line stage. In the on-line stage, when a new measurement is

gathered from a tag at an unknown position, this new signal strength fingerprint

will be compared to the known patterns. Finally, in case of triangulation, we

need to know the angles from at least three reading points to a tag to find the

best matching location. Some RFID-equipped robots can perform the latter

when their sensing antennas are directional, cf. [46]. This increases the accuracy

in the task and can save the costs of installing and maintaining a large array

of readers. In practice, the trade-off between RTLS and inventory robots is

between timeliness and accuracy of the product positions.

2.3. Outlier Detection

Outlier detection is the process by which elements that do not share the

characteristics of their population are identified. There exists a large body

of research dealing with the problem of outlier detection in various domains

like spatial data [12, 6, 1] or wireless sensor networks [52]. Here, we limit the

discussion to clustering and k-nearest neighbors approaches, because these two

approaches are very popular and non-model based (i.e. they do not assume or

estimate a model that explains data).

• Clustering: Clustering refers to dividing a set of elements into disjoint
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sets, which are called clusters. Elements are assigned to clusters in such

a way that they are more similar to one another (intra-cluster similarity)

than to other elements outside of the cluster. Clustering can be used for

outlier detection, as elements that are dissimilar to the elements in the

identified clusters will not be assigned to a cluster, but remain as outliers.

• k-Nearest Neighbors: Based on a number (k) of the nearest neighbors,

we can classify elements as being outliers or not. In the case that the

k-nearest neighbors of an element in a similarity space have another class

than the element itself, it can be considered an outlier. If we only have

a single type of elements, we can look at the average distance to the

nearest neighbors and compare that with the distribution of the remaining

elements’ average nearest neighbor distance.

Outlier detection bears the potential to identify misplaced products when

they are too far away from products of the same group. We will pursue this

idea to investigate if misplaced products can be detected without planograms.

2.4. Prior research on misplaced product detection

The topic of misplaced products belongs to the problem areas of out-of-

stock situations in retail [16], but on a more general view also applies to other

domains, where it is important that certain products are ordered for easier lo-

calization, e.g., warehouse management [41]. Prior research on the topic relates

to misplaced products, out-of-stock detection, and misplaced product detection.

Managerial considerations of misplaced products. The effects of misplaced prod-

ucts have been captured in mathematical models that show the trade-offs of

adopting RFID sensor systems to avoid misplaced products and other inventory

inaccuracies. Examples of such research are [31, 44, 3, 8]. These papers do not

focus on actually detecting single misplaced products, but rather investigate the
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relationships between aggregates like inventory count frequency, profit, RFID

tag costs, and others. Kang and Gershwin investigate how small stock loss im-

pacts the replenishment process [31]. Rekik et al. [44] analyze three scenarios:

(i) where the retailer is unaware of inventory errors, (ii) where a retailer is aware

of inventory errors and optimizes operations to take that into account, and (iii)

where the retailer knows through RFID-based systems about the errors and is

able to eliminate these. Atali et al. [3] specifically separate the sources of inven-

tory inaccuracies in their model into misplacements, shrinkage, and transaction

errors. Camdereli and Swaminathan investigate economic considerations of the

players involved in RFID adoption to remove inefficiencies by misplaced inven-

tory [8]. In these works the simplifying assumption is mostly that inventory

inaccuracies can be avoided with the introduction of RFID, while in reality the

RFID technology itself is prone to inaccuracies that impact the replenishment

process [49].

Out-of-stock detection. Products being out of stock is a pressing problem caus-

ing missed sales opportunities [26]. Several researchers have addressed detection

of out-of-stock situations [39, 35, 38]. Papakiriakopoulos et al. [39] rely on a

heuristic rule based approach to detect missing products, as at that time they

judged RFID to be not yet operational for this purpose. Li et al. [35] focus

on improving the detection rate of RFID systems on a technical sensor level to

identify missing products and distinguish those from products that are there,

but are hidden to the system through the problem of tag collisions during read.

Papakiriakopoulos and Georgios [38] investigate classification accuracies of ma-

chine learning models trained with data collected from RFID systems to detect

out of shelf situations. Out of stock situations are inferred from only limited

RFID-enabled interaction points such as the replenishment gate or the point of

sales. In contrast, the problem that we consider assumes that a location sensing
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Table 1: Overview of prior research on misplaced product detection

Focus: decision
making

operational
(OOS)

operational
(mispl. prod. detection)

Category: [44, 3, 8] [39, 35, 38] [7] [11] [47] This
work

decision
level

managerial X
operational X X X X X
store-level X X
product-level X X X X

infor-
mation

level

No location X X
RFID location X X X
visual X

independence of planograms X

system is in place and we are interested in finding concrete products that are

misplaced.

Misplaced product detection.. Bu et al. describe a protocol to locate misplaced

products [7]. They make the assumption that all predefined positions of all

products are known. Chaves et al. [11] use a heuristic separation of products

to classify them as belonging to either RFID antennas in smart shelves. Based

on information from planograms for shelves, they can identify products that are

located in different shelves. Then, their algorithm uses the distributions of right

and wrong reads to decide whether a product identified by several antennas

complies with the planogram. More recently, Saran et al. investigated how

planogram compliance can be ensured with visual analytics [47] by analyzing

pictures of shelves. Planogram-based approaches differ from our approach, as

they assume that planograms describing the planned assortment of goods exist,

while we compare and present generally applicable methods.

Table 1 summarizes the related approaches and highlights the positioning of

our work. The key contribution of this paper is an accurate misplaced product

detection technique, that is able to work without planograms. In this way, it

is able to cope with the noisy nature of RFID sensor streams, product cate-
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gories that are spread to multiple locations, while being agnostic of planogram

information.

2.5. Requirements for Misplaced Product Detection

Based on the state of the art and the noisy nature of sensor systems, we for-

mulate the following requirements for the misplaced product detection problem.

R1 Accuracy. The misplaced product detector should be able to yield a robust

and highly accurate classifier in noisy sensor environments.

R2 No planogram. Due to ever changing layouts and seasonal assortment

rearrangements, planograms are hardly kept up to date. The misplaced

product detection should be able to detect misplaced products without

detailed plans of where each product should be.

R1 is motivated by the fact that sensor based systems (e.g. RFID) are subject

to inaccuracies. That is, we cannot simply compare the sensed location of a

product with a fixed boundary of an area, where that product should be. Even

when the product is orderly in its designated position, the sensing infrastructure

could still detect it outside that area and falsely classify it as misplaced. R2

means that we need to rely on methods that do not take into account location

plans of products and are able to work only with the sensor data itself. In the

following, we discuss how we address these requirements.

3. MiProD: Misplaced Product Detection

In this section, we formalize the problem of misplaced product detection

and present a general system architecture to deploy different algorithms in the

context of misplaced product detection.
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3.1. Problem statement

Let P = {p1, . . . , pn} be a set of n products in store. Further, let C =

{c1, . . . , cl} be a set of l product classes, and l ≤ n. Each product is assigned to

its class through the function γ : P → C. For example, let c1 denote the class

of pants. Then, γ(p1) = c1 means that the product p1 is of class pants. The set

of products P is partitioned into the disjoint sets of misplaced products M and

non-misplaced products M (i.e., P = M ∪M , and M ∩M = ∅). Each product

has a real location in three dimensional space captured by the function λ : P →

Q3. We assume that a noisy sensing infrastructure estimates the positions of

products. Therefore, each product has a sensed location in three dimensional

space, captured by λ̃ : P → Q3 ∪ ⊥. Note that the sensing infrastructure

can assign the empty position ⊥ (missing read) to a product. Especially, the

inaccuracy of the sensing system affects the discrepancy between actual locations

λ and sensed locations λ̃ of products. Provided these notions, we define the

static version of the misplaced product detection problem.

Problem 1 (Static Misplaced Product Detection). Given a set of prod-

ucts P , their classes γ and their sensed locations λ̃, decide which products are
misplaced and return the set of estimated misplaced products M ′.

Given the static misplaced product detection problem, we can also define

the dynamic version as follows.

Problem 2 (Dynamic Misplaced Product Detection). Given a set of prod-
ucts P , their classes γ and their sensed locations at two consecutive sensor read-
ings λ̃1, and λ̃2, find the misplaced products at the last sensor reading and return
them in the set M ′.

In either variant of the problem, we can define the quality of the detection

classifier if we know the true set of misplaced products M . Then, the quality

of the misplaced product detection can be measured by the recall ( |M ′∩M |
|M | )

that captures the fraction of correctly detected misplaced products over all
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Figure 2: Overview of the approach. Sensor events are turned into products and their loca-
tions. Misplaced product detection is applied and a ranked list of products is generated. The
discrimination threshold separates products into misplaced and not misplaced.

misplaced products and the precision ( |M ′∩M |
|M ′| ) that captures the fraction of

correctly detected misplaced products over the result set [4].

Besides these basic quality measures, we can analyze the trade-off incurred by

adjusting the discrimination threshold of the classifier. That is, we analyze the

effect of increasing the number of returned products according to the ordering

by a classifier. The receiver operating characteristic (ROC) curve plots the true

positive rate against the false positive rate at various threshold settings [28]. In

general, the area under the curve (AUC) is a good overall measure to compare

the accuracy of classifiers. The trade-off between precision and recall is also of

interest. That means, we can plot how precise the result is over varying degrees

of recall. We report these curves and graphs because outlier detection methods

are threshold-based, and ROC curves and precision/recall graphs show how

management decisions can achieve an adequate balance between effectiveness

(recall) and efficiency (precision). We use these metrics to discuss performance

of misplaced product detectors.

3.2. Misplaced product detection method

Figure 2 shows the overview of the approach. We assume that a sensor event

stream exists and captures RFID data (or other sensor data) from products in

a store. Then, we define aggregate and convert raw sensor reads of tagged

12



products to locations of products, cf. [25]. Based on the product information

and their estimated locations, we use classifiers to separate misplaced products

M ′ from non misplaced products M
′
. We can select any classification method in

this misplaced product detection architecture. Each classifier produces a ranked

result set, that is based on a score σ : P → Q+ function. The classifiers produce

a ranking ρ : P → N, where the expected outliers (misplaced products) are on

top of the ranking. We implemented the following classifiers.

distance One simplistic detection method to detect misplaced products is by

considering the distance σdist between the two consecutive sensed loca-

tions λ1 and λ2 of a product [18, p. 538f]. Formally, this is: σdist(p) =

δ
(
λ2(p), λ1(p)

)
.

Here, δ represents any distance metric (e.g., the Euclidean distance be-

tween two points in Cartesian space). Considering two points (x1, y1) and

(x2, y2) in a two dimensional space, yields the distance:√
(x2 − x1)2 + (y2 − y1)2. Note that if any of the two sensor readings

failed for product p (i.e., λ1(p) = ⊥ ∨ λ2(p) = ⊥), the distance based

method fails to produce a score for that product (σdist(p) = 0).

kNN A solution to the static misplaced product detection is the k-nearest

neighbors approach. Given the k-nearest neighbors of a product p in the

store as Nk(p), we assign the outlier score σkNN of a product p as follows:

σkNN(p) =
|{pi ∈ Nk(p) | γ(p) 6= γ(pi)}|

k

Note that σkNN assigns a value between 0 and 1 to each product, and

the more neighbors of a product have a different class, the higher the

outlier score σkNN. Intuitively, this measure reflects the idea that based

on the class of the nearest neighbors, we can decide whether a product is
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in distribution or not [22].

LOF Another method is the local outlier factor (LOF), as defined by Breunig

et al. [6]. The LOF depends on the density of the cluster and the distance

of individual elements to the nearest clusters. We separately apply the

LOF to the products of one class in isolation.

GLOSH Furthermore, we compare our results with the recently proposed out-

lier detection method called ”Global-Local Outlier Scores from Hierar-

chies” (GLOSH) by Campello et al. [9]. It computes a range of density

based clusterings and analyses them to derive the final outliers.

MiProD classifier The proposed approach in this work. It is an aggregate

method by aggregating the ranked result lists of distance, kNN, and LOF.

The aggregation is chosen to be sensitive to either perspective, that is, we

use a maximum aggregation of the resulting ranks.

Given two ranking functions that order products according to their outlier

scores ρ1 : P → N and ρ2 : P → N, the maximum aggregation assigns the

scores: ρmax(p) = max(ρ1(p), ρ2(p)). This concept naturally translates to

more than two rankings.

We provide a brief motivation and example for aggregating ranked lists with

a maximum rank. Consider the example of four products {p1, p2, p3, p4} that

are ranked by two different classifiers that yield ranks ρ1 and ρ2 as described

in Table 2. We can see that for product p3 and p4 the two rankings agree, but

one classifier orders p1 on top and p2 at position three, while the other does the

opposite. Further, in Table 2, we see the resulting ordering by using a maximum

rank (i.e., preferring products that any classifier preferred), a minimum rank

(i.e., penalizing products that any classifier penalized), and an average rank

(i.e., mixing the two rankings equally).
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Table 2: Two example rankings of four products {p1, p2, p3, p4} and the aggregate maximum,
minimum, and average rankings. Ties in the aggregate ranking are highlighted. The table is
sorted with the outliers at the top. Rankings are indicated in brackets.

ρ1 ρ2 ρmax ρmin ρavg
p1 (4) p2 (4) p1 (4) p3 (3) p3 (3)
p3 (3) p3 (3) p2 (4) p1 (2) p1 (3)
p2 (2) p1 (2) p3 (3) p2 (2) p2 (3)
p4 (1) p4 (1) p4 (1) p4 (1) p4 (1)

Results in the context of aggregating outliers [33, 48] suggest that there is

no general optimal way of aggregating different outlier detection methods. It

depends on the application, how ranking methods should be aggregated. In

our case, we want to find products that moved a distance and ended up in a

neighborhood unlike their class, or were already misplaced in the first place.

Following this line of reasoning, we selected ρmax. We checked multiple combi-

nation options of normalization and aggregation of outlier scores and report the

results in the online appendix to this paper. For brevity, the summary of those

experiments is that it can happen that the average of the scores can occasionally

yield better results than using the maximum of the ranked scores. However, the

maximum of the ranked scores is more robust against the selection of different

outlier methods and on average outperforms all score based methods.

4. Evaluation

To evaluate the approaches, we first conceptually test the accuracy in an

artificial setting. This way, we can test a high number of configurations that

would be infeasible to explore in real settings. To also validate the approach in

realistic conditions, we performed a misplacement experiment in a retail store.

4.1. Generating artificial data - Variables

In order to generate a sufficient amount of test data to validate our algorithm,

we developed a software application to simulate arbitrary retail store setups
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based on various parameters. To ensure realistic parameter ranges, we analyzed

the literature for corresponding information. Table 3 summarizes our findings in

the literature. We found that the references more or less agree on an inaccuracy

between 0 and 5 meters, while contradicting ranges for missingness were reported

in different studies. Latter extremes for missingness occur in settings such as

trying to read RFID tags behind water basins such that a range between 0

percent and 50 percent seems to be worthy to investigate in our setup.

Table 3: Summary of reported accuracy values in meters and missingness in percent.

Parameter Range Ref.

Accuracy
0.5 to 4.5 m [34]
0.07 to 0.91 m [23]
1.92 to 4.69 m [5]

Missingness

Read rate drops to 0 after 18m / 16dB of attenuation [42]
Between 60 and 100% [14]
Up to 13% [45]
Between 33 and 95% [10]

These parameters are used in the evaluation. Figure 3 gives an overview of

the structure of our evaluation. Within the developed “RTLS-Simulator”, three

subsequent steps can be identified. First, the initial store setup (Inventory I) is

generated based on the following four parameters:

• Products [#] : The number of individual products, which are to be placed

within the store. We explore the range between 1 000 products and 50 000

products (1 000, 2 000, 5 000, 10 000, 20 000, 50 000).

• Classes [#] : The number of classes (i.e. groups of products in a shop)

to be generated. Each product is randomly uniformly assigned to one

class out of this set. Each class is assigned a random location on the

floor layout with configurable overlap at the boundaries. We investigate

situations from 10 classes to 200 classes with step size 50 (10, 50, 100, 150,

200).
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Generator

Inventory I

Misplacement

Inventory I'

RTLS-Simulator

Outlier 
detection 
methods 

 
(distance,  
kNN, LOF,  
GLOSH,  
MiProD)

Sensing

Readings R

Readings R'

Parameters 
- Products [#] 
- Classes [#] 
- Clusters per Class [#] 
- Dispersion [m] 
- Misplaced initially 
  [clean / dirty]

Parameters 
- Misplaced Products [%]

Parameters 
- Inaccuracy [m] 
- Missingness [%]

Actual 
Misplaced Products M

Detected 
Misplaced Products MDEvaluation

Area Under the Curve (AUC)

Detector

Figure 3: Structure of the performed evaluation.

• Clusters per Class [#] : A factor which determines the number of areas

that will be generated within a shop (#Areas = #Classes · #Clusters per

Class). A factor of 1.0 will generate one area for each class, while a higher

factor will allocate the areas such that some classes will have two or more

distinct areas on the floor. This means that even in an ordered store, there

might be certain classes that are displayed at multiple positions. We vary

the cluster per class between 1 and 3 (1, 1.5, 2, 2.5, 3).

• Dispersion [m] : The amount of spatial overlap between adjacent class

areas. When we look at a 2D-projection of a shop in which shirts are

placed above pants, the classes of shirts and pants overlap in their floor

area. Dispersion is a means to allow for fuzzy boundaries between classes

by extending the class boundaries. Dispersion ranges between 0 and 5

meters (0m, 1m, 2m, 3m, 4m, 5m).
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• Misplaced initially [clean/dirty]: If set to dirty, 10 percent of the products

is randomly misplaced in the initial inventory. Misplacement means relo-

cation of a product to a random point on the sales floor. This is a logical

parameter and we denote it as ”clean” (i.e., not misplaced initially) and

”dirty” (i.e., misplaced initially).

In a second step, the generated inventory I is manipulated based on the

given parameter Misplaced Products [%]. In general, the given percentage of

all products is randomly taken and moved to arbitrary positions within the

store’s boundaries resulting in inventory I ′. A product is misplaced, if it is

misplaced initially in inventory I, or if it is misplaced in inventory I ′. Formally,

let M1 be the products initially misplaced (note that M1 is empty in the clean

experiment) and let M2 be the products misplaced according to the parameter

Misplaced Products [%]. Then, the set of misplaced products M is the set union

of M1 and M2 (i.e., M = M1 ∪M2).

The third step simulates physical sensor hardware by taking the following

two parameters into account. We select the variable ranges based on the liter-

ature findings in Table 3, and on our own experiences with sensing hardware.

• Inaccuracy [m] : The maximum deviation between a product’s actual po-

sition in the store and the detected position (in meters). We explore

inaccuracy values between 0m (perfect) and 5m (low accuracy) in steps

(0m, 1m, 2m, 3m, 4m, 5m).

• Missingness [%] : The percentage of products that are not sensed in one

sensor reading due to reading collision [19], or reflection, and other rea-

sons [17]. We cover the range between 0% and 50% in steps (0%, 5%,

10%, 20%, 30%, 40%, 50%).

I and I ′ go through this last step separately, potentially resulting in different
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reading positions for the products depending on the specified parameters.

4.2. Experiment Results

Given the number of variables and their ranges, an exhaustive exploration of

the parameter space yields a combinatorial explosion of settings. Therefore, we

set realistic default values for all parameters except for the controlled variable

that is varied in its range. This way, we can isolate the effects of individual

variables on the accuracy of the misplaced product detection methods.

Figure 4 shows the results for the different types of scenarios (indicated in

the legend of each figure). The resulting scores depict the area under the curve

(AUC) of the receiver operating characteristic (ROC) curve [28].

Varying number of products.. We can see in Figure 4a that the distance and

kNN approaches deliver constant results with respect to the number of products

in the store. The LOF and GLOSH have a peak at averages of 5.000-10.000

products, while delivering worse results on the ends of the spectrum. This result

is surprising as it indicates that these two approaches are tuned to work well at

a particular density of products. The proposed rank average MiProD between

distance, kNN and LOF outperforms the other approaches on average.

Varying number of classes.. In Figure 4b, we see that distance and the MiProD

approaches are not affected by the variation of class numbers. The kNN suffers

from an increasing number of classes, as the chances that the neighbor is of

the same class gets lower with an increased number of classes. The LOF and

GLOSH approaches gain from an increased variation and a relatively smaller

area per class that is entailed by a growing number of classes. However, we see

that at 200 classes, there is a drop in performance for GLOSH, as the number

of products per class is reduced as well, which apparently reduces the accuracy

of the hierarchical classifiers.
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(a) Number of products 1000 - 50 000 [default: 10 000] (log-scale).

(b) Classes 10 to 200 [default: 100].

(c) Clusters per class 1.0 - 3.0 [default: 1.5].

(d) Dispersion 0m - 5m [default: 1m].

(e) Misplaced products 1% - 90% [default: 10%].

(f) Inaccuracy of reading position 0m - 5m [default: 3m].

(g) Missingness 0% - 50% [default: 10%].
Figure 4: Resulting area under the curve values for two experiments: (◦) clean at start, and
(4) dirty with 10% initially misplaced products. All parameters are set to their default value
except for the variable varied on the x-axis. Ranges are noted in the caption and the default
value is noted in square brackets.

20



Varying clusters per class.. We can see in Figure 4c similar trends as in Fig-

ure 4b, but less pronounced. Also here, the local clusters of products become

smaller, as they are increasingly spread throughout the area. In both cases

(varying the classes and the clusters per class), the aggregate classifier MiProD

yields the best overall performance.

Varying dispersion of class areas.. In Figure 4d we can see that most of the clas-

sifiers are not much affected by dispersion. However, the kNN based approach

shows a decreasing accuracy with increasing dispersion. This is expected, as

with increasing dispersion products at the boundaries can become surrounded

by neighboring products of other classes. This leads to false positives.

Varying percentage of misplaced products.. Figure 4e depicts the number of

misplaced products in percentage of the total number of products. The perfor-

mance of all classifiers decreases rapidly, as the number of misplaced products

increases. Only the distance based classifier shows an increasing trend for the

dirty case. The distance measure helps distinguishing truly moved products

from stationary inaccurate readings. If we limit our attention to values between

1% and 30%, we observe that MiProD outperforms the other approaches.

Varying inaccuracy of the sensor system.. We see in Figure 4f that the ap-

proaches kNN and indirectly also MiProD slightly suffer in their classification

accuracy with increasing sensor inaccuracy. The trends are comparable to the

dispersion experiment. The kNN based approach that looks at immediate neigh-

bors of a product is most affected, as with lower accuracy, the chances increase

that the sensed position of a product is within a neighborhood of a different

class, which renders it a false positive. The combination of classifiers in MiProD

outperforms the individual classifiers.
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Table 4: Average AUCs for the two scenarios and the different methods.

Experiment distance kNN LOF [6] GLOSH [9] MiProD

clean 0.802 0.769 0.757 0.784 0.855

dirty 0.675 0.759 0.684 0.743 0.810

both 0.739 0.764 0.720 0.763 0.832

Varying missingness of reads of the sensor system.. Last, in Figure 4g, we see

that the percentage of missing reads severely impacts the classification accuracy

of the compared methods. The distance based classifier suffers the most, as it

depends on having two consecutive reads for each product. In a clean state with

no missingness issues, however, this is the best method. When some products

are already misplaced, or there is at least a 5% chance for missed sensor readings

per product, the MiProD approach yields the best results.

Summary of the experiment.. Table 4 summarizes the experiment results and

shows the competing methods’ aggregate AUC values. We can see that the pro-

posed rank-aggregate method MiProD yields the overall best results in finding

misplaced products. In a clean state, the distance based approach detects the

misplaced products second best, while yielding the worst results in a dirty state,

where 10% of the products are initially misplaced. The kNN based approach is

the least susceptible to a dirty state and is overall second best, directly followed

by GLOSH, and then distance. The local outlier factor LOF yields the overall

lowest scores in this experiment.

4.3. Robot-based case study in retail

We performed a controlled experiment in a retail store, where inventory

counting and locating is done by a robot. The inventory robot collects the

positions of the products on the sales floor by triangulation of a product’s RFID

tag. To this end, the robot has directed antennas that have a characteristic

signal strength depending on the angle of a tag to it. Readings can be collected
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at multiple known positions, at which the robot is passing, and aggregated to

an estimated location, e.g. the way it is described in [46]. The setting is similar

to the experiments we reported above. We start with a rather clean state, as

we specifically advised the store staff to diligently clean up the store before the

experiment. In this clean state, we took the first sensor reading of the products

and their location over night with the help of an inventory robot.

We simulated customer behavior by misplacing 55 products M (the set M

is the ground truth for evaluation). Then, we took a second sensor reading of

the products and their location with the help the inventory robot. At this point

at least the products in M are misplaced. The two readings are input to the

classification task of finding the misplaced products M .

Estimated parameters.. The number of products in this setting is 25,570. The

initial state can be considered clean. The inaccuracy of the robot is low, as the

median difference of the products’ estimated location between the two reads is

0.4 meters. Also, the two subsequent sensed product sets’ overlap is 94% (based

on the first reading R and second reading R′, the overlap is |R∩R′|
|R∪R′| ). Assuming a

completely random missingness process, this yields an estimated missingness of

less than 3 percent per read. The number of classes as organized by the retailer

is 39 with a heterogeneous distribution.

The inspection of the classes showed that the distribution areas of some

classes are spread throughout the entire shop. This is expected to impact

the outlier detection quality of spatial outlier detection methods like LOF and

GLOSH. Furthermore, the classes are rather imbalanced in size, as depicted in

Figure 5. Therefore, we applied a preprocessing step to better split the products

into logical classes.

Preprocessing the product classes. We applied a hierarchical clustering [30] on

all products using a distance measure that takes into account the names of
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(b) Box plot of products per class after
preprocessing (average products per
class 121, standard deviation 45).

Figure 5: Box plots of products per original (a) and preprocessed (b) classes

compared products, and the distance of products to one another on the map.

The hierarchical clustering produces a dendrogram tree. Each node in the tree

is annotated with the number of contained products. We extracted the classes

from that tree by trying to split large nodes that have a product count larger

than 200, and request that splitting does not result in classes smaller than 50

products. In this clustering, we respected the initial categorization of the retailer

and only partitioned the larger classes further. The resulting class count after

preprocessing is 210, as shown in Figure 5b.

4.3.1. Case study results

The area under the curve for the misplacement with and without preprocess-

ing the classes is depicted in Table 5. We see that by preprocessing the product

classes, we can increase the quality of the spatial outlier detectors. The meth-

ods LOF and GLOSH significantly benefit from this step. For brevity, we only

investigate the better results based on preprocessed classes. In this case, most

methods yield already very high areas under the curve, with the MiProD rank

aggregate method showing top performance at 0.998, while GLOSH and LOF

closely follow with AUC values of 0.994 and 0.990, respectively. The distance

based detector yields an AUC of 0.946 although it has outperformed the other
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Table 5: AUCs for the different methods in the robot experiment. The two rows capture the results
for 39 original classes, and for the 210 preprocessed classes.

Experiment distance kNN LOF [6] GLOSH [9] MiProD

original classes 0.946 0.706 0.806 0.802 0.987

preproc. classes 0.946 0.706 0.990 0.994 0.998

outlier classifiers in the clean setup, as we have seen in the results in Table 4.

Next, we discuss the results on a disaggregated level. Figure 6 shows the

shape of the ROC curves and also the corresponding trade-off between recall

and precision. Note that the count of positives (55 misplaced products) is only a

small subset of the total number of products (25570 products on the sales floor).

Therefore, not only recall is interesting, but precision is equally important.

The distance method depicted in Figure 6a shows good precision, which is

to be expected, as misplaced products tend to have moved a larger distance

than the not-misplaced counterparts. We see in the precision/recall graph that

a high recall (about 0.9) can be achieved with a still high precision (close to

0.4). This means that a shop employee working through the ordered list of

potential outliers would find 90 percent of misplaced products with an average

of 3 non-misplaced products per five products checked in this case.

The kNN method (Figure 6b) turns out to be unreliable in this particular

case. The precision is around 0.004 at best, which means that an employee

would need to check 250 products to find a single misplaced product. Latter

low precision makes kNN alone impracticable in this setting.

The local outlier factor (LOF) [6] shown in Fig. 6c is the only one that

correctly positions the first few misplaced products on the top of its ranking (the

precision/recall graph starts at 1 and stays there for a few of the 55 misplaced

products). After that however, the precision rapidly decreases and a recall of 0.5

(identifying 50 percent of the misplaced products) entails browsing through five

times the number of misplaced products at a precision of 0.2. The precision gets
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Robot: kNN ROC
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Robot: LOF ROC
 (AUC: 0.99067)
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(c) LOF method.

Robot: GLOSH ROC
 (AUC: 0.99398)
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Robot: MiProD ROC
 (AUC: 0.99778)
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(e) MiProD method.

Figure 6: ROC curves for the different methods with the inventory robot experiment, and
their performance in terms of trade off between precision and recall (PR space).
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only worse with increasing the result set, but this approach is able to rank some

of the products higher, which the distance method did not discover. The ROC

curve reaches 1 at a false positive rate of around 0.1, while with the distance

method we need to check almost every product to find all outliers.

The GLOSH [9] method’s performance in Figure 6d displays a more steady

precision graph over the entire set of misplaced products. However, it fails to sin-

gle out the misplaced products at the start of the list. The best precision/recall

trade-off is perhaps at 0.55 recall with 0.2 precision, which is comparable to the

result achieved by the LOF method. However, it shows more consistent results

over the entire set of misplaced products and is able to locate the last misplaced

products sooner than the LOF which yields a superior AUC.

Finally, the rank aggregate method based on the maximum ranking of dis-

tance, kNN, and LOF that we propose outperforms the individual detection

techniques. The MiProD approach depicted in Figure 6e yields a remarkable

AUC of 0.998, which is close to the optimal score of 1.0. We see in the pre-

cision/recall graph that while the precision suffers a little in comparison with

the distance method, it is able to find all misplaced products with a precision of

around 0.25. This means that an employee can find all 55 misplaced products

by checking around 220 products.

5. Implications

Our experiment investigated in how far misplaced products can be detected

using outlier detection techniques without having a planogram available. Our

results demonstrate that this problem can be tackled using outlier detection

techniques [2] in an accurate way. The best results were achieved using our

MiProD aggregation technique. Our results have implications for research into

sensor based locating systems [36, 32], misplaced product detection [24, 43], and
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for their joint application in practice [8, 11, 7].

The important implication of our work for research is that machine learn-

ing techniques can be effectively used to harness sensor systems for improved

operational use cases. More specifically, this finding is important for research

into misplaced products–a stream of research that up until now assumed that

planogram information was required [11, 7]. In our experiments, we observed

diverging strengths and weaknesses of existing techniques, which we managed

to balance using our MiProD aggregation technique.

Some observations can be made on the applicability of the existing tech-

niques. We found that in our simulated setting with the collected parameters,

the kNN method [22] performed mostly better than the spatial outlier techniques

LOF [6] and GLOSH [9]. However, in a more intricate store layout as observed

in the real-world experiment, its performance deteriorated. This deterioration

implies that products projected on a 2D plane are more heterogeneous in reality

than in the generated clusters, where initially most areas are exclusively filled

with products of a single class. Notwithstanding, the proposed MiProD rank

aggregation method works well within the scope of the investigated real-world

setting, as it is able to compensate the flaws of one classifier by the strengths of

another. Furthermore, we saw that some spatial outlier detection methods can

be improved by preprocessing the data before applying the anomaly detection

methods.

In the context of misplaced product detection, we first note that the outlier

detection problem can be tackled in a binary setting. From the retailer’s point

of view, in fact, items are either misplaced, or they are not, and it makes not

much sense for store managers to assign to each item a degree or measure of be-

ing an outlier. On the contrary, it is more interesting for retailers to investigate

the precision of the result set. Thus, we investigated the precision/recall graphs
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as well. We found that even though the distance method was outperformed by

the spatial methods in the AUC values, its precision for the largest part of the

resulting misplaced items was higher. Therefore, for a successful implementa-

tion, the distance based classifier might be preferable in the trade-off between

precision and recall, when one is willing to compromise on the (hopefully) few

products that are missing in either of two consecutive sensor reads.

Our work has also implications for practice. The results clearly demonstrate

the potential of improving the analysis of the raw data provided by RTLS.

Vendors of such systems might be better advised in fine-tuning their analytical

software than investing in more powerful hardware. The results also show that

accuracy (Requirement 1) can be achieved without having to rely on planogram

information (Requirement 2). This aspect substantially extends the applica-

bility of misplaced product detection using RFID sensor systems to settings in

which planograms are not available or not continuously kept up to date.

Furthermore, an accurate insight into the misplaced products can yield op-

erational benefits on the managerial level [51]. The number of product mis-

placements per product become visible to the decision makers of the stores and

indirectly relate to customer interactions with the products. An investigation of

the ratio of the number of misplacements and the number of sales per product

looks promising. For example, knowing that a product is often misplaced but

rarely sold would indicate a discrepancy between customer interest in a product

and the willingness to buy it. This valuable knowledge can be used to optimize

sales strategies and also inventory assortments.

Also some notes on potential limitations are warranted. The results cover

bread ranges of plausible characteristics of retail shops and common sensor tech-

nology. Nevertheless, we need to be careful when extrapolating the results to

settings in other domains with characteristics beyond the ranges that we inves-
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tigated. Sensor systems significantly vary in their reading accuracy, missingness

rate and other characteristics like the time interval between sensor readings.

6. Conclusion

In this work, we investigated the problem of detecting misplaced products

without planogram data in order to reduce the amount of missed sales oppor-

tunities in retail stores. We investigated methods of spatial outlier detection,

and also a means of misplaced product detection based on consecutive sensor

readings based on the distance. In extensive experiments, we investigated the

influence of different parameters in the setup of a store and sensing environment

on the effect on misplaced product detection and also proposed a novel aggre-

gation method for misplaced product detection (MiProD) that outperformed

individual methods. Our results emphasize that misplaced product detection is

accurately feasible in practice even if planogram information is not available.
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2008. Tagmark: reliable estimations of RFID tags for business processes.
In Proceedings of ACM SIGKDD’08. 999–1007.

[11] Leonardo Weiss Ferreira Chaves, Erik Buchmann, and Klemens Böhm.
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