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Surfel-Based Next Best View Planning1

Riccardo Monica and Jacopo Aleotti2

Abstract—Next best view (NBV) planning is a central task for3
automated three-dimensional (3-D) reconstruction in robotics. The4
most expensive phase of NBV computation is the view simulation5
step, where the information gain of a large number of candidate6
sensor poses are estimated. Usually, information gain is related7
to the visibility of unknown space from the simulated viewpoint.8
A well-established technique is to adopt a volumetric representa-9
tion of the environment and to compute the NBV from ray casting10
by maximizing the number of unknown visible voxels. This letter11
explores a novel approach for NBV planning based on surfel repre-12
sentation of the environment. Surfels are oriented surface elements,13
such as circular disks, without explicit connectivity. A new kind of14
surfel is introduced to represent the frontier between empty and15
unknown space. Surfels are extracted during 3-D reconstruction,16
with minimal overhead, from a KinectFusion volumetric repre-17
sentation. Surfel rendering is used to generate images from each18
simulated sensor pose. Experiments in a real robot setup are19
reported. The proposed approach achieves better performance20
than volumetric algorithms based on ray casting implemented on21
GPU, with comparable results in terms of reconstruction quality.22
Moreover, surfel-based NBV planning can be applied in larger23
environments as a volumetric representation is limited by GPU24
memory.

Q1
25

Index Terms—Autonomous agents, range sensing, motion and26
path planning, computer vision for other robotic applications.27

I. INTRODUCTION28

ANEXT Best View (NBV) algorithm computes the best29

viewpoint of a depth sensor, mounted on a robot, to im-30

prove the knowledge of the environment by maximizing the31

expected information gain. Typical NBV algorithms operate it-32

eratively in two phases: viewpoint generation and viewpoint33

evaluation. In the first phase, the free configuration space of the34

robot is explored to retrieve a set of candidate sensor poses.35

In the second phase, a view is simulated from each candidate36

sensor pose, given the current model of the environment, and37

then the most promising viewpoint is selected. The goal of the38

simulation is to estimate the amount of unknown space visible39

from the view pose, which in turn predicts the information gain.40

The view simulation phase is usually the most computationally41

expensive operation, which may limit the number of poses that42

can be evaluated in a reasonable time.43

Unlike most works that address the NBV problem by using44

a volumetric representation of the environment, in this work a45
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Fig. 1. (a) RGB image of the scene. (b) Incomplete surfel-based representa-
tion, with surface surfels (gray shading) and frontier surfels (frontels, black).
(c) A closeup view. (d) Closeup view with surfel size reduced to 20%.

novel NBV evaluation strategy is proposed that exploits a surfel- 46

based representation. A surfel is a surface element represented 47

as a circular disk without explicit connectivity, described by 48

geometric attributes such as position, radius, normal and color 49

[1]. Multiple surfels may be assembled to describe a surface. 50

Research interest on surfels has risen significantly as a set of 51

surfels can be processed like a point cloud but it contains more 52

information. A surfel cloud is also simpler than a polygon mesh 53

data structure and it requires less memory than a volumetric 54

representation. As an example, the ElasticFusion algorithm [2] 55

has been proven capable of GPU-accelerated real-time 3D re- 56

construction on a surfel cloud. 57

In this letter, a novel kind of surfel is introduced, named 58

frontel, in order to represent the frontier between empty and 59

unknown space (Fig. 1). We exploit previous work [3] where the 60

KinFu Large Scale algorithm, an open source implementation 61

of KinectFusion [4] in the Point Cloud Library, was modified to 62

reliably keep track of both empty and unknown voxels. Further 63

changes have been made in this work to generate surfels and 64

frontels in real-time during the KinFu reconstruction process, 65

with minimal overhead. In the view simulation phase, frontels 66

and surfels are rendered to simulate a depth image. 67

The proposed NBV approach was evaluated in a real setup 68

including a robot arm with a Kinect sensor in eye-in-hand 69

configuration. Results are compared with volumetric methods, 70

where viewpoint evaluation was accelerated on GPU thanks to 71

KinFu internal ray casting. The experimental evaluation shows a 72
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significant performance improvement for the surfel-based NBV73

algorithm, with a similar quality in 3D reconstruction. Most of74

the performance improvement is due to the opportunity to fit the75

whole 3D representation on GPU memory at once, which is not76

possible with a volumetric representation. Indeed, in volumetric77

NBV approaches, when observing different regions of space,78

parts of the environment must be loaded from CPU to GPU79

memory before viewpoint evaluation. Similarly, due to limited80

GPU memory, another advantage of surfel-based NBV planning81

against volumetric approaches is that it can be applied in larger82

environments. The paper is organized as follows. Related work83

is reported in Section II. In Section III, the proposed surfel-84

based NBV algorithm is described. Experiments and results are85

reported in Section IV. Finally, Section V concludes the work.86

II. RELATED WORK87

Next best view planning is a well established area of re-88

search in robotics [5]–[7]. Here we mainly review recent results,89

with the aim of showing that the use of volumetric approaches,90

requiring computationally intensive ray casting operations for91

viewpoint evaluation, remains prevalent. Most works focus on92

non model-based methods that do not assume an a priori model93

of the scene, while model based NBV planning requires both94

modeling and object recognition [8]. In [9] an approach was95

proposed which takes into account the position uncertainty of96

the sensor and that adopts a utility function that considers sev-97

eral factors like perception of unseen areas, navigation distance,98

reconstruction quality and fast occlusion estimation. Potthast99

et al. [10] presented a variant of the NBV problem that builds a100

belief model of the unobserved space for cluttered environments101

with occlusion. In [11] a frontier-oriented algorithm based on102

volumetric hierarchical ray tracing was introduced to speed up103

NBV evaluation.104

In mobile robotics the view planning problem is constrained105

in the 2D plane [9], [12]–[18]. Senarathne et al. [12] presented106

a method based on surface frontiers, i.e. the boundary voxels107

of mapped surfaces adjacent to unmapped space. In [14] an108

adaptable and probabilistic object reconstruction approach was109

proposed to evaluate the information gain. An optimization was110

also introduced, based on a lookup table, for the evaluation of111

multiple view orientations from the same viewpoint. Isler et al.112

[15] exploited a probabilistic volumetric map and investigated113

an algorithm that estimates whether a ray is expected to hit the114

backside of already observed surfaces. Delmerico et al. [16]115

evaluated different information gain metrics for NBV planning116

using a probabilistic voxel map in terms of completeness and117

entropy. The comparative analysis indicated that the utility func-118

tion defined in [9] achieved the best performance, as well as a119

metric that gives higher weights to unobserved voxels close to120

already observed surfaces. Patten et al. [17] developed a model121

based system for outdoor active object classification using a mo-122

bile robot. Monte Carlo methods for planning new observations123

were adopted with time and distance constraints together with124

a non-parametric Bayesian regression classifier.125

NBV planning has also been applied to aerial robotics. In [19]126

a receding horizon method was introduced based on sampling a127

random tree of candidate viewpoints. The method scales better 128

than a frontier-based planner in large environments. In [20] a 129

2-stage planning solution was proposed that aims at achieving 130

full coverage of the environment and global optimality of the 131

exploration path. 132

Surface based approaches for NBV planning were inves- 133

tigated using triangular meshes [21]–[23]. Viewpoints were 134

generated by examining the boundaries of the reconstructed 135

surfaces. These methods do not model the surface between 136

empty and unknown space, and, therefore cannot select the 137

next best view by estimating information gain from unknown 138

volume. Volumetric representations are also preferred for 139

probabilistic approaches [15]. 140

III. METHOD 141

The robot task is to perform a 3D reconstruction of the volume 142

around a set of Points Of Interest (POIs), in a tabletop scenario, 143

by taking a sequence of observations. It is assumed that the set 144

of POIs is given as input to the system. For example, a POI 145

may indicate the location of an object or a group of objects 146

to be scanned. At the beginning of the task the robot has an 147

initial, possibly incomplete, representation of the environment 148

and the volume around each POI is cleared (set to unknown), as 149

described in Section III-B. The NBV planning procedure is then 150

executed. At each iteration candidate viewpoints are sampled 151

on a view sphere with fixed radius around each POI, oriented 152

towards the POI itself. In the view simulation phase, surfels and 153

frontels are rendered to a virtual view (Section III-C). Then a 154

score is computed from the rendered image (Section III-D). The 155

score represents the expected information gain for the simulated 156

sensor pose. The poses are attempted using a motion planner in 157

decreasing order of scores. The first feasible solution is executed 158

by the robot. 159

In the proposed method surfels and frontels are generated 160

on GPU in real-time during robot observations from the KinFu 161

internal representation. Both surfels s and frontels f are circu- 162

lar disks in 3D space. Surfels separate empty from occupied 163

space, while frontels separate empty from unknown space. In 164

particular, surfel/frontel generation is performed during trun- 165

cated signed distance function (TSDF) volume shifting opera- 166

tions to optimize performance (Section III-A). The TSDF vol- 167

ume is the volumetric representation of the environment used by 168

the KinFu algorithm. As KinFu is able to keep in GPU memory 169

only a limited volume, if the whole environment does not fit 170

inside the TSDF volume KinFu Large Scale shifts the TSDF 171

volume by unloading and loading parts of the TSDF volume 172

from and to GPU memory according to sensor movements. 173

A. Real-Time Surfel and Frontel Generation 174

The TSDF volume is organized as a regular voxel grid. The 175

TSDF assigns to each voxel the distance to the nearest sur- 176

face, negative in occupied space and positive in empty space. 177

The distance is truncated in the interval [−vmax, vmax]. Each 178

voxel c (xc, yc , zc) holds a TSDF value vc , i.e. the value of the 179

TSDF at the center of the voxel, and a weight wc which con- 180

tains the number of times the voxel has been observed, up to a 181
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maximum. KinFu operates on a cubic TSDF volume with edge182

length E = cmaxe, where cmax is the volume resolution and e is183

the voxel size. Whenever a point is observed by the sensor, the184

voxels on the ray between the observation and the sensor po-185

sition are updated. However, only the volume inside the TSDF186

is updated by KinFu. The Large Scale extension of KinFu per-187

forms a shifting operation when the distance between the TSDF188

volume center and a virtual point, at about E/2 distance from the189

sensor along the z axis, is greater than E/3. A shifting operation190

translates the TSDF volume such that it represents a new region191

in space, centered at the the virtual point. Shifting ensures that192

the region currently observed by the sensor is the one represented193

on GPU and that it can be updated. Information contained in the194

intersection between the old TSDF volume and the new one is195

kept in GPU memory. Voxels with wc > 0 and vc < vmax outside196

the new volume are downloaded from GPU memory to RAM.197

Then, voxels are converted into points, described by position c198

and TSDF value vc , and added to a TSDF point cloud. Points199

are reloaded to TSDF volume if a subsequent shifting operation200

moves the volume back in the old region. Due to memory con-201

straints, empty voxels with vc = vmax are not downloaded by202

the aforementioned procedure. Therefore, in our previous work203

[3] an octree Ω was added to store wc when vc = vmax.204

Surfels s are circular disks in 3D space, with position ps ,205

radius rs and normal ns . Color is not available in KinFu, but206

it is not required for the proposed NBV score computation.207

Similarly, frontels f have position pf , radius rf and normal nf .208

The surface between the outside and the inside of objects is209

located in the TSDF volume between voxels having a different210

sign of v. That is, an empty voxel c is near the surface of an211

object if the following conditions hold:212 {
vc ≥ 0 ∧ wc > 0,

∃ c′ ∈ N6 (c) | vc ′ < 0, wc ′ > 0
(1)

where N6 (c) is the 6-neighborhood of voxel c. Similarly, the213

frontier between empty and unknown space is located where w214

changes from 0 to a positive value, i.e.215 {
vc ≥ 0 ∧ wc > 0,

∃ c′ ∈ N6 (c) | wc ′ = 0
(2)

Before a TSDF volume shifting operation occurs, surfels and216

frontels are generated from the old TSDF volume. A surfel217

centered on voxel c is generated, i.e. ps = c, if condition (1)218

holds, whereas a frontel pf = c is generated if condition (2)219

holds. Generated surfels/frontels are added to two sets on CPU220

RAM, here named Σ and Φ respectively. To avoid duplication,221

existing elements of Σ and Φ inside the region represented by the222

old TSDF volume are cleared. These elements may have been223

generated by previous shifting operations in the same region.224

The surfel local normal is estimated from the TSDF local225

gradient, according to the signed distance function properties,226

as follows (normalization omitted):227

ns(c) =
∑

c ′∈N6

vc ′
c′ − c

‖c′ − c‖ (3)

Fig. 2. The current position of the TSDF volume is marked with a black dashed
square. The sensor observes towards the right, clearing the yellow unknown area.
The green line indicates where frontels are generated (a) without and (b) with
padding.

Conversely, a frontel normal is estimated from the 26- 228

neighborhood N26 of the voxel c, as follows (normalization 229

omitted): 230

Kw (c) =

{
1 if wc > 0
−1 if wc = 0

(4)

nf (c) =
∑

c ′∈N2 6

Kw (c′)
c′ − c

‖c′ − c‖ (5)

The 26-neighborhood was chosen over the 6-neighborhood to 231

reduce the quantization error. Indeed, unlike vc , Kw (c) as in 232

(4) can assume only two values. Normal nf is oriented from un- 233

known space towards known space. Equations (1) and (2) place 234

the surfel at the center of an empty voxel next to an occupied 235

or unknown voxel. Therefore, occupied and unknown volumes 236

are enlarged by δe = 1
2 e per side, i.e half the KinFu voxel edge 237

e. To generate a surface without holes, the surfel/frontel radius 238

must be set as half the distance between the two farthest vertices 239

of a voxel, i.e.
√

3
2 (e + 2δe). Therefore, the surfel/frontel radius 240

may be approximated as rs = rf =
√

3e. 241

The surfel/frontel generation procedure [(1) and (2)] requires 242

knowledge about the neighboring voxels. Voxels in contact with 243

the TSDF volume surface are considered as a special case cov- 244

ered by reducing the active TSDF volume by a one-voxel-wide 245

padding. The padding is downloaded and uploaded from/to GPU 246

as usual, but it is not updated with new data acquired by the sen- 247

sor. An example of this issue is provided in Fig. 2. In case (a), 248

without padding, the TSDF volume has been set to empty up 249

to its right surface. Therefore, frontels are not generated in that 250

area, leaving a hole in the surface enclosing unknown space. In 251

case (b), the unknown values near the TSDF volume surface are 252

not removed and frontels are correctly generated. 253

B. Initialization of the Regions of Interest for the NBV Task 254

Each POI defines a spherical region with origin ppoi and ra- 255

dius Rpoi. At the beginning of the task each spherical region 256

around a POI is cleared and set to unknown. To this purpose 257

the TSDF volume and the surfel/frontel-based representation 258

must be managed in a consistent way. In the part of the sphere 259
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currently inside the TSDF volume, wc is set to 0 whenever260

‖c − ppoi‖ ≤ Rpoi.261

Outside the TSDF volume, the update procedure is executed262

as follows. First, surfels and frontels inside the sphere are deleted263

from Σ and Φ. Then, frontels must be generated in Φ between264

the cleared volume and the empty voxels in octree Ω. Let c∈Ω265

be a voxel outside the sphere, c has a known neighbor inside the266

sphere if the following conditions hold:267 {
‖c − ppoi‖ > Rpoi ∧ wc > 0,

∃ c′ ∈ N6(c) | wc ′ > 0, ‖c′ − ppoi‖ ≤ Rpoi
(6)

Therefore, a new frontel is created at position pf = c, with268

radius rf and normal nf = (pf − ppoi)/‖pf − ppoi‖ when con-269

ditions in (6) hold. Finally, the voxels inside the sphere are set270

to unknown in Ω.271

C. Surfel Rendering272

The standard pinhole model is used for simulating the Kinect273

sensor. The depth image of a real sensor contains, for each pixel,274

the distance of the first intersection of a ray cast from the origin275

of the camera center passing through that pixel. Some pixels are276

left undefined, since the intersection may go below (or beyond)277

the minimum (or maximum) sensor range.278

A sensor which follows the pinhole model can be simulated by279

rendering. For each surfel or frontel, position (3× 32-bit floats),280

normal (3× 32-bit floats) and radius (32-bit float) are provided281

to the rendering pipeline. In total, 28 bytes are required per surfel282

or frontel. In our approach, rendering generates an image that283

includes all information needed for NBV score computation.284

Unlike the real sensor, three possible results may occur for the285

virtual sensor pixels, i.e. a pixel is marked: a) occupied, if a286

surfel is rendered; b) unknown, if a frontel is rendered; c) out-287

of-range, if nothing is rendered or the surfel/frontel is out of the288

sensor range. A single real value oij is used for each pixel as the289

output of the rendering pipeline. Given the zd depth in camera290

coordinates of the rendered surfel/frontel, the output value is set291

as:292

oij =

⎧⎪⎨
⎪⎩

zd if (a)

−zd if (b)

0 if (c)
(7)

Therefore, when rendered, surfels and frontels produce positive293

and negative depths respectively.294

Image resolution, center point and focal length are known295

from the sensor intrinsic calibration. The maximum range of296

the sensor is used to set the frustum far plane, so that farther297

points are discarded. By setting background to 0, case (c) is auto-298

matically handled for points beyond maximum range. However,299

since surfels between the camera and minimum range occlude300

surfels behind them in the real sensor, they must be rendered301

with output value 0.302

In the view evaluation phase TSDF volume shifting opera-303

tions must be simulated. The predicted TSDF volume is assumed304

centered on the POI which generated the view. Surfels/frontels305

outside the predicted position of the TSDF volume are ren-306

dered with oij = 0, as when the real sensor measures range data307

Fig. 3. (a) Surfel s, with position ps and radius rs , is projected to the view
plane. Square size l ≥ AB must be estimated. (b) A case in which l is underes-
timated. Distance OP is reduced to highlight the effect.

outside the TSDF volume such data do not contribute to the 3D 308

reconstruction. 309

A point-based rendering technique is adopted to efficiently 310

render surfels as points [24]. The default OpenGL pipeline ren- 311

ders points as squares of size l facing the camera. A vertex 312

shader is executed in parallel on GPU for each point sent to 313

the rendering pipeline. In particular, each point is transformed 314

into camera coordinates and the distance zd is computed. The 315

OpenGL pipeline is instructed to draw squares with size l by 316

setting the variable gl_PointSize in the vertex shader. Each 317

square may span multiple fragments, each corresponding to 318

a pixel. For each fragment, a fragment shader is run by the 319

OpenGL pipeline. The fragment shader computes the 3D dis- 320

tance of each fragment from the center of the surfel which 321

generated it. The fragment is discarded if the distance is greater 322

than the radius rs . 323

Estimation of a suitable square size l in the vertex shader 324

is a non-trivial task. Indeed, the size must be large enough 325

to encompass the entire surfel. However, setting a too large 326

square size would cause generation of many useless fragments, 327

thus deteriorating performance. If the surfel is roughly parallel 328

to the image plane [Fig. 3(a)], l can be estimated as follows. 329

Triangles
OAB and
OA′B′, and also
OAP and
OA′P ′ 330

are similar, i.e.: 331

OP ′

OP
=

OA′

OA
=

A′B′

AB
(8)

Therefore, given focal length F , edge l is estimated as: 332

l =
2Frs

zd
(9)

A similar estimate was performed in [24]. However, by using 333

such formula, l may be underestimated as shown in Fig. 3(b), in 334

a 2D example. This results in incompletely rendered surfels, cut 335

by the bounding square. In the following, we provide an upper 336

bound for this under-estimation. 337

Surfel s is rotated by angle α so that it appears slightly bigger, 338

i.e. the projection of its top-most point onto the plane through 339

ps , parallel to the view plane, is in C ′ instead of A′. A similar 340
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effect happens for the lower-most pixel, which now projects341

in D′. However, the error for D′ is smaller, due to the minor342

distance from the sensor principal axis. The circle displayed343

around the surfel in Fig. 3(b) represents the possible positions344

of the top-most and lower-most points, by varying α values. The345

maximum distance A′C ′ occurs when the surfel is perpendicular346

to C ′O, i.e. β = π/2. In this case, α = ∠P ′OC ′. Therefore, the347

projected surfel radius r′s = psC ′ is upper bounded as follows:348

r′s ≤ rs

cos (∠P ′OC ′)
(10)

However, ∠P ′OC ′ can be at most equal to the sensor Half349

Field Of View (HFOV). Therefore, for a Kinect-like sensor,350

with HFOV ≈ 30◦, cos (HFOV) =
√

3/2 ≈ 0.866. Hence, in351

the worst case a surfel is reduced by less than 14% its size.352

D. NBV Score Computation353

Standard NBV score computation methods assign a score354

equal to the number of unknown voxels visible from each pose.355

The more unknown voxels are visible, the higher is the infor-356

mation gain expected from that pose. In this letter we propose357

a novel score function where the total area of visible frontels358

is used to approximate the number of unknown voxels. Since359

frontels are generated to cover the area of the frontier between360

empty and unknown space, the total area of visible frontels is361

(approximately) proportional to the number of voxels in the362

frontier. The number γr of sensor view rays which intersect a363

frontier is computed from the rendering output (7) as:364

Uo (oij ) =

{
1 if oij < 0
0 otherwise

(11)

γr =
∑
ij

Uo (oij ) (12)

However, each frontel f contributes to γr proportionally to365

its projected area Ap
f . Therefore, frontels close to the camera366

contribute excessively. This high contribution is not consistent367

with the standard score function that counts the number of un-368

known visible voxels. Indeed, in the standard score function a369

voxel close to the camera counts as 1, like any other voxel. In370

the following, a more appropriate score function is defined by371

introducing a weighting factor.372

Equation (9) in Section III-C relates distance zd and radius rf373

of a frontel (roughly parallel to the view plane) to the diameter l374

of its projection on the view plane. Also, due to (7), zd = |oij |.375

Hence, the projected frontel area in pixels can be estimated as:376

Ap
f = π

(
l

2

)2

= π

(
1
2

2Frf

zd

)2

=
(

F

|oij |
)2

Av
f (13)

where Av
f = πr2

f is the actual frontel area. The weighted NBV377

score function is then defined as:378

γ =
∑
ij

Uo (oij ) γij (14)

Fig. 4. The experimental setup.

where the weighting factor γij is 379

γij =
Av

f

max
{
Ap

f , 1
} (15)

For frontels not too far away from the camera, (15) can be 380

simplified by using (13) so that: 381

γij =
Av

f

Ap
f

=
( |oij |

F

)2

if Ap
f ≥ 1 (16)

i.e. γij is set as inversely proportional to the projected surfel 382

area Ap
f . Conversely, for distant frontels where the projection 383

area Ap
f is smaller than a pixel, gain γij becomes 384

γij = Av
f = πr2

f if Ap
f < 1 (17)

to prevent overestimation. From (15), in the general case, both 385

distance oij and frontel radius rf are required to compute area 386

Av
f and then gain γij . In this work, the frontel radius is con- 387

stant, as shown in Section III-A. However, our approach can be 388

extended to a variable frontel radius by computing gain γij in 389

the fragment shader, where the radius is available. 390

IV. EXPERIMENTS 391

A. Experimental Setup 392

The experimental setup (Fig. 4) includes an industrial robot 393

arm (Comau SMART SiX) with six degrees of freedom. A 394

Kinect sensor is mounted on the end-effector and calibrated 395

with respect to the robot wrist. KinFu egomotion tracking is 396

disabled and the sensor position is computed from robot for- 397

ward kinematics. The workspace is a square of about 2.5 × 398

2.5 m that encompasses two tables in front of the robot (high- 399

lighted in yellow in Fig. 4). KinFu TSDF volume side is set to 400

to E = 1.5 m and the edge resolution is set to cmax = 512 cells. 401

Therefore, the voxel edge length is set to e = 2.9 mm, and thus 402

rf = 5.1 mm. As E is lower than the workspace size, shifting 403

operations must be performed while scanning different regions 404

of interest. The same shifting operations must be simulated in 405

the view evaluation phase, to accurately predict information 406

gain. Each experiment is performed as follows. First, the robot 407

scans the environment on a predefined path using KinFu. POIs 408

are given as input to the system, located near the objects to be 409

scanned. Regions of interest are initialized as unknown around 410

each POI as described in Section III-B. Viewpoints are sampled 411
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Fig. 5. Top: scenarios 1 and 2. Bottom: the spherical regions of interest
centered at each POI, surrounded by black frontels.

TABLE I
EXPERIMENT INITIAL DATA

on spheres around each POI, at a fixed distance of 0.8 m. Each412

POI generates 960 candidate views, sampled at regular intervals,413

by varying latitude (10 intervals), longitude (12 intervals) and414

rotation around the sensor axis (8 intervals). Then, the NBV task415

is started. At every iteration, all viewpoints generated for each416

POI are evaluated by the NBV algorithm. The MoveIt! ROS417

framework is used for planning a collision free path towards418

the viewpoint with the highest predicted information gain. A419

collision map with precision 5 cm is extracted from KinFu to420

update the MoveIt! planning scene. The collision map considers421

both occupied and unknown voxels as obstacles. Viewpoints are422

attempted in decreasing score order, until the planner succeeds.423

The robot then moves the sensor in the selected NBV pose and424

new information is acquired. The Kinect is slightly tilted (±5◦)425

to remove artifacts that otherwise would appear due to the emit-426

ted IR pattern. Indeed, if the sensor is fed multiple images from427

the same viewpoint in a static environment ripples appear in the428

3D reconstruction. The Kinect depth image has a resolution of429

640 × 480 pixels, with a focal length of about 528 pixels. How-430

ever, when the sensor is simulated during NBV computation a431

560 × 540 resolution is adopted, with the same focal length.432

The simulated camera height is increased to account for the433

tilting motion of the real sensor during acquisition, while the434

simulated camera width is reduced due to sensor calibration.435

The software runs on an Intel i7-6700 CPU at 3.40 GHz, 32 GB436

RAM, NVIDIA GeForce GTX 980 Ti GPU, 6 GB RAM.437

Experiments were performed in two different scenarios,438

shown in Fig. 5. In the first scenario, three POIs were defined,439

one for each object, with radius 0.2 m. In the second scenario,440

four POIs of different sizes were defined, one for each group441

of objects. Table I reports the initial number of surfels, frontels442

and unknown voxels inside the POIs. In each scenario, the ex-443

periment was repeated three times, by changing the NBV score444

function. The first score function, named RCV (Ray Casting445

Voxel count), is the standard NBV algorithm that maximizes446

TABLE II
AVERAGE EXECUTION TIME (SECONDS)

the number of unknown visible voxels. KinFu ray casting was 447

exploited to obtain oij and voxel index cij for each pixel. To 448

prevent the same voxel index to be counted more than one time, 449

a support boolean 3D matrix is used to track which voxels have 450

already been counted. The matrix has the same size of the TSDF 451

volume and it is indexed by cij . The second NBV score func- 452

tion (RCP: Ray Casting Pixel gain) exploits KinFu ray casting 453

to compute the pixel values oij . The distance |oij | is obtained 454

as the depth of the intersection between the ray and the first non 455

empty voxel. Gain γ (14) is used to evaluate the next best view. 456

RCP only requires knowledge of the pixel values oij . Finally, 457

the third score function (SRP) uses pixel values oij obtained by 458

surfel rendering as proposed in Section III-C. The NBV is again 459

estimated by γ. The robot task terminates either when the NBV 460

predicts a gain lower than a threshold or after 10 robot poses. 461

The threshold was set as γth = 0.002 m2 for RCP and SRP. In 462

the RCV case, as the area of a voxel face is approximately 463

(2.9 mm)2 , the threshold was set equal to 0.002 m2/(2.9 mm)2
464

≈ 237 voxels. 465

B. Results 466

Average execution times of each phase of NBV evaluation are 467

reported in Table II, as well as standard deviations. Results were 468

obtained by averaging the evaluation time of each POI (960 view 469

poses). More than 50 POI evaluations were executed for each 470

approach in the reported experiments. It can be noticed that the 471

total time to evaluate 960 poses is 9.14 s for RCV, 4.83 s for RCP 472

and 1.43 s for SRP. That is, surfel rendering (SRP) outperforms 473

both volumetric approaches (RCV and RCP) since rendering 474

is faster than ray casting. The proposed NBV approach based 475

on surfel rendering (SRP) requires a short initialization phase, 476

since clouds Σ and Φ are reloaded from RAM to GPU memory. 477

For the methods based on KinFu ray casting, instead, the TSDF 478

volume must be shifted and centered on the current POI. There- 479

fore, the shifting operation delays NBV computation by 2.81 s 480

on average. SRP improvement is partially offset by the shorter 481

data download time of RCP, probably due to better CUDA opti- 482

mization. In general, the RCV approach is the slowest, since it 483

also downloads voxel index cij . Moreover, in RCV each voxel 484

must be counted only once, thus requiring a more complex score 485

computation method. 486

The surfel/frontel generation procedure introduces a low over- 487

head at each KinFu shifting operation during 3D reconstruction. 488

Indeed, shifting lasts for additional 132 ms on average, over a 489

total time of about 781 ms. The amount of unknown voxels 490
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Fig. 6. Top: the first, third, fifth and seventh NBV reached by the robot in the SRP experiment of scenario 1. Bottom: the surfel- and frontel-based representation
after each NBV.

Fig. 7. Number of unknown voxels inside regions of interest, after each NBV.

TABLE III
NBV ITERATIONS, COMPLETENESS AND RECONSTRUCTION QUALITY

Fig. 8. Surfel- and frontel-based reconstruction at the end of the SRP experi-
ments, for each scenario.

inside regions of interest decreases with the number of NBV491

iterations, as the robot explores the unknown regions. Fig. 6492

shows images of some next best views for SRP in scenario 1, as493

well as the progressive reduction of unknown space surrounded494

by frontels (in black). The graphs in Fig. 7 show the number of495

unknown voxels as the NBV task progresses. All three methods496

have a similar trend. Table III reports the number of NBV itera-497

tions for each experiment. Symbol 10+ marks experiments that498

where stopped after 10 iterations. The final 3D environment re-499

construction for the surfel-based experiments is shown in Fig. 8.500

Reconstruction quality was assessed by comparing results of the501

NBV task with the initial scan of the environment. The initial502

robot scan was performed along a predefined path to scan all503

POIs and, therefore, it acts as ground truth. We define T the ini-504

Fig. 9. Effect of the volume padding on frontel generation, during first NBV
of scenario 2. Left: KinFu output, with the TSDF volume limit highlighted in
red. Center and right: surfels/frontels before and after the NBV.

tial point cloud produced by KinFu marching cubes algorithm 505

after the initial scan, inside the regions of interest. Moreover, we 506

define G the set of all points acquired by Kinect during an ex- 507

periment. Quality Qt of point t ∈ T is defined as the number of 508

points in G whose distance to t is lower than 2 cm. The meaning 509

of Qt is that automated NBV reconstruction quality is higher the 510

more points are closer to ground truth points obtained in a full 511

scan of the POIs. Completeness of reconstruction was evaluated 512

as the fraction of points where Qt > 0. Completeness, average 513

quality across all points in T and quality standard deviation are 514

reported in Table III. In general, completeness is comparable for 515

the three methods. Quality is slightly lower for RCP and SRP 516

than for RCV, which is probably due to the use of an approxi- 517

mated gain, as presented in Section III-D, instead of the exact 518

number of voxels. Fig. 9 shows the effect of volume padding 519

on frontel generation, as described in Section III-A. The sensor 520

is oriented towards a POI centered on the small horse object. 521

However, other POIs are also visible. No data can be acquired 522

outside the TSDF volume, as highlighted by the red line near 523

the boxes. Therefore, the unknown regions surrounding the two 524

POIs on the boxes are only partially carved. Frontels are cor- 525

rectly generated on the surface of the TSDF volume inside the 526

spheres. The methods SRP and RCP generate a slightly differ- 527

ent simulated image oij , due to the different approximations 528

made by the two algorithms. An example is shown in Fig. 10. 529

RCP shows some drawback: the step of the KinFu ray casting 530

algorithm is larger than the size of a single voxel, therefore, thin 531

unknown volumes may be skipped during ray casting, as in the 532

area highlighted with yellow squares. Moreover, some borders 533

appear jagged (yellow circle), as the algorithm may detect the 534

unknown space up to one step deep inside the surface. On the 535
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Fig. 10. Top: visible points simulated by RCP (left) and SRP (right) for the
third NBV of the SRP experiment in scenario 1. Blue colors represent positive
values of oij , while orange colors negative values. Bottom left: difference
between the two simulated images. Bottom right: the surfel-based representation
observed from a different viewpoint.

other hand the surfel-based approximation of SRP causes ob-536

jects to expand slightly, since the surfel/frontel sizes rs = rf537

were over-estimated in Section III-A.538

V. CONCLUSION539

In this work a novel method for robot next best view planning540

has been proposed. The approach is based on a surfel repre-541

sentation of the environment. Surfel rendering is used for NBV542

evaluation, instead of complex ray casting operations. Results543

indicate that a score function based on surfels is more efficient544

to compute and that it achieves comparable results in terms of545

reconstruction quality and completeness. Another advantage is546

that surfel-based NBV planning can be applied in larger envi-547

ronments. A limitation of the proposed method is that it still548

requires an initial voxel based volume representation, which is549

obtained through KinectFusion, from which surfels and frontels550

are extracted. In future work we plan to investigate algorithms551

for surfel and frontel generation that do not require an initial552

voxel representation of the environment.553
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