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Abstract 

The forecast of a landslide’s time of failure and the definition of alert thresholds are fundamental aspects in the study of natural hazards. 

However, these tasks are particularly difficult due to the large number of parameters and factors involved, and are therefore usually 

performed with a site-specific approach. This work describes an attempt to generalize the behavior of a landslide approaching collapse, 

with particular attention to the definition of a general criterion to define alert thresholds. The procedure started with the creation of a 

database of displacement data recorded for historical landslides, then the inverse velocity model was applied to these datasets to 

evaluate the time of failure under the assumption of linear behavior during the accelerating phase. A model calibration was conducted 

to best describe the monitored data and highlight any non-linear trend. A curve describing the velocity versus time relationship was 

then computed for each single slope failure case using the parameter obtained through this operation. In the final step of the study, 

these curves were processed with a normalization procedure, thus obtaining a dimensionless velocity-related coefficient. This parameter 

allowed the comparison of different landslide datasets on a single graph, which can be used as a general reference to define alert 

thresholds for emergency purposes. In order to test the criterion’s ability to represent landslide behavior, the procedure was also applied 

to a different case by simulating progressive data acquisition. 
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Glossary 

tf: time of failure 

EWS: Early Warning System 

t: time 

u: displacements 

InSAR: Interferometric Synthetic Aperture Radar 

v: velocity 

A, : Fukuzono empirical parameters 

 

R2: Correlation parameter 

GRG: Generalized Reduced Gradient 

RMSE: Root Mean Square Error 

vFV: velocity computed with the Fukuzono-Voight model 

vFV: mean of the vFV values 

vFV: standard deviation of the vFV values 

vn: normalized velocity 

1. Introduction 1 
Within the framework of natural risk management and reduction, the prediction of a landslide occurrence is a particularly 2 
relevant task from both a scientific and a socio-cultural point of view. Accurate time-of-failure (tf) forecasting could be a 3 
key element to develop an Early Warning System, in order to avoid or at least reduce damage and human losses. However, 4 
this is one of the most challenging problems regarding slope stability analysis, due to the large number of factors and 5 
parameters influencing landslide behaviour and its triggering, and has been the main focus of several studies. 6 
A first approach was presented in the early 1960s, when Saito and Uezawa (1961) proposed a method based on the 7 
comparison between displacement records and creep rupture curves obtained from load-controlled triaxial tests. Saito 8 
went on to present successful applications of this method in further studies (Saito, 1969; 1979). Relevant improvements 9 
to Saito’s theory were achieved, thereby leading to the development of a phenomenological method by Fukuzono (1985) 10 
based on small-scale laboratory tests. Results show that the inverse of displacement velocity decreases with time during 11 
the tertiary creep phase, characterized by an acceleration of slope deformation. Thus, the time of failure can be forecasted 12 
by locating the point where the line interpolating the monitoring data intercepts the x-axis, corresponding to a theoretical 13 
infinite velocity. The effectiveness of this method has been proven by various studies concerning retrospective analysis 14 
of different cases, such as open pit mines (Carlà et al., 2017a), experimental man-made slopes (Petley, 2004), and 15 
catastrophic natural events (Kilburn and Petley, 2003). More recently, Mufundirwa et al. (2010) proposed another method 16 
to assess tf based on a t(du/dt) – du/dt curve, where u and t indicate displacement and time, respectively. Time-of-failure 17 
estimation can be obtained by evaluating the slope of this curve. 18 
Following the development of these methods, several authors discussed the possibility of defining alert thresholds levels. 19 
Cruden and Masoumzadeh (1987) proposed three velocity levels, corresponding to three accelerating creep stages, with 20 
reference to a specific section of an open-pit mine. The main objective was to define a critical time when evacuation of 21 
pit personnel and equipment should begin. Intrieri et al. (2012) approached the task by studying the most critical periods 22 
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of the entire dataset of the Torgiovannetto landslide, and subsequently derived three different velocity threshold levels to 1 
be implemented in an ad-hoc EWS. Crosta and Agliardi (2002) applied Voight’s model in order to define “characteristic 2 
velocity curves” representing the theoretical behaviour of the Ruinon landslide approaching failure. Each curve refers 3 
specifically to a monitored sub-area of the landslide, and can be used to define velocity thresholds: for the specific case 4 
presented in the paper, the authors chose 30- 15- and 7-day alert velocity thresholds. Manconi and Giordan (2015) adopted 5 
a different approach, proposing an EWS where the definition of the alert levels is integrated with a time-of failure-6 
prediction model. By evaluating the model’s reliability, a specific threshold can be updated thanks to a near-real time 7 
monitoring system. 8 
A generalization procedure is discussed in this paper in order to overcome the site-specific feature associated with these 9 
thresholds. Considering that the computational cost of the evaluation of specific alert levels becomes gradually higher as 10 
the number of monitored landslide increases, the definition of a generalized criterion could prove useful to set appropriate 11 
thresholds according to the case. 12 

2. Material and Methods 13 

2.1. Time-of-failure forecast methods 14 
As previously stated, a series of different methods have been developed to solve the challenging problem of time-of-15 
failure evaluation. Federico et al. (2012) provided a study where these approaches are investigated from an analytical 16 
point of view, also by taking into consideration different monitoring technologies that can be applied to obtain useful 17 
parameters. Moretto et al. (2017) also studied this subject by examining different monitoring activities related to 18 
historically recorded landslides, and analysed the reliability of four different failure forecast methods (FFMs) based on 19 
the available data. Particular attention has been paid to satellite-based technologies, notably InSAR (Interferometric 20 
Synthetic-Aperture Radar), while other authors have explored different techniques such as Persistent Scatter 21 
Interferometry (Wasowski and Bovenga, 2014) to improve monitoring quality (examples of this approach are presented 22 
in Herrera et al., 2013 and Wasowsky et al., 2014). 23 
These methods use different approaches to the time-of-failure evaluation process, but are all based on the assumption that 24 
displacements display continuous acceleration, following a hyperbolic trend before failure occurrence. This behaviour is 25 
called “accelerating creep”, or “tertiary creep”, and is described by the creep theory. Terzaghi (1950) first approached the 26 
correlation between the accelerating phase and landslide movements, and research carried out by other authors identified 27 
the presence of relevant creep deformations before failure (Ter-Stepanian, 1980; Tavenas and Leroeuil, 1981). As for the 28 
ability of each specific method to accurately predict the time of failure of a landslide, Intrieri and Gigli (2016) applied the 29 
three approaches proposed by Saito (1961), Fukuzono (1985) and Mufundirwa (2010) to different cases, also trying to 30 
assess the influence of different factors in the failure forecast process. The effectiveness of each method is represented by 31 
a Predictability Index (PI), ranging from 1 to 5, evaluated for each specific landslide monitored. The results showed a 32 
similar performance of the Saito and Fukuzono models, while the approach proposed by Mufundirwa generally performed 33 
more poorly. The authors noted that the Saito and Fukuzono methods achieved different results in terms of quality with 34 
respect to the specific cases, underlining the independence and non-redundancy of these models.  35 
Based on the results reported in literature, which show good effectiveness in time-of-failure forecast, the inverse velocity 36 
method is applied in this paper. Due to its easier applicability, it is also more suited to obtain a faster prediction compared 37 
to other approaches, which can prove to be a crucial factor in guaranteeing EWS efficiency.  38 
 39 

2.2. Inverse velocity method 40 
As previously stated, the inverse velocity method developed by Fukuzono (1985) relies on the interpretation of the tertiary 41 
creep phase, where the material displacements follow an accelerating trend ultimately leading to the landslide collapse. 42 
By studying small-scale models, the author derived proportionality, represented by a power law equation, between the 43 
logarithm of acceleration and the logarithm of velocity. Starting from this hypothesis, the author proposed the following 44 
equation as an instrument to evaluate landslide time of failure: 45 

1

𝑣
= (𝐴(𝛼 − 1)(𝑡𝑓 − 𝑡))

1

𝛼−1
 46 

 47 

where v represents the surface velocity and tf is the time of failure. The trend of the inverse-velocity vs time curve depends 48 
on parameter α, which controls the linearity or non-linearity of the plot. As stated by Fukuzono (1985; 1990), the value 49 
of this parameter usually ranges between 1.5 and 2.2 for natural slopes. The hypothesis of linearity, corresponding to α=2, 50 
is generally a good assumption to estimate the time of failure, especially when data close to failure are considered for the 51 
analysis (Rose and Hungr, 2007). It is worth noting that, when slopes influenced by man-made structures are considered, 52 
lower values of α are frequently obtained (Bozzano et al. 2014).   53 
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From a physical point of view, the Fukuzono model was studied in detail and validated by Voight (1988, 1989), who 1 
interpreted the equation as a fundamental law governing various forms of material failure. The result is a general 2 
relationship describing the behaviour of materials in terminal stage of failure:  3 

�̈� = 𝐴�̇�𝛼 4 

where �̈� and �̇� are the displacements acceleration and velocity, respectively. As stated by the author, the term u could be 5 
interpreted in terms of conventional geodetic observation, seismic quantities or geochemical observation (Voight 1988). 6 
Following this line, the same equation has been successfully implemented to predict volcanic eruptions (Voight 1988; 7 
1990; Cornelius and Voight 1995). 8 
While the inverse velocity method has proven to be an effective and useful resource in different instances, it is necessary 9 
to specify that its application must be carefully evaluated depending on the case. In particular, the value of tf should not 10 
be considered as an exact prediction of the landslide collapse, since the method applied generally indicates that the failure 11 
is likely in proximity of the intersection point (Carlà et al., 2018). Following this concept, Carlà et al. (2017b) proposed 12 
an approach based on long-time and short-time moving average evaluation, aimed to identify the “time window” during 13 
which the collapse could take place.  14 
Moreover, when applying this procedure to predict the time of failure of a landslide, these considerations regarding the 15 
method’s applicability should be taken into account: 16 

- Since the monitoring activity of slope displacements is only one aspect of a very complex phenomenon (i.e. 17 
predisposing factors and driving forces), this method should not be applied in isolation. 18 

- Generally, the inverse velocity model struggles to represent brittle failures properly, due to the extremely rapid 19 
evolution of a rock mass displaying this behaviour. However, as noted by Carlà et al. (2017b), significant 20 
improvements to this problem can be achieved by using a high-frequency monitoring system able to accurately 21 
represent the accelerating phase. 22 

- As stated by Intrieri and Gigli (2016), natural or instrumental noise can hinder time-of-failure prediction, 23 
therefore data processing operations are recommended to improve the prediction reliability (Mazzanti et al., 24 
2015; Dick et al., 2015). 25 

- The possibility of trend changes, driven by observable or unknown factors, should always be kept in mind. 26 
Because of this, it is recommended to continue the monitoring activity as long as possible prior to failure and to 27 
constantly update the model with new data to improve the forecast procedure (Rose and Hungr, 2007). 28 
 29 

Even with its limitations, the approach proposed by Fukuzono has proven to be a successful tool to track the landslide 30 
evolution, allowing its integration in different EWSs for risk reduction purposes (Atzeni et al., 2015; Manconi and 31 
Giordan, 2016; Sättele et al., 2016).  In this paper, the authors applied the inverse velocity method to analyse historical 32 
landslides datasets, in order to forecast the time of failure and, subsequently, derive a series of normalized velocity curves. 33 

2.3. Historical landslides collection 34 
The following approach was adopted to achieve the goal of this study: 35 

- creation of a database including historical landslides reported by scientific literature, complete with pre-failure 36 
displacement or velocity data recorded by different monitoring systems; 37 

- plotting of  a graph with this information through digitizing software; 38 
- application of the Fukuzono model on the dataset in order to forecast the time of failure of the specific landslide; 39 
- calibration of the A and α parameters of the model to obtain a better interpolation of the recorded dataset; 40 
- definition of a characteristic velocity curve for each single case describing the landslide’s behaviour during the 41 

30 days before failure occurrence; 42 
- normalization of this curve to assess a generalized series of velocity versus time-to-failure curves. 43 

The cases collected (Table 1) show relevant differences, depending on the typology of the system implemented to monitor 44 
the landslide evolution. A variation in the quality and frequency of acquisition was observed. Some of the landslides 45 
included in the database were monitored for a time long enough to show the transition between the secondary and tertiary 46 
creep phase, while other data series were recorded once the accelerating phase had already started. Other relevant 47 
differences are present in terms of volume, materials, failure mechanism and triggering factors.  48 

 49 

 50 

 51 

 52 

 53 
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Name 
Volume 

[m3] 
Material 

Failure 

Mechanism 
Trigger 

Monitoring 

duration [d] 
References 

Afton Mine 28x106 Rock Toppling 
Excavation, 

Blasting 
68 

Glastonbury and 

Fell, 2002 

Asamushi 1x105 Rock Sliding Weathering 7 Saito, 1969 

Betze Post SE 18x106 Rock Compound Groundwater 45 
Rose and Hungr, 

2007 

Betze Post SW 2x106 Rock Rock Slide Rainfall 5 
Rose and Hungr, 

2007 

Bomba 12x106 Soil Slump Excavation 1290 
Urciuoli and 

Picarelli, 2008 

Braced up 

Cliff 
1.2x104 Rock Toppling 

Frost Action, 

Snow Melt 
1886 

Schumm and 

Chorley, 1964 

Cavallerizzo 5x106 Rock, 

Soil 

Rock Slide, Earth 

Flow 

Rainfall, 

Snowfall 
7 Iovine et al., 2006 

Chuquicamata 4.1x106 Rock Compound 

Excavation, 

Seismic 

Actions 

140 
Voight and 

Kennedy, 1979 

Delabole 

Quarry 
- Rock Toppling Rainfall 5900 Boyd et al., 1973 

Dosan Line 6x104 Rock Flow Erosion 3 Saito, 1969 

Hogart Pit 2x105 Rock Toppling 

Rainfall, 

Snow Melt, 

Excavation 

285 
Brawner and 

Stacey, 1979 

Huanglongxi 3.9x105 Rock - 

Rainfall, 

Human 

Activities 

6 Li et al., 2012 

La Chenaula 1.6x106 Rock Roto-Translation Toe Erosion 912 
Noverraz and 

Bonnard, 1992 

La Saxe 8.4x106 Rock Rock Slide Snow Melt 30 
Manconi and 

Giordan, 2016 

Maoxian 18x106 Rock Rock Avalanche Rainfall 1014 
Intrieri et al., 

2018 

Mt Beni 5x106 Rock 
Rock Slide, 

Toppling 

Water and 

Snow 
240 Gigli et al., 2011 

Nevis Bluff 3.2x104 Rock Rotation Excavation 272 
Brown et al., 

1980 

Ohto 2x105 Rock Rock Slide 
Rainfall 

(Typhoon) 
90 Suwa et al., 2010 

Ooigawa 6x104 Soil Earth Flow Erosion 10 Saito, 1969 

Preonzo 2.2x105 Rock Rockfall Rainfall 12 Geoprævent, 2012 

Puigcercòs 10.12x105 Rock Rockfall 
Gradual 

Degradation 
2217 

Royàn et al., 

2015 

Selborne 1.8x104 Soil Roto-Translation Groundwater 400 Petley, 2004 

Town of Peace 

River 
- Rock Roto-Translation Rainfall 180 Kim et al., 2010 

Tuckabianna 

West 
1.25x106 Rock Translation Excavation 37 

Glastonbury and 

Fell, 2002 

Vajont 270x106 Rock Roto-Translation Groundwater 70 
Sornette et al., 

2004 

Xintan 30x106 Rock Rock Slide 
Rainfall, 

Groundwater 
2550 

Keqiang and 

Sijing, 2006 
Table 1 - Landslides database collected from scientific literature including details about volume, material, failure mechanism, 1 
triggering factors, duration of the monitoring period, and reference 2 
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 1 

Since the recorded data are displayed in different units depending on the case, all the datasets were converted into mm/d 2 
so as to be able to compare different cases. The monitoring data reported in scientific literature were digitized using the 3 
software Engauge Digitizer, thus allowing the application of the inverse velocity method and the time-of-failure 4 
prediction. An example of this operation is presented in Fig. 1, reporting the displacement-time graph relative to 5 
benchmark #5 of the Vajont landslide (after Sornette et al., 2003) and the resultant digitized dataset. 6 

 7 

 8 

Fig. 1 - Example of a monitoring dataset digitizing operation. (a) Monitoring displacement vs time graph registered on benchmark #5 9 
of the Vajont landslide (after Sornette et al., 2003), where displacements are reported in m; (b) Digitized dataset (in mm) 10 

A time-of-failure forecast was performed following the Fukuzono method with the dataset obtained from this step. For 11 
each landslide, the predicted time of failure was computed by applying a linear regression corresponding to a value of 12 
α=2 on the inverse-velocity versus time dataset.  13 
As indicated and recommended by the scientific studies previously reported, the forecast model was applied to the 14 
accelerating phase to achieve higher accuracy in the time-of-failure prediction. The tertiary creep starting point, 15 
corresponding to the first datum of the inverse velocity model, was selected manually with the objective of minimizing 16 
the R2 parameter, thus obtaining a more accurate fitting of the dataset available. Fig. 2 presents an example of this 17 
operation, referring to the Vajont benchmark #5 previously mentioned. 18 

 19 

 20 

Fig. 2 - Example of the linear Fukuzono model application and the corresponding R2 value, with a detail of the intersection between 21 
the linear regression and the x-axis 22 

 23 
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 1 

While the linear regression is considered a good approximation and has been used in different conditions as a valid failure 2 
forecasting method, taking into account the non-linear trend could allow a more accurate description of the landslide’s 3 
behaviour before collapse is reached. For this reason,  calibration of the A and α parameters was conducted for each single 4 
case after evaluating the time of failure, in order to better fit the monitored data. To achieve this goal, the GRG 5 
(Generalized Reduced Gradient) non-linear method implemented in the Solver add-in component of Microsoft Excel was 6 
used (a detailed review of this method can be found in Lasdon et al., 1974). The variation in parameters aims to minimize 7 
the Root Mean Square Error (RMSE). 8 

 9 

2.4. Normalized velocity curves definition 10 
Once the parameters of the Fukuzono model had been assessed, the possible behaviour of the landslide approaching 11 
failure could be described. In particular, the next step entailed the definition of a theoretical velocity versus time 12 
characteristic curve describing the landslide’s predicted velocity at a certain temporal distance from collapse. This 13 
operation could be carried out under the assumption that the A, α and tf parameters provide a phenomenological description 14 
of the mechanical behaviour of the landslide approaching failure. Crosta and Agliardi (2002) used a similar methodology 15 
to define alert velocity thresholds for the Ruinon rockslide, with the main objective to deliver useful information regarding 16 
emergency management.  17 
These curves resulted from the application of the following equation, derived from the Fukuzono-Voight model (Voight, 18 
1988):  19 

𝑣𝐹𝑉 = (𝐴(𝛼 − 1)(𝑡𝑓 − 𝑡))

1

1−𝛼
 20 

where α >1, tf >t and all the aforementioned parameters, relative to each single landslide, are taken into account. A time 21 
interval ranging from 0 to 30 days has been chosen in this paper, meaning that the curve represents the theoretical 22 
velocities reached by the landslide starting from 30 days before failure to the moment of collapse, identified by the 23 
presence of a vertical asymptote (𝑣𝐹𝑉 → ∞).  24 
Each curve computed in this way must be considered site-specific, because the model parameters were inferred from the 25 
monitoring data of a particular case, and each landslide displayed unique displacement and velocity data. For these 26 
reasons, a comparison between velocity curves derived from different landslides is meaningless. To overcome this 27 
problem, the next step involved a procedure aimed to normalize the velocity data obtained by applying the model. The 28 
result of this operation was a new dimensionless velocity parameter 𝑣𝑛, which would allow a comparison between data 29 
acquired from different cases. In particular, the definition of a common trend in landslide evolution could prove very 30 
useful in the evaluation of generalized alert velocity thresholds.  31 
To achieve this goal, the following formulation was proposed:  32 

𝑣𝑛 =
𝑣𝐹𝑉−𝜇𝑣𝐹𝑉

𝜎𝑣𝐹𝑉

 33 

where 𝑣𝐹𝑉 is the velocity previously obtained by applying Equation 3, while 𝜇𝑣𝐹𝑉
  and 𝜎𝑣𝐹𝑉

 are the mean value and the 34 

standard deviation of the 𝑣𝐹𝑉 values represented by the curve, respectively. The application of this procedure returned a 35 
normalized-velocity versus time curve, which can be used to define a generalized trend to describe the behaviour of a 36 
landslide approaching failure.  37 

3. Results and discussion 38 

3.1. Time-of-failure forecast 39 
In this paper, the prediction of a landslide’s time of failure was computed by applying the Fukuzono inverse velocity 40 
method, under the hypothesis of linear behaviour near collapse. This assumption was made since its combination of good 41 
predictions and simplicity of use has been highlighted in several scientific studies (Rose and Hungr, 2006; Gigli et al., 42 
2011; Dick et al., 2015). 43 
Results obtained from the back-analysis on the database of historical landslides, reported in Table 2, show that the linear 44 
regression of the datasets referring to the accelerating phase offers a good prediction of the time of failure. Out of the 26 45 
cases included in this study, 11 were correctly forecasted by the inverse velocity method, obtaining a predicted time of 46 
failure equivalent to the actual day of collapse. Additionally, in 18 of the 26 cases examined the difference between 47 
effective and estimated time of failure Δtf is equal to or less than 3 days. Moreover, a large variability of the A parameter 48 
was noted, with a range of three orders of magnitude between extreme values. 49 

Another parameter considered to assess the effectiveness of the model is the R2 coefficient, which provides a measure of 50 
the accuracy of the linear regression applied to the datasets. This parameter ranges from 0 to 1, representing no correlation 51 
and perfect correlation respectively. 52 
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 1 
The results show that 62% of the cases present a value of R2>0.9, while 81% are greater than 0.8 and 88% display a value 2 
of R2>0.7. Small values of the correlation coefficient could be attributed to different factors, such as a landslide’s 3 
behaviour diverging from linearity (i.e. asymptotic) or insufficient quality and/or quantity of monitoring data. In 4 
particular, evidence of inadequate monitoring data was noted throughout the digitizing operation. This aspect affects the 5 
accuracy of the model directly, as it performs better when high frequency monitoring data are available. Indeed, a detailed 6 
displacement representation could prove fundamental to accurately assess the future behaviour of the landslide.  7 

Name 
Actual time of 

failure [d] 

Forecasted 

time of failure 

[d] 

R2 [-] 
Linear 

Regression 

Non-linear 

model 

    A α A α 

Afton Mine 69 69 0.95 0.0014 2.00 0.0016 1.94 

Asamushi 7 7 0.85 0.0046 2.00 0.0056 1.96 

Betze Post SE 45 45 0.99 0.0121 2.00 0.0119 2.00 

Betze Post SW 5 5 0.99 0.0183 2.00 0.0173 2.01 

Bomba 1320 1352 0.86 0.0041 2.00 0.0038 2.15 

Braced up Cliff 1910 1904 0.92 0.0529 2.00 0.0548 1.53 

Cavallerizzo 6 6 0.99 0.0654 2.00 0.0779 1.96 

Chuquicamata 263 263 0.77 0.0006 2.00 0.0004 2.10 

Delabole Quarry 5899 5954 0.74 0.0218 2.00 0.0205 1.96 

Dosan Line 3 3 0.97 0.0105 2.00 0.0098 2.01 

Hogart Pit 291 286 0.97 0.0022 2.00 0.0024 1.97 

Huanglongxi 5 5 0.91 0.0151 2.00 0.0109 2.00 

La Chenaula 884 890 0.29 0.0821 2.00 0.0767 1.94 

La Saxe 21 21 0.95 0.0025 2.00 0.0135 1.77 

Maoxian 1018 1020 0.94 0.0827 2.00 0.0777 1.93 

Mt Beni 258 260 0.93 0.0002 2.00 0.0015 2.13 

Nevis Bluff 287 279 0.98 0.0191 2.00 0.0191 2.00 

Ohto 92 91 0.95 0.0303 2.00 0.0400 1.90 

Ooigawa 9 9 0.99 0.1216 2.00 0.2813 1.85 

Preonzo 13 13 0.64 0.0028 2.00 0.0024 2.03 

Puigcercòs 2198 2264 0.88 0.0116 2.00 0.0106 1.94 

Selborne 600 597 0.97 0.1495 2.00 0.1570 2.03 

Town of Peace River 178 181 0.60 0.1241 2.00 0.1371 2.05 

Tuckabianna West 38 37 0.88 0.0426 2.00 0.0343 2.07 

Vajont 70 71 0.98 0.0307 2.00 0.0319 1.97 

Xintan 2800 2805 0.88 0.0007 2.00 0.0008 2.00 

Table 2 - Results obtained from the time of failure prediction and calibration procedures for each landslide included in the database 8 

 9 

3.2. Model calibration 10 
Calibration of A and α parameters was conducted to obtain a better representation of landslide behaviour in the final stage 11 
of its evolution towards failure (an example of this operation is reported in Fig. 3). This procedure could prove to be a 12 
significant factor since evaluation of the velocity-time curve depends on these parameters, thus a non-linear behaviour 13 
should be taken into consideration. Regarding parameter α, the results acquired from this operation and reported in Table 14 
2 are consistent with the range of values obtained by Fukuzono (1985, 1989), being included within an interval of 1.5-15 
2.2. While significant variations can be noted, it is worth reporting that for 14 out of 26 cases the absolute variation of α 16 
is less than 0.05 compared to the original α=2 value. Furthermore, 19 out of 26 cases reported a variation of the α value 17 
to less than 0.1, while 24 out of 26 featured a Δα<0.2. The calibration also showed that the majority of the landslides (13 18 
versus 9) tends to assume a value of α<2, corresponding to a convex trend in the inverse velocity plot. Regarding 19 
parameter A, the calibration showed an increment in the variation with the increasing of the divergence from the linear 20 
behaviour, reaching a difference of one order of magnitude in those cases where a pronounced non-linear trend is present.  21 

 22 
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 1 

Fig. 3 - Comparison between the linear regression (black dashed line) and non-linear curve (red continuous line) obtained from the 2 
calibration procedure, with corresponding A and  parameters. The case presented refers to the La Saxe landslide, studied by Manconi 3 
and Giordan (2016) 4 

 5 

3.3. Definition and normalization of velocity curves 6 
The parameters obtained from the calibration and the forecasted time of failure tf were included in Equation 3 to define a 7 
characteristic velocity curve specifically for each case. The result is a curve, ranging from 0 to 30 days, describing the 8 
theoretical velocity value assumed by the landslide at a certain temporal distance from the collapse. As stated before, due 9 
to the variability and uniqueness of the parameters governing the model behaviour, the curves must be considered site-10 
specific. For this reason, alert thresholds can be accurately assessed only when characteristic curves evaluated from local 11 
data are taken into account. 12 
The theoretical velocities resulting from the model application were normalized by applying Equation 4 so as to overcome 13 
this problem. This procedure aims to define a new parameter that could allow the identification of a common trend 14 
between different cases. A time interval ranging from 0 to 30 was chosen to compare the curves, with a time step of 0.5 15 
days, so as to frame all the cases included in the study in a single plot. The result of this operation, as showed in Fig. 4, 16 
is a graph containing a curve for each landslide monitored.  17 

The dimensionless parameter obtained from the normalization increases its value with the approach of the collapse, 18 
located at t=0 days, where a vertical asymptote is reached. As can be seen from the resulting graph (Fig. 4), the 19 
normalization procedure successfully rescaled the velocity values. Nonetheless, a difference appears when the landslides 20 
approach failure, in particular at t=10 days from collapse the curves start to display a peculiar behaviour, which becomes 21 
more evident as the curves approach the vertical asymptote.  22 
 23 
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 1 

Fig. 4 – Normalized-velocity versus time plot, including all the cases considered in the present study 2 

 3 
.  4 
On analysis of the model, the dissimilarity seems to depend of the α parameter, which in the Fukuzono model represents 5 
the linearity or non-linearity of the trend. By taking the “linear” curve featuring α=2 as reference, it can be noted that, 6 
when the non-linear behaviour is defined by a value of α<2, the flex point where the curve changes its trend appears later. 7 
A value of α>2 instead leads to an earlier increasing in terms of normalized velocity. The difference compared to the 8 
reference case becomes more evident as the behaviour diverges from linearity (i.e. Braced up Cliff in Fig. 4, featuring a 9 
value of =1.53). Additionally, one of the features emerging from the normalization of the velocity values is the 10 
negligibility of the A parameter, which plays no role in defining the dimensionless velocity curves. This could prove to 11 
be a very interesting aspect since this parameter can have a wide range of values, as shown in the present study, and a 12 
certain degree of uncertainty in the model is removed by neglecting this term. Following this line, each curve represented 13 
in a normalized-velocity versus time plot can be referred to the value of α derived from the calibration of the Fukuzono 14 
model, thus setting a generalized graph of reference to assess alert thresholds according to specific needs. 15 

4. Application of the generalized criterion 16 
In the process of developing the generalized criterion, the complete monitoring dataset was taken into account from the 17 
start of the accelerating phase to the last measure available before collapse for each landslide. This approach should not 18 
be considered as representative of a real case, where data are gradually acquired with the advancing of the monitoring 19 
activity. In order to test the procedure with a more realistic approach, in the following chapter another landslide, not 20 
included in the database, is presented and analysed by simulating progressive acquisition of monitoring data. Thanks to 21 
this approach, it should be possible to evaluate the efficiency of the criterion proposed and its ability to represent the 22 
behaviour of the landslide approaching failure.  23 

The procedure will be applied according to the following steps: 24 

a) Once the first point of the accelerating phase is identified, the following three data are taken into account to 25 
provide the starting dataset; 26 

b) The inverse velocity method is applied to estimate the time-of-failure theoretical value, assuming the 27 
hypothesis of linearity in the 1/v – t trend; 28 

c) Equation 3 is applied to compute the theoretical displacement velocities. The formulation includes linear A 29 
and α values; 30 

d) The model calibration is carried out by minimizing the RMSE evaluated between the monitoring data and 31 
velocity data computed in the previous step; 32 

e) The theoretical velocity curve is computed by using the value of tf evaluated in step b), and model parameters 33 
A and α obtained in step d); 34 
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f) By evaluating the mean and standard deviation of the velocity values computed in the previous step, the 1 
value obtained from the monitoring activity can be normalized according to Equation 4. This procedure 2 
should allow a comparison with the theoretical curve defined by a specific value of the α parameter; 3 

g) When new monitoring data are available, they are added to the dataset and the procedure is repeated starting 4 
from step b). 5 

4.1. The Kagemori Quarry landslide 6 
The slope failure occurred on 20 September 1973 at Kagemori limestone quarry, located in the Saitama prefecture near 7 
Tokyo, Japan. Yamaguchi and Shimotani (1986) reported a rockslide slope movement with an estimated volume of 8 
300’000-400’00 m3 of limestone rock debris. According to the authors, the sliding surface observed after collapse was 9 
“irregular and complex”, probably due to the influence of small-scale slides following the main failure. Fig. 5 reports the 10 
displacement dataset used to test the generalized criterion. 11 

 12 

 13 

Fig. 5 - Displacement recorded at Kagemori Quarry before the collapse (data digitized from Yamaguchi and Shimotani, 1986) 14 

As can be noted from the results of the time-of-failure prediction reported in Table 3, the inverse velocity method increases 15 
the forecast quality with the progressive addition of new monitoring data. Specifically, at t=397.2 days, the value of tf 16 
estimated by applying a linear regression coincides with the actual failure recorded at t=404 days. The two following 17 
iterations of the forecast procedure confirm the prediction, displaying the same tf value. According to these results, an 18 
accurate time-of-failure assessment could have been determined approximately 7 days before the actual collapse. 19 
Concerning the model calibration, it can be noted that parameters A and α display relatively small variation throughout 20 
the evolution of the accelerating phase. In particular, 7 days before the slope failure, the calibration of the α coefficient 21 
returns a value of α=2.05 which remains constant until the last monitoring data are received. The maximum variation 22 
observed for this parameter in previous steps is Δα=0.01. 23 

 24 

 25 

 26 

 27 

 28 

 29 

The monitoring data available after the onset of acceleration (identified at t=360 days) are progressively added to the 30 
dataset and normalized by applying the procedure described at the beginning of this chapter. It is important to note that, 31 
for each instrumental measure, the values of A and α could change from the ones estimated with the previous dataset. 32 
Therefore, it is fundamental to re-evaluate the velocity curve with the new calibrated parameters. This procedure should 33 
allow to obtain the updated values of 𝜇𝑣𝐹𝑉

 and 𝜎𝑣𝐹𝑉
, to normalize the measured velocity properly.  34 

The resulting non-dimensional coefficients vn can be compared with the theoretical generalized curve featuring the same 35 
value of the α parameter. According to the parameters resulting from the calibration phase, in this case the α=2.05 curve 36 

Time t [d] Time of failure tf [d] Δt [d] A [-] α [-] vn [-] 

385.5 405.2 19.7 0.0137 2.06 -0.3336 

394.1 406.1 12.0 0.0141 2.04 -0.2567 

397.2 404.3 7.1 0.0146 2.05 0.1721 

399.6 404.2 4.6 0.0148 2.05 0.3056 

401.8 404.3 2.5 0.0148 2.05 0.8886 

Table 3 - Results obtained from the time-of-failure forecast, model calibration and normalization procedures 
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is taken into account. Fig. 6 displays a good correspondence between the monitoring data and the curve previously 1 
computed, highlighting the effectiveness of the generalized trend to represent the landslide’s behaviour.  2 

 3 

Fig. 6 - Comparison between normalized monitoring data and the generalized curve featuring the corresponding a value 4 

5. Conclusions and final remarks 5 
In this study, a procedure to describe a generalized criterion useful to compare events with different features and to help 6 
define alert thresholds has been established. To achieve this goal, a database of historical landslides was created in order 7 
to perform a back-analysis on the datasets available. For each single case, the time of failure was computed through the 8 
application of the inverse velocity method developed by Fukuzono (1985). The results obtained from this step showed 9 
high accuracy of the model under the hypothesis of linearity when applied on the final stage of the landslide evolution, 10 
defined by an accelerating trend and described by the tertiary phase of the creep theory. Furthermore, to better adapt the 11 
model to the monitored data, calibration of the two empirical parameters A and α was carried out. For the events reported 12 
in this study, the values of α are compatible with the standard range relative to natural slopes (1.5 to 2.2); furthermore, 13 
the calibrated value of many of the cases is quite close to the linearity reference. With the newly computed parameters, a 14 
theoretical curve has been derived for each case, describing the displacement velocity predicted at a certain time before 15 
collapse. In order to generalize these curves and compare landslides displaying different features, a normalization 16 
procedure was conducted, thus obtaining a new dimensionless parameter. Due to the correspondence between these new 17 
values, this operation allowed overcoming the site-specific feature and  representing all the landslides included in the 18 
database in a single chart. Notably, these curves have no dependence on parameter A, while the variation of parameter α 19 
influences their behaviour when approaching collapse. Finally, the criterion was applied to a different case by simulating 20 
progressive data acquisition. This analysis evidenced that the method proposed can provide an effective tool to describe 21 
the theoretical behaviour of the landslide during the accelerating phase. The results obtained for this specific case indicate 22 
that, by analysing the displacement data, the correct time of failure of the Kagemori Quarry landslide could have been 23 
predicted about 7 days before the actual collapse. 24 
 25 
While the procedure presented successfully achieved the initial purpose of this paper, it is worth reporting some final 26 
considerations about the method described in this study.  27 

All the displacements data reported in scientific literature and employed in this study refer to the slope surface, with no 28 
information available concerning underground behaviour. This could prove to be an important factor when complex 29 
landslides are taken into account, since surface and underground behaviour can be significantly different. Following this 30 
approach, Ishizawa et al. (2013) presented a study regarding the effectiveness of underground displacement monitoring 31 
on a sand model slope. 32 

As stated above, the inverse velocity method must be applied on the accelerating phase of the landslide. However, a 33 
universal method to identify the exact point where the transition between secondary and tertiary creep takes place has not 34 
been developed yet.  35 

 36 
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