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Highlights

• Formal definition and derivation of Angular Randon Spectrum (ARS).

• Estimation of point set rotation through efficient computation of ARS.

• Experimental assessment of rotation accuracy on benchmark datasets.
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Angular Radon Spectrum for Rotation Estimation

Dario Lodi Rizzini1

Department of Engineering and Architecture, University of Parma,
Parco Area delle Scienze 181A, 43124 Parma, Italy

Abstract

This paper presents a robust method for rotation estimation of planar point

sets using the Angular Radon Spectrum (ARS). Given a Gaussian Mixture

Model (GMM) representing the point distribution, the ARS is a continuous

function derived from the Radon Transform of such distribution. The ARS

characterizes the orientation of a point distribution by measuring its alignment

w.r.t. a pencil of parallel lines. By exploting its translation and angular-shift

invariance, the rotation angle between two point sets can be estimated through

the correlation of the corresponding spectra. Beside its definition, the novel

contributions of this paper include the efficient computation of the ARS and of

the correlation function through their Fourier expansion, and a new algorithm

for assessing the rotation between two point sets. Moreover, experiments with

standard benchmark datasets assess the performance of the proposed algorithm

and other state-of-the-art methods in presence of noisy and incomplete data.

Keywords: Rotation estimation, Gaussian Mixture Models

1. Introduction

An important operation in perception and pattern recognition is the es-

timation of the rigid transformation between two point sets representing the

same object or scene from different viewpoints. Registration is a primitive for

a wide range of applications including localization and mapping [1, 2, 3], shape5

1E-mail: dario.lodirizzini@unipr.it
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matching [4, 5, 6] and medical image processing [7]. The different views of

the same object or scene usually differ in both the relative orientation and

position. In the most popular approach to registration, the rigid transfor-

mation is generally solved as a whole, once the corresponding parts between

the two views or objects have been found. The correspondence-based meth-10

ods [8, 9, 10, 11, 12, 13, 14, 15, 16], which search the rigid transformation by

minimizing the distances between corresponding points in the two compared

point sets, belong to this category. Such algorithms require an initial guess of

the rigid transformation between the two sets in order to establish the associ-

ations, and iteratively refine its value. The initial guess is either provided by15

the specific context of the problem (e.g. a measurement like the odometry of a

robot or a vehicle) or by another correspondence-less method. These methods

are strongly affected by wrong correspondences between the matching parts of

the observations. Recently, robust associations techniques [17, 13, 15, 18] have

been proposed to detect consistent associations and filter outliers associations,20

but they may fail when the initial correspondence set is inaccurate.

A second category of methods includes the registration algorithms that com-

pare feature sets, histograms or functions extracted from each point set. The

choice of the features or histograms depends on the specific application: for

example spherical harmonics [19, 20, 21, 22, 23] are often used for the regis-25

tration of 3D polygon meshes or point clouds, whereas log-polar transform and

phase correlation [24, 25, 26] are applied for images. Many of these techniques

decouple the estimation of rotation and translation into two different steps, and

implicitly assume that their description of orientation is not affected by trans-

lation. Thus, pose estimation can be solved by separately addressing rotation30

and translation. Given a descriptor based on strong property of point sets, such

decomposition enables robust solution of orientation estimation. However, such

decoupling just an approximation for the aforementioned methods, since angular

measurements are referred to a privileged reference point like the object centroid

or the image center. For example, the polar coordinates of spherical harmonics35

are relative to the center of a polygon mesh, or the log-polar mapping used in

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

image registration is computed w.r.t. the image center. Collinearity [27, 28] is

possibly the simplest property observable in a set of points that is really invari-

ant to rigid transformation. While the equation of a line through a group of

aligned points changes with translation, the orientation of a pencil of parallel40

line is invariant to translation. Moreover, the relative orientation between line

pencils is invariant to rotation (angular-shift invariance). Methods based on

Hough Spectrum (HS) [29, 30] exploit this property to exactly decouple rotation

and translation. The HS is an angular histogram derived from Hough Transform

(HT) [31] that detects point alignments to a pencil of parallel lines instead of a45

single line. Rotation angle corresponds to the angular shift that maximizes the

correlation of two spectra. Although effective, HS inherits the main shortcom-

ings of HT like the curse of discretization of continuous quantities, the recourse

to brute-force operations on histograms, and the formally incomplete modelling

of data uncertainty.50

In this paper, we propose a novel method for estimating rotation between

planar point sets using the Angular Radon Spectrum (ARS). Since points are

usually acquired from noisy measurements of objects or scenes, a Gaussian mix-

ture model (GMM) consisting of isotropic and identical kernels [32, 33, 34] is

adopted to represent each input point distribution. In analogy with HS, ARS55

is a continuous function derived from the Radon Transform (RT) [35, 36] of a

GMM. Similarly to RT in respect to HT [37], ARS provides a sound mathemat-

ical basis for HS and measures the point density along each pencil of lines. The

ARS of a point set characterizes the orientation according to the collinearity of

its points, and is invariant to translation. Given two point sets related by an60

isometry, the correlation of their spectra enables the robust evaluation of rota-

tion. The rotation angle is estimated by searching the global maximum of the

correlation function. If there are several maxima, there are multiple rotation

angles candidates. Thus, our method is a global algorithm that does not require

an initial estimate. Figure 1 shows the ARS computed for two different point65

sets and the application of their correlation function to the estimation of the

rotation angle. In summary, the contributions of this works are the following.
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1. We provide the formal definition of the ARS and the derivation of its

expression for identical and isotropic GMMs.

2. We derive the Fourier series of the ARS for efficient approximation and70

prove a bound on the approximation error of the truncated series.

3. We provide a closed-form expression of the ARS correlation function and

its application to the estimation of rotation.

Experiments illustrate the accuracy and robustness of the proposed ARS-based

method as compared to the HS and other algorithms, when applied to rotation75

estimation with noisy and missing data.

This paper is organized as follows. Section 2 reviews existing methods for

pose and rotation estimation. Section 3 defines the general definitions and pro-

vides the RT of a GMM representing a point set. Section 4 illustrates the

ARS and its efficient computation using its Fourier series expansion. Section 580

presents the algorithm based on ARS for evaluating rotation. Section 6 shows

experimental results on standard datasets. Finally, Section 7 gives the conclud-

ing remarks.

2. Related Work

The literature on registration is large and includes different formulations85

for several (sometimes loosely) related problems. The differences among the ap-

proaches depend on the type and domain of input data (images, polygon meshes,

2D or 3D point clouds, laser scans, etc.) and on the specific problem statement

(availability of initial guess, joint evaluation of rotation and translation, etc.).

The common goal is the estimation of the relative pose or orientation between90

two views of the same object or scene. While the focus of the present work is on

rotation estimation, the survey presented in this section also includes the regis-

tration methods that cannot decouple rotation and translation, and the shape

recognition algorithms assessing rigid transformation only to remove spatial

bias. As discussed in section 1, a general rough classification criterion divides95

registration methods into correspondence-based and correspondence-less.
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Iterative Closest Point (ICP) [8] is perhaps the most popular registration

algorithm that iteratively refines the transformation by matching each point of

the source point set with its closest point in the target set. Over the years,

several variants like ICP with soft asssignment [38], ICP with surface match-100

ing [10], affine ICP [12] have been proposed. The critical step of ICP is the

search for correct matches between points, whereas the computation of the best

rigid transformation is a solved problem both for 2D and 3D cases [39]. Gen-

eralized Procrustes Analysis (GPA) has also been proposed to simultaneously

register multiple point sets in a single optimization step [40, 41]. Biber and105

Strasser [9] propose the Normal Distributions Transform (NDT) to model the

probability of measuring a point as a mixture of normal distributions. NDT

substitutes the hard point association with a soft association and estimates the

transformation by maximizing the probability function. The approach has been

extended to 3D point clouds [11] and, with ICP, is part of standard registration110

techniques [14]. The NDT techniques is implicitly related to several registration

techniques [42, 34, 6] matching GMMs computed on point sets.

Several techniques have been developed to estimate robust and consistent

associations, which usually operate in two steps. In the first step, an initial set of

putative associations is estimated according to similarity (e.g. feature descrip-115

tors) or geometric criteria (e.g. nearest-neighbor search). Since the putative

associations often include both correct matches and and outliers, the second

step filters outliers using strong consistency constraints. The most popular

algorithm belonging to this approach is RANSAC [43] and its many variants

like MLESAC [44]. Other techniques have been proposed to address non-rigid120

registration problem or the case with non-parametric consistency constraints.

Coherence point drift (CPD) algorithm [17] represents point sets with a GMM

and discriminates outliers by forcing GMM centroids to move coherently as a

group. Alternatively, Ma et al. [13] proposed Vector Field Consensus (VFC)

to compute consistent associations. This method solve correspondences by in-125

terpolating a vector field between the two point sets. The search of consis-

tent association has been also extended to the non-rigid registration of shapes
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represented as GMMs [15, 16]. The hypothesize-and-verify approach is often

successful in the estimation of associations, but it depends on the initial evalua-

tion of putative correspondences. When no similarity criterion is available, For130

this reason, correspondence-based algorithms are often considered techniques

for refining the estimation.

In the correspondence-less approach, the separation of rotation and trans-

lation estimation is more common. Depending on the specific input data, such

algorithms may describe orientation in term of features, histograms or other135

characteristic functions. The rotation between the source and the target objects

is computed by matching such features, or by correlating histograms and func-

tions. The assessment of translation is often solved, once the rotation has been

assessed. PCA-based techniques [45] find the principal axes of the two point sets

and find the rotation that aligns them. Since they are rather sensitive to missing140

data, noise, variations in density and lack of pronounced directions, PCA-based

techniques are suitable only for artificial and complete models of objects. The

PCA-based method presented in [46] estimates the relative pose of 3D objects

from their 2D images without searching correspondences. Images are mapped to

an ideal 3D sphere and their correlation is computed using spherical harmonic145

expansion. Other methods are designed for organized data like contour curves

or polygon meshes. Latecki et al. [4, 5] proposed a shape similarity metric for

comparing two planar closed curves representing the contours of two objects.

The estimation of orientation is an indirect result of removing the orientation

bias between the tangent histograms. Spherical harmonic expansion is a popular150

approach originally applied to 3D polygon meshes [19, 23]. To obtain spherical

harmonic decomposition, each point of the object surface must be mapped to

the unit sphere. Makadia et al. [20] use spherical harmonic expansion to find

the rotation between 3D point clouds. The polar parameterization, which is

not available like in the case of polygon meshes, is built using surface orien-155

tation histograms computed from the original range measurements. The same

approach has been applied to the registration of spherical images [21].

The literature on image registration mainly consists of correspondence-less
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methods. Image structure is regularly organized as a spatial matrix of regularly

sampled data. Therefore, Fourier analysis and phase correlation techniques [47]160

have been applied to the estimation of rotation and translation. Rotation and

translation jointly affect the image spectra, but these transformation are approx-

imatively computed into two consecutive steps. Log-polar transform [48, 49] has

been used to attenuate such dependence. In particular, log-polar transform en-

ables rotation estimation by correlating the logarithmic modules of two image165

spectra. Then, phase correlation provides an estimation of translation accord-

ing to Fourier phase-shift theorem [48]. The application of a logarithmic map

facilitates the comparison of images with large differences in scale, since scale

coefficient becomes an addititive term [49]. The enhanced correlation coefficient

(ECC) [25] is a general method for computing the transformation parameters170

that minimize the difference between two images. The algorithm in [34] per-

forms registration by representing 3D point sets with GMMs.

Recently, the method based on the HS has been proposed for 2D rotation

estimation [29] and, then, extended to 3D problems [30]. It has been used to

merge local maps [1, 2] or to detect the dominant orientation in a laser scan [50].175

Informally, the HS detects dominant pencils of parallel lines in a point set and

is translation-invariant and angular-shift invariant. The main limitations of

this algorithm are due to the parameter space discretization. Beside requiring

the arbitrary definition of cell size, the combined effect of discretization and

translation introduces deformation and loss of information in the spectrum [29].180

Moreover, many operations on discrete sets like histogram correlation are often

performed through brute-force computation.

3. The Radon Transform of a Gaussian Mixture Model

Let P = {µi}i=1,...,np with µi ∈ R2 be the estimated position vectors of

the points. It is convenient to define the density function f : R2 → R+
0 that185

represents the point density in the plane and is proportional to the probability

density function (PDF) of finding a point. The integral of f(·) on the whole
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plane R2 is equal to the number of points |P| = np. If the point positions are

exactly known, then the density function consists of Dirac impulse distributions,

i.e. f(r) =
∑np

i=1 δ(r − µi). However, in most problems the point coordinates190

are estimated with a given uncertainty and the function f(r) should represent

a looser concentration around the input points. The GMM [32] is a widely used

model in kernel density estimation and other machine learning applications.

According to this model, each point is associated to a Gaussian kernel N (µi,Σi)

centered on µi and with covariance matrix Σi. Assuming that all the kernels195

have equal probability, the resulting density function has equation

f(r) =

np∑

i=1

gi(r) =

np∑

i=1

1

2π|Σi|1/2
exp

(
−1

2
‖r − µi‖2Σi

)
(1)

‖r − µi‖2Σi
= (r − µi)>Σ−1

i (r − µi)

As discussed above, the probability density function is obtained by multiplying

f(r) by the factor 1/np. A common hypothesis is that the Gaussian kernels

are identical and isotropic, i.e. Σi = σI2 for i = 1, . . . , np. Figure 2(a) shows200

an example of an isotropic and identical GMM. This assumption is satisfied for

several real applications, enables analytically elegant results, and is implicitly

adopted in the rest of the paper, unless otherwise stated.

Given a point distribution model, the goal is to measure the alignment of

the point set w.r.t. a line. The Radon Transform (RT) [35] is a functional that205

associates a function f(·) with values in Rd to its integral over a d−1 dimension

manifold Fq ⊂ Rd with parameter q. The manifold Fq is defined by a specific

parameter vector q ∈ Q, where Q is the parameter space. If f(·) is a density

function as in eq. (1) and Fq is a line, the RT measures the density of the points

aligned on the line with parameter q. RT could be considered the continuous210

version of the Hough Transform [51], which has been extensively used to fit lines

and other general curves. The general definition of RT is the following.

Definition 1. Let f : Rd → R be a function, q ∈ Q a parameter vector, Fq =

9
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{r ∈ Rd : h(r, q) = 0} a d− 1 dimension manifold. The Radon Transform (RT)

of f(·) is a function defined as

R[f ](q) =

∫

Rd

f(r) δ(h(r, q)) dr (2)

An important case is the RT defined for (d − 1)-dimension hyperplanes

h(r, q) = ξ>r − ρ, where ξ and ρ are the parameters of Hessian normal form.

In particular, for the planar case (d = 2) the parameter vector is q = [θ, ρ]>,215

ξ(θ) = [cos θ, sin θ]> and Fq corresponds to a line. Unit vector ξ(θ) depends

on the angle θ, but the dependence on the angle will be omitted when it is

clear from the context. In this case, the parameter space Q can be chosen as

either [0, π[×R or [0, 2π[×R+
0 in order to avoid the double representation of the

same line [29]. In this work, we adopt the first choice of parameter domain,220

i.e. Q = [0, π[×R, for both efficiency and analytical convenience. A point

r ∈ R2 can be expressed w.r.t. the orthogonal basis [ξ, ξ′] as r = ρξ+sξ′, where

ξ′(θ) = [− sin θ, cos θ]> and ρ, s ∈ R. The argument of ξ′ is omitted as well.

Thus, the integral of equation (2) can be rewritten as

R[f ](θ, ρ) =

∫ ∞

−∞
f(ρξ + sξ′) ds (3)

Our goal is to measure the alignment of a point set represented by a GMM225

w.r.t. a given line using the RT. The Radon Transform of a GMM (GMM-RT)

can be computed from the RT of a Gaussian probability density function. The

following result provides the solution.

Proposition 1. Let gi(·) be the the PDF of a normally distributed point r ∼
N (µi,Σi), q = [θ, ρ]> be the Hessian parameters of a line, ξ and ξ′ be defined

as in eq. (3). Then,

R[gi](θ, ρ) =
1√

(2 π)a|Σi|
exp

(
b2 − ac

2a

)
(4)

where a = ξ′>Σ−1
i ξ′, b = ξ′>Σ−1

i (ρξ − µi) and c = (ρξ − µi)>Σ−1
i (ρξ − µi).

Proof 1. A generic point r of the line q can be parameterized as r = tξ + ρξ′

10



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

and its coordinate values are

‖r − µi‖2Σi
= (sξ′ + ρξ − µi)>Σ−1

i (sξ′ + ρξ − µi)

= (ξ′>Σ−1
i ξ′)︸ ︷︷ ︸
a

s2 + 2 (ξ′>Σ−1
i u)︸ ︷︷ ︸
b

s+ (u>Σ−1
i u)︸ ︷︷ ︸
c

= a

(
s+

b

a

)2

− b2

a
+ c (5)

where u = ρξ − µi. Hence, it can be substituted into the argument of Gaussian

PDF gi(·) and used to compute RT as in eq. (3).

R[gi](q) =
1

2 π
√
|Σi|

∫ +∞

−∞
exp

(
−a

2

(
s+

b

a

)2

+
b2

2a
− c

2

)
ds

=
exp

(
b2−ac

2a

)

√
(2 π)2|Σi|

∫ +∞

−∞
exp

(
−a

2
p2
)
dp

=
1√

(2 π)2|Σi|

√
2π

a
exp

(
b2 − ac

2a

)

In the above expression the integration parameter s is substituted by p = s+b/a.230

Proposition 1 provides the general form of the RT of a normal distribution.

The GMM-RT in eq. (1) is equal to the sum of terms in the equation (4). If all

the normal kernels of the GMM are isotropic, i.e. Σi = σ2
i I2 for each i, the RT

expression is considerably simpler. In particular, the analytical expression is

R[f ](θ, ρ) =

np∑

i=1

1√
2πσi

exp

(
− (ρ− ξ>µi)2

2σ2
i

)
(6)

Note that, since the hypothesis of identical kernel is not used yet, the values235

of standard deviations σi may be different. Figure 2(b) illustrates the level set

plot of a GMM-RT. The sinusoidal components corresponding to lines are visi-

ble. Given a direction θ, the RT of a PDF can be interpreted as a marginalization

of the joint distribution of t and ρ, where t is the marginalized random variable.

Thus, R[f ](θ, ρ) is proportional to the density function of line parameter ρ.240

4. Angular Radon Spectrum

In this section, we introduce Angular Radon Spectrum (ARS) for measuring

the importance of a specific direction in a point set. An important property of

11
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the ARS is its rotation invariance, that will be fully exploited in next section.

Since the computation of the ARS of a point set is computationally expensive,245

we also propose an efficient approximation.

4.1. Definition of Angular Radon Spectrum

Given a point set represented by a GMM, the maxima of the related GMM-

RT correspond to the lines passing through high point density regions. Like its

discrete equivalent, the Hough Transform, the RT enables the efficient search250

of the alignments, which are subsets of points lying on the same line. How-

ever, the goal of this work is the estimation of rotation, which is related to the

global orientation of the whole point set. Geometrically, while alignment is as-

sociated to the concentration of point density on a single line with parameters

q = [θ, ρ]>, the importance of an orientation depends on the density concentra-255

tion on a pencil of parallel lines with parameter θ. The approach followed here

is similar to the one adopted in the derivation of Hough Spectrum from Hough

Transform [29]. The main difference is that the formulation is obtained by ma-

nipulating continuous functions instead of histograms. The following definition

addresses these issues.260

Definition 2. Let f : R2 → R+
0 be a non-negative function, R[f ](·) the RT

with line parameters q = [θ, ρ]>. Then, the Angular Radon Spectrum (ARS) is

a functional defined as

Sκ [f ] (θ) =

∫ +∞

−∞
κ (R[f ](θ, ρ)) dρ (7)

where κ : R+
0 → R+

0 is strictly superadditive, i.e. κ(x + y) > κ(x) + κ(y),

0 < x 6 y.

The ARS has been defined only for non-negative functions like the GMM in

order to limit the domain of concentration function κ(·). Although this restric-

tion could be removed without formally affecting the definition, the geometric265

interpretation of the ARS is less clear for functions with negative values. More-

over, the only condition on κ(·) is strict superadditivity. Strict superadditivity

12
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is required in order to highlight the density concentration. If only simple su-

peradditivity holds, i.e. κ(x + y) > κ(x) + κ(y), the resulting ARS may not

properly discriminate. For example, when κ(x) = x, the ARS of the GMM in270

eq. (1) is constant, since the integral of the Gaussian-like functions of GMM-RT

in eq. (6) is equal to 1. Following the suggestion in [29], the function κ(x) = x2

is implicitly used in the remaining of the paper.

Proposition 2. Let f(·) be an isotropic GMM defined as in eq. (1) with Σi =

σ2
i I2 and κ(x) = x2 be an accumulation function. Then, the ARS of an isotropic

GMM is equal to

Sκ [f ] (θ) =

np−1∑

i=1

np∑

j=i+1

βij exp

(
− (ξ>(µi − µj))2

σ2
i + σ2

j

)
+

np∑

i=1

αi (8)

where αi = 1
2
√
πσi

and βij =
√

2
π(σ2

i +σ2
j )

.

Proof 2. The GMM-ARS is obtained by integrating the square of the GMM-RT275

in equation (6):

R[f ](θ, ρ)2 =

np∑

i=1

1

2πσ2
i

exp

(
− (ρ− ξ>µi)2

σ2
i

)

︸ ︷︷ ︸
Ai

+2

np−1∑

i=1

np∑

j=i+1

1

2πσiσj
exp

(
− (ξ>µi − ρ)2

2σ2
i

− (ξ>µj − ρ)2

2σ2
j

)

︸ ︷︷ ︸
Bij

(9)

The integral of eq. (9) w.r.t. ρ is obtained by integrating separately the terms

Ai and Bij. The integral of the Gaussian function Ai over variable ρ is equal

to σi
√
π. The term Bij is the product of two Gaussian PDFs Nρ(ξ>µi, σ2

i ) and280

Nρ(ξ>µj , σ2
j ) and can be re-written as [52, sec. 8.1.8, p. 42]

Bij = exp

(
− (ξ>µi − ξ>µj)2

σ2
i + σ2

j

)
exp

(
− (ρ− µc)2

2σ2
c

)
(10)

µc =
σ2
j (ξ>µi) + σ2

i (ξ>µj)

σ2
i + σ2

j

σ2
c =

σ2
i σ

2
j

σ2
i + σ2

j

The integral of Bij w.r.t. ρ is equal to

∫ +∞

−∞
Bijdρ = exp

(
− (ξ>µi − ξ>µj)2

σ2
i + σ2

j

) √√√√ 2πσ2
i σ

2
j

σ2
i + σ2

j

(11)
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Equation (8) follows from the substitution of the integrals of Ai and Bij.285

The analytical expression of GMM-ARS is rather simple if all the normal

kernels of the mixture are identical, i.e. all σi = σ. In this case, αi = 1/(2σ
√
π)

and βij = 1/(σ
√
π) for i, j = 1, . . . , np For the remaining of the paper, we

assume that the GMM kernels are identical and that the GMM-ARS is

Sκ [f ] (θ) =
1

σ
√
π

np−1∑

i=1

np∑

j=i+1

ψij(θ) +
np

2σ
√
π

(12)

ψij(θ) = exp

(
−
(
ξ>(µi − µj)

2σ

)2
)

(13)

290

The GMM-ARS consists of a sum of np(np − 1)/2 kernel functions ψij(θ).

Thus, the computation complexity of its evaluation for one value of θ is quadratic

with respect to the number of points. An efficient approximation will be pre-

sented in the following section.

Each kernel function ψij(θ) measures the likelihood that the point pairs with295

indices i and j lies on a line with parameter θ. The image of ψij(θ) is the inter-

val [e−(‖µi−µj‖/2σ)2 , 1], where the maximum is achieved when ξ(θ) is orthogonal

to vector µi − µj and the minimum when it is parallel. Observe that the span

between the minimum and the maximum of kernel increases with the distance

between µi and µj , and decreases with the standard deviation σ. A larger span300

means greater discrimination capability in detection of a dominant orientation

θ. From a geometric perspective, the GMM-ARS counts the point pairs oriented

according to the pencil of lines with a given parameters θ. Thus, the straight-

forward application of the ARS is the search of the dominant directions in a

point set. There is another application that derives from an important property305

of the ARS that is stated in the following.

Proposition 3 (Translation invariance and Rotation shift-invariance).

Let f(r) and Sκ [f ] (θ) be respectively the density function and the ARS of a point

set, and f̄(r) = f(R(δ)r + t) be the transformed density function where t ∈ R2
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is the translation vector and R(δ) the rotation matrix for angle δ ∈ S1. Then,

Sκ
[
f̄
]

(θ) = Sκ [f ] (θ + δ) (14)

Proof 3. The transformed point is written as

R(δ)r + t = (ρ+ t>ξ̄)ξ̄ + (s+ t>ξ̄′)ξ̄′ = ρ̄ξ̄ + s̄ξ̄′ (15)

where ξ̄ = R(δ)ξ = ξ(θ+δ) and ξ̄′ = R(δ)ξ′ = ξ′(θ+δ). The RT is computed by310

solving the integral in eq. (3) after the integration variable change with s̄. The

integration domain is the same. The RT is s.t. R
[
f̄
]
(θ, ρ) = R[f ](θ+δ, ρ+t>ξ̄).

Similarly, the integration of eq. (7) is solved w.r.t. the changed integration

variable ρ̄. The result follows.

The translation invariance and the angular shift caused by rotation are gen-315

eral properties of the ARS, which can be easily verified by direct substitution

in the GMM-ARS expression of eq. (12). These properties enable the compar-

ison of different point sets observed from different viewpoints. In particular,

since ARS is translation invariant, the estimation of rotation between two point

sets can be achieved comparing the two respective ARS. Stated differently, the320

spectrum enables the decoupling of rotation and translation. This issue will be

addressed in section 5.

4.2. Efficient Evaluation of Radon Spectrum

In the previous section, we observed that the computational complexity of

the ARS evaluation for a given value of θ is quadratic. The complexity depends325

on the number of kernel functions ψij(θ), which in turn is equal to the number of

point pairs. While the quadratic complexity is unavoidable due to the intrinsic

ARS definition, the demanding operation is performed during the initialization.

The argument of the kernel function in eq. (13) can be rewritten as
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(
ξ>(µi − µj)

2σ

)2

= 2λij(cos θ cos θij + sin θ sin θij)
2

= λij + λij cos(2θ − 2θij) (16)

330

where the parameters λij and θij are defined as

λij =
‖µi − µj‖2

8σ2
, θij = atan2 (µi,y − µj,y, µi,x − µj,x)

The rewritten analytical expression highlights the periodicity of the kernel

function. Since a pencil of lines is indistinguishable after a rotation of π angle,

ARS is π-periodicity Sκ [f ] (θ+π) = Sκ [f ]. Hence, the approach based on ARS335

returns the rotation angle up to angular bias π. The decision on the correct

evaluation can be easily solved using simple geometric criteria applied to the

result or if there are limits on rotation angle. The exponential of a cosine has

an elegant expression into Fourier series [53, (9.6.34)]. In particular, the kernel

function can be written as340

ψij(θ) = exp (−λij − λij cos(2θ − 2θij))

= exp (−λij) exp (λij cos(2θ − 2θij − π))

= e−λij

(
I0(λij) + 2

+∞∑

k=1

Ik(λij) cos(k(2θ − 2θij − π))

)

= a
(ij)
0 +

+∞∑

k=1

(
a

(ij)
k cos(2kθ) + b

(ij)
k sin(2kθ)

)
(17)

where Ik(·) are the modified Bessel functions of the first kind. The coeffi-

cients a
(ij)
k and b

(ij)
k in the above equation are equal to

a
(ij)
k = 2 Ik(λij) e−λij (−1)k cos(2kθij) (18)

b
(ij)
k = 2 Ik(λij) e−λij (−1)k sin(2kθij) (19)

16



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The above coefficients can be rewritten in a recursive form for λij > 0 and345

k > 2. This new formula is straightforwardly obtained from the recursive for-

mula of modified Bessel functions Ik(λij) = Ik−2(λij)− 2(k−1)
λij

Ik−1(λij). From

substitution, we obtain


 a

(ij)
k

b
(ij)
k


 = R(4θij)


 a

(ij)
k−2

b
(ij)
k−2


+

2(k − 1)

λij
R(2θij)


 a

(ij)
k−1

b
(ij)
k−1




(20)

The series in equation (17) can be arrested to order n (call it s
(ij)
n (θ)) and350

used to compute an approximate value of ψij(θ). The greater is the number

n of terms used in the computation the more accurate is the approximation.

There are many possible upper bounds for the error achieved by using sn(θ).

We provide the following one.

Proposition 4. Let s
(ij)
n (θ) be the Fourier series expansion of eq. (17) arrested

to term n-th. Then, if n > 0 and λij > 0,

|ψij(θ)− s(ij)
n (θ)| < 2e−λij In(λij) λij

n
(21)

355

Proof 4. The remainder can be bounded as

|ψij(θ)− s(ij)n (θ)| 6 2e−λij

∞∑

k=1

In+k(λij) (22)

The inequality (1 +n/λ)In+1(λ) < In(λ) holds for any n > −1 and λ > 0 [54].

By recursively applying such inequality, each term of eq. (22) is bound as

In+k(λij) < In(λij)
k∏

l=1

(
λij

λij + n+ l

)
6 In(λij)

(
λij

λij + n

)k

The above inequality can be substituted into eq. (22) to obtain

|ψij(θ)− s(ij)n (θ)| < 2e−λij In(λij)
∞∑

k=1

(
λij

λij + n

)k

which is a geometric series without the first term and converges to the second

member of eq. (21).
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Proposition 4 enables to estimate the expansion order required to achieve

the desired accuracy. It can be observed that, for large values of λij , In(λij) '
eλij/

√
2πλij [53, (9.7.1)] and, then, the error bound is about 2

√
λij/(

√
2πn).

Thus, the substitution of the expression of λij gives us a rule of thumb for

approximation error

e(ij)
n =

‖µi − µj‖
2
√
π σ n

(23)

The results on the approximation of kernel function can be applied to the GMM-

ARS, which has the form of a sum of kernel functions. In particular, the Fourier

series expansion of a GMM-ARS is equal to360

Sκ [f ] (θ) = a0 +

+∞∑

k=1

(ak cos(2kθ) + bk sin(2kθ)) (24)

where the coefficients are

ak =





1
σ
√
π

∑np−1
i=1

∑np

j=i+1 a
(ij)
0 +

np

2σ
√
π

k = 0

1
σ
√
π

∑np−1
i=1

∑np

j=i+1 a
(ij)
k k > 0

(25)

bk =
1

σ
√
π

np−1∑

i=1

np∑

j=i+1

b
(ij)
k (26)

The Fourier series expansion in eq. (24) arrested to the n-th order, sn(θ),

can be used to approximate the value of the GMM-ARS. The same observations

about the approximation s
(ij)
n (θ) hold for the ARS, which consists of several

kernel functions ψij(θ). An upper bound of the approximation error of sn(θ) is365

directly derived from Proposition 4.

Corollary 5. Let sn(θ) be the Fourier series expansion of eq. (24) arrested to

term n-th. Then,

|Sκ [f ] (θ)− sn(θ)| <
∑np−1
i=1

∑np

j=i+1 e−λij In(λij) λij

n
(27)

4.3. Relation to Second Order Moments

PCA-based methods are a standard approach to the estimation of rotation.

Such approach exploits the invariance to rotation of the second-order moments370
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represented by the eigenvalues of the symmetric cross-covariance matrix. The

rotation angle between two point sets is computed by comparing the directions of

the principal axes (aka eigenvectors) of the respective cross-covariance matrices.

The ARS is related to the second-order moments of a point set. Following

the notation of section 4.1, let dij = (µi − µj)/2σ be the normalized pairwise375

positions of points i-th and j-th, µ̄ = 1
np

∑np

i=1 µi be the centroid (first-order

moment) of the point set, and di = (µi − µ̄)/2σ be the positions to centroid of

point i− th. Two results enable the computation of a lower bound for the ARS.

1. ARS kernels are inferiorly bound by

ψij(θ) = exp
(
−(ξ>dij)

2
)
≥ 1− ξ>dijd>ijξ (28)

2. The cross-covariance matrix can be rewritten w.r.t. the sum of all pairwise

positions as

Σ̄ =
1

np

np∑

i=1

did
>
i =

1

n2
p

np−1∑

i=1

np∑

j=i+1

dijd
>
ij (29)

Using equations (28) and (29) in equation (12), the ARS has a lower bound

with the following expression:

Sκ [f ] (θ) ≥ np
2σ
√
π

+
1

σ
√
π

np−1∑

i=1

np∑

j=i+1

(
1− ξ>dijd>ijξ

)

=
n2
p

2σ
√
π
− n2

p

σ
√
π
ξ>Σ̄ξ = Λ(θ) (30)

The quadratic function Λ(θ) in eq. (30) is maximum when ξ is the eigenvector380

corresponding to the minimum eigenvalue of the cross-covariance matrix Σ̄. In-

deed, PCA-based methods estimate the rotation by aligning the eigenvectors of

the corresponding cross-covariance matrices. If the ratio between the maximum

and minimum eigenvalues of Σ̄ is large, i.e. there is a strong central direction

for points, then Λ(θ) accurately approximates the ARS. In general, Λ(θ) is more385

sensitive to the distribution of points than ARS and its trend may not provide

sufficient characterisation of dominant directions.
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5. Estimation of Rotation

5.1. Correlation of the ARS

The GMM-ARS presented in the previous section is an effective tool for390

measuring the importance of a specific orientation θ in a point set. An impor-

tant property of this function is the translation invariance and rotational shift

stated in Proposition 3. Like the Hough Spectrum [29], such property can be

exploited to compare and estimate the rotation between two point sets. If two

point sets represent the same scene observed from different viewpoints, then the395

transformation that aligns the two sets is estimated as the joint composition

of rotation and translation. However, since their GMM-ARS is independent

from translation, the evaluation of rotation is decoupled from the evaluation of

translation.

Let fS(r) and fT (r) be respectively the density functions of the source and

the target point sets, Sκ [fS ] (θ) and Sκ [fT ] (θ) be the respective GMM-ARS.

Suppose that fT (r) represents the rotated version of fS(r), except from noise

and field-of-view issues commonly occurring in perception problems. The ro-

tation between fS(r) and fT (r) can be found by searching the angular shift δ

that maximizes the overlap between the two spectra. The overlap is measured

by the function

C(δ) =
1

π

∫ π

0

Sκ [fS ] (θ + δ) Sκ [fT ] (θ) dθ (31)

which represents the correlation of the two spectra. The correlation C(θ) can be

written as a sum of modified Bessel functions. This follows by the observation

that the product of Sκ [fS ] (θ) and Sκ [fT ] (θ) consists of products of kernel

functions. If ψS(θ) and ψT (θ) are kernels of respectively the reference and

transformed spectra, then

1

π

∫ π

0

ψS(θ + δ)ψT (θ)dθ =

=
1

π

∫ π

0

exp (−KRT −MRT cos(2θ − φRT ))dθ

= e−KRT I0(MRT ) (32)
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where, given λS and λT defined as in eq. (16),

MST cosφST = λS cos(2θS + 2δ) + λT cos(2θT )

MST sinφST = λS sin(2θS + 2δ) + λT sin(2θT )

KST = λS + λT

400

The correlation function is the sum of terms in eq. (32). Unfortunately, the

analytical expression is difficult to use in practice. If both the source and the

target point sets consist of np points, then the evaluation of C(δ) has computa-

tional complexity O(n4
p), since Sκ [fS ] (θ) and Sκ [fT ] (θ) have each O(n2

p) terms.

Moreover, the manipulation of eq. (32) and of the derived terms, e.g. to search405

maxima of correlation, is rather difficult and not practical.

The Fourier series expansion of GMM-ARS provides a viable approach to

the efficient evaluation of C(δ). Equation (31) is very close to the convolution of

two GMM-RSs. There is a well-known result about Fourier series of convolution

that can be exploited.410

Proposition 6. Let Sκ [fS ] (θ) and Sκ [fT ] (θ) be the GMM-RSs of respectively

the reference and the transformed point sets. Let {aSk , bSk }k and {aTk , bTk }k be the

respective Fourier series coefficients. Then,

C(δ) = aC0 +
+∞∑

k=1

(
aCk cos(2kδ) + bCk sin(2kδ)

)
(33)

where aCk =
aTk a

R
k +bTk b

R
k

2 and bCk =
aTk b

R
k−bTk aRk

2 .

Proof 5. Let the terms of Fourier series of reference and transformed spectra

be respectively

ωSk (θ) = aSk cos(2k(θ + δ)) + bSk sin(2k(θ + δ))

ωTi (θ) = aTi cos(2iθ) + bTi sin(2iθ)

C(δ) is the sum of the integrals of ωSk (θ)ωTi (θ) over θ ∈ [0, θ[. If i 6= k, then such

integral is equal to 0. Given i = k, ωSk (θ)ωTi (θ) can be expanded using Werner

formulas and integrated. The only non-zero terms are linear combination of

cos(2kδ) and sin(2kδ), which are collected as in eq. (33).415
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5.2. Computation of the ARS Correlation Maximum

In section 5.1, the rotation angle corresponds to the global maximum of the

ARS correlation function. Among the potential approaches, branch and bound

techniques [55] provide a robust and easy-to-implement solution for this prob-

lem. A branch and bound algorithm recursively divides the objective function420

domain into subintervals and provides the upper and lower bound values for

the function over each subinterval. The correlation function C(θ) has been ex-

pressed through its Fourier serie expansion in eq. (33), a general form suitable

for interval arithmetic. The interval arithmetic of sine and cosine functions is

well defined: given an interval X = [θ0, θ1], the lower and upper bounds of cos θ425

(and similarly of sin θ) for θ ∈ X , are computed by checking whether critical

points ( 1
2 + i)π with i ∈ Z are contained in X . Let gk and gk be respectively

the lower and upper bounds of the sinusoid gk(θ) = ak cos(2kδ) + bk sin(2kδ)

on interval X . Thus, the upper and lower bounds of the Fourier series F (θ)

are obtained by summing the contributions of all its terms gk with k = 0, . . . , n430

according to interval arithmetic sense. In particular, the values of F (θ) over X
are contained in interval [

∑n
k=0 gk,

∑n
k=0 gk].

The same procedure can be used for searching the global maximum of both

the ARS and ARS correlation. In summary, the procedure for rotation estima-

tion consists of the following steps.435

1. Given the source and target point sets, respectively PS and PT , compute

the corresponding ARS Sκ [fS ] (θ) and Sκ [fT ] (θ) in the form of Fourier

series as in eq. (24).

2. Compute the correlation C(δ) of the spectra Sκ [fS ] (θ) and Sκ [fT ], also

in the form of Fourier series, according to eq. (33).440

3. Push the initial domain interval X = [0, π] and the corresponding interval

bounds of C(δ), Y = [C,C], into queue Q. Initialize the estimate of

maximum interval (Xmax,Ymax)← (X ,Y).

4. Pop from queue Q the pair (X = [x, x],Y = [y, y]) with maximum y.

5. If y < ymax, then ignore the current interval and return to 4.445
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6. If y > ymax, then update the estimate of maximum interval (Xmax,Ymax)←
(X ,Y).

7. If the domain interval dimension is greater than tolerance, i.e. |x−x| > εθ,

then

• split X into two domain intervals XL and XH ;450

• compute the bounds YL and YH of correlation function C(δ) over

respectively XL and XH ;

• push (XL,YL) and (XH ,YH) into queue Q.

8. Repeat from 4 until there are items in Q. Otherwise, return the estimate

of maximum point and value (Xmax,Ymax).455

The accuracy in correlation maximum estimation depends on optimization tol-

erance εθ as discussed in experiments.

6. Experiments

The experiments presented in this section have been designed to assess the

accuracy of the proposed method in estimating the rotation. The compared460

methods for rotation estimation include the ARS, the HS, the PCA, the ICP,

and the VFC. Except when explicitly declared, the proposed method ARS is

applied with fixed values of standard deviation σ = 2, Fourier expansion order

n = 20 and optimization tolerance εθ = 0.5 deg. Hence, the rotation estimation

does not exploit any information about the noise level applied in the experiments465

illustrated in the following. The dimension of Hough transform cells is ∆θ = 0.5◦

and ∆ρ = 2. PCA algorithm computes rotation angle by aligning the principal

axes of the point set, i.e. the eigenvectors of its covariance matrix. PCA is also

used as initial guess for the correspondence based methods that cannot operate if

not close to the target point set. In particular, the angle is estimated by aligning470

the principal axes of the covariance matrix and the translation is given by the

centroid displacement. The implementation of ICP used in the experiments
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searches correspondences according to standard nearest neighbor policy2. The

nearest neighbor policy is also used to compute the putative correspondences

that are refined by the VFC [13]. As discussed in section 2, VFC removes outliers475

and keeps only the matches that can be overlapped by a unique consistent rigid

transformation.

A preliminary set of experiments have been performed to assess the impact

of resolution parameters on rotation estimation methods HS and ARS. The

accuracy of HS depends on the resolution ∆θ of its histogram bins, since rotation480

angle is estimated by finding the maximum of histogram correlation. In the

case of ARS, the evaluation of rotation is affected by the tolerance εθ that

stops the branch-and-bound optimization described in section 5.2. The value

of Gaussian kernel standard deviation σi and the Fourier series order n have

more limited impact on the final result. Experiments have been performed485

on a subset of 61 shapes from MPEG-7 dataset belonging to different object

categories discussed later in this section. No transformation has been applied

to the points representing each shape. Figure 3 shows the mean error obtained

by HS and ARS. It is apparent that the ARS achieves better accuracy than HS

except when the HS resolution is pretty small, i.e. less than 0.1 deg. It would490

be wrong to infer from this experiment on a dataset without transformation

that the lowest values of ∆θ and εθ achieves the best results. Smaller values of

angular resolution makes estimation less robust to noise.

The point sets used in our experiments are taken from the MPEG-7 shape

database [56]. The points of each set correspond to the contour pixels of the495

original input images. The dataset consists of 1400 images belonging to 70

different shape categories (e.g. dog, bottle, guitar, tree). Although the dataset

is designed to perform comparisons among the items belonging to a category, our

experiments compare rotated, translated and transformed copies derived from

the same original item. This procedure gives complete control on the value of500

rotation angle and performs comparisons between different views of the same

2http://www.cvlibs.net/.
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object. Besides aligning pairs of rotated and translated copies of a given point

set, three different transformations have been applied to assess the robustness

of the rotation estimation.

1. Noise. This transformation adds Gaussian noise with a given standard505

deviation σ to the coordinates of the points. The value of σ is varied in

interval 0 ÷ 50, where the maximum dimension of a point set may varies

from 300 to 900.

2. Occlusion. An occluded version of a point set is generated by randomly

generating a circle and removing all the points lying inside this circle.510

The center of the circle is a randomly chosen point of the dataset and the

radius is proportional to the size of the point set. In particular, if the

points are contained in a bounding box of size bx × by, the radius is equal

to β
√
bxby, where 0 6 β 6 1 is the occlusion rate. Occlusion rate β is

varied up to 50%.515

3. Random Points. This transformation adds γ nin random points to an

input point set of nin points, where γ is the random point rate. The

random points are uniformly distributed on a circle centered on the point

set mean point and with radius doubling the size of bounding box. The

maximum value of random point rate γ used in the tests is 300%, i.e. the520

random points are at most 3 times the number of shape points.

A transformed dataset is obtained by generating two rotated and translated

copies of each of the 1400 shapes. The rotation angles are uniformly distributed

on interval [0, 180] deg, whereas the translation is uniformly distributed up to

a maximum value approximately corresponding to the dimension of the object.525

The desired transformation (random noise, occlusion and additional random

points) is independently applied to each of the point sets. The point set pairs are

the inputs of the compared rotation estimation algorithms. Since the rotation

is randomly generated, the groundtruth is available to assess their performance.

Figure 4 shows several examples of point sets obtained by applying the random530

transformations. Each subfigure contains the source shape (Src) to be rotated
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with destination shape (Dst) within the source shape rotated according to the

estimation of ARS, HS and VFC. In most cases, it is difficult to qualitatively

appreciate the differences in rotation estimation, except for example hammer-11

showing a successful outcome of ARS and a failure of both HS and VFC. The535

legend reports the correct rotation angle (Dst) and the values computed with

ARS, HS and VFC in order to give more insight to the reader.

Figures 5, 6 and 7 respectively illustrate the outcomes of noise, occlusion

and random point tests. Each figure shows the positive estimation rate on the

top subfigure and the mean angular error on the bottom one both w.r.t. the540

transformation parameter. For each test, the positive rotation estimations are

those achieving an angular error less than 5◦. The mean angular error has

been computed only for positive rotation estimations to avoid the influence of

wrong estimations. ARS and HS have similar performance in all the three tests

as it was expected due to the strong relationship between Radon and Hough545

transforms [37]. When no noise or occlusion is applied, the angular error is less

than 0.5◦ for both. VFC performs better than all the other techniques in noise

test (Figure 5) both in positive estimation and angular error. In this case, there

is a correct match for all points and, in spite of noise, VFC effectively filters

the outliers in putative correspondences. However, its performance significantly550

drops in occlusion and random point tests. In these experiments, there are

points without a correspondence in the other point sets due to occlusion or there

are two many potential match due to the augmented number of points. The non-

matching points and the high number of outliers strongly affect the outcome of

robust correspondence algorithms like VFC. In general, these experiments show555

that rotation estimation is more sensitive to occlusion, whereas ARS and HS are

robust to noise. ARS achieves larger positive rates and smaller angular error

than HS in noise test, whereas HS has slightly better performance in occlusion

and and random points tests. Both ARS and HS outperform PCA and ICP,

which are more sensitive to differences between the point sets to be aligned. Also560

VFC achieves better results than PCA and ICP being sort of their refinement.

A separate analysis has been performed on each of the 70 shape categories
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of MPEG-7 dataset. Tables 1, 2 and 3 respectively illustrate the outcomes of

noise, occlusion and random point tests divided according to shape category.

The histograms of noise test are obtained with σ = 20.0, those of occlusion565

with rate β = 20% and those of additive randon points to rate γ = 100%.

The less robust techniques like PCA and ICP achieves positive rates and mean

errors similar to ARS and HS only in the case of elongated objects with strong

principal direction like Bone, bat, elephant, deer subject to Gaussian noise.

However, occlusion and to less extent random points affect rotation estimation570

of PCA, ICP and VFC also with these shapes. The mean error on rotation angle

of ARS and HS is larger for shapes with central symmetries or with a limited

number of aligned points, like apple, bell, chopper, cup and face.

Table 4 illustrates the average execution times of the algorithms used in the

experiments. The experiments have been performed using a Intel i7-3630QM575

CPU @ 2.40GHz, 8 GB RAM. The execution time of ARS is ostensibly the larger

of all the compared algorithms due to the quadratic complexity of ARS with re-

spect to the number of points as observed in Section 4.1. Despite this drawback,

consistent improvements in its execution time may be achieved by more careful

and parallel implementations, and especially by more efficient representation of580

the input point sets with GMMs. While the current policy associate a Gaussian

kernel to each point, each kernel could summarize a point subset with central

distribution.

7. Conclusion

In this paper, we have proposed a novel method for global rotation estima-585

tion between planar point sets. The translation and angular-shift invariance

of the ARS enables the decoupling of rotation and translation. Rotation angle

is computed by searching the global maximum of a correlation function. The

ARS has been formally defined from the RT of a GMM consisting of isotropic

and identical kernels. Moreover, we have proposed an efficient approximation590

of the spectrum and its correlation through its exact Fourier expansion. The
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proposed method has been implemented and compared with other state-of-the-

art algorithms. The experiments demonstrated the accuracy of the proposed

method and its robustness to noise, occlusion and random points. ARS outper-

forms correspondence-based methods including one state-of-the-art algorithm595

and achieves similar results to HS. In future works, we expect to extend Radon

Spectrum to the case of non-isotropic kernel and to improve its computational

performance.
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Figure 1: Example of rotation estimation with ARS. Top: source (red) and target (green) point

sets with the source set rotated according to ARS estimation and approximately translated

according to centroid displacement (blue). The source and target sets are generated from the

same point set by applying additive noise with standard deviation σn = 2 and occlusion with

β = 20% rate (defined in Section 6). Bottom: normalized ARS of source (red), target (green)

and rotated source (blue) point sets with the correlation function (black) of the two original

sets.
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Figure 2: An example of a GMM consisting of 5 identical and isotropic kernels with σ = 0.35

(a), the corresponding RT (b) and ARS (c).
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Figure 3: Rotation angle mean error of ARS and HS achieved with different values of ARS

optimization tolerance εθ or of HS bin resolution ∆θ. The experiment is performed on a dataset

of 61 shapes belonging to different shape categories and without applying transformations.
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Figure 4: Examples of shape registration: apple-15 (no transformation); octopus-6 and bird-

17 (noise tests); carriage-10, bat-18 and hammer-11 (occlusion from 5% to 30%); beetle-12

and key-1 (random points 50%). The source shape (Src) is rotated in order to overlap with

destination shape (Dst) using ARS, HS and VFC to estimate rotation angle. The correct and

estimated values of rotation are displayed in the legend alongside with Dst, ARS, HS and

VFC. Since the translation is not estimated, the shapes are centered on their centroids (which

may not overlap, especially with occlusion).
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Figure 5: Positive estimation percentage (top) and mean angular error (bottom) obtained by

ARS, HS and PCA methods by comparing point sets subject to different levels of Gaussian

noise σ. A rotation estimation is positive if the rotation error is less than 5◦. The mean

angular error is computed only on positives.
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Figure 6: Positive estimation percentage (top) and mean angular error (bottom) obtained by

ARS, HS and PCA methods by comparing point sets with different occlusion rates beta (in

pencertage). A rotation estimation is positive if the rotation error is less than 5◦. The mean

angular error is computed only on positives.
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Figure 7: Positive estimation percentage (top) and mean angular error (bottom) obtained by

ARS, HS and PCA methods by comparing point sets with different rates of random points γ

(in percentage). A rotation estimation is positive if the rotation error is less than 5◦. The

mean angular error is computed only on positives.
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category ARS HS PCA ICP VFC
perc err [◦] perc err [◦] perc err [◦] perc err [◦] perc err [◦]

Bone 100 0.30 100 0.34 100 0.20 100 0.55 100 0.23
Comma 100 0.46 100 0.64 100 0.40 80 1.27 100 0.22
Glas 95 0.49 95 0.67 95 0.81 90 1.39 95 0.23
HCircle 100 0.88 100 1.18 100 0.75 85 1.59 100 0.30
Heart 100 0.76 100 0.70 95 0.76 90 1.25 100 0.21
Misk 100 0.64 100 0.83 95 1.08 90 1.34 100 0.19
apple 75 2.01 65 2.45 80 2.46 80 2.82 100 0.57
bat 100 0.26 100 0.34 100 0.30 85 0.42 100 0.13
beetle 100 0.72 100 0.76 95 0.90 85 1.15 100 0.32
bell 80 1.72 80 1.92 75 1.74 65 2.16 90 0.99
bird 100 0.58 100 0.73 100 0.62 70 0.94 100 0.36
bottle 95 1.54 95 1.63 95 1.37 90 1.28 95 1.09
brick 100 1.75 100 1.80 100 1.54 100 1.99 100 0.82
butterfly 100 0.56 100 0.64 100 0.79 80 1.17 100 0.24
camel 100 0.95 100 1.46 95 0.84 80 1.39 100 0.28
car 100 1.47 100 1.22 100 1.26 100 2.06 100 1.24
carriage 100 1.21 100 1.27 100 1.20 100 1.52 100 0.62
cattle 100 0.29 100 0.42 100 0.29 90 1.19 100 0.13
cellularphone 100 0.55 100 0.68 100 0.46 100 0.61 100 0.37
chicken 85 0.85 80 1.17 75 1.48 50 1.70 100 0.92
children 90 1.45 90 1.59 95 1.54 95 1.77 100 1.49
chopper 90 1.48 90 1.53 95 1.16 85 1.90 100 0.54
classic 100 0.51 100 0.59 100 0.44 100 0.71 100 0.19
crown 80 1.56 80 1.89 70 1.82 80 1.43 95 1.56
cup 100 1.53 95 1.94 80 2.79 80 2.59 100 0.28
deer 100 0.17 100 0.29 100 0.19 85 0.36 100 0.12
device0 70 0.25 75 0.45 25 2.16 10 1.67 100 0.16
device1 100 0.27 85 0.44 50 2.59 35 2.50 100 0.13
device2 55 0.56 55 0.77 10 1.15 10 1.65 100 0.20
device3 90 0.48 100 0.77 45 1.95 30 1.57 100 0.11
device4 100 0.40 100 0.42 55 2.04 35 2.07 100 0.18
device5 95 0.25 80 0.52 40 3.05 20 1.92 100 0.22
device6 100 1.09 95 1.17 65 1.74 65 2.18 100 0.18
device7 70 0.31 50 0.61 35 3.44 10 3.99 100 0.14
device8 100 0.28 100 0.46 55 2.58 25 1.87 100 0.20
device9 95 1.11 80 0.82 70 1.24 70 1.57 100 0.10
dog 95 0.82 95 1.02 95 0.85 95 1.12 100 0.34
elephant 95 0.54 95 0.69 100 0.74 90 0.81 100 0.25
face 100 1.59 100 2.10 100 1.34 100 1.42 100 0.29
fish 95 0.87 95 0.92 100 0.84 95 1.25 100 0.56
flatfish 100 0.86 100 1.10 100 0.48 100 0.82 100 0.31
fly 100 0.94 100 1.11 90 1.17 85 1.56 100 0.21
fork 100 0.47 100 0.59 100 0.42 70 1.18 100 0.25
fountain 85 1.53 85 1.32 30 3.03 10 0.83 100 0.58
frog 90 1.40 90 1.36 95 1.58 90 1.75 100 0.44
guitar 100 0.53 100 0.63 100 0.42 85 1.05 100 0.32
hammer 90 1.55 90 1.65 90 1.41 85 1.62 100 0.72
hat 75 1.92 60 1.50 60 1.57 55 1.71 95 1.13
horse 100 0.39 100 0.40 100 0.53 70 0.97 100 0.14
horseshoe 30 1.55 40 2.58 40 3.06 30 2.52 95 1.08
jar 100 1.07 95 1.36 100 0.61 95 1.00 100 0.22
key 100 0.78 100 0.70 100 0.76 100 0.93 100 0.61
lizzard 100 0.69 100 0.90 100 0.54 95 1.07 100 0.13
lmfish 100 0.80 95 0.70 100 0.71 95 0.99 100 0.50
octopus 85 1.71 85 1.94 45 1.85 40 1.23 100 0.50
pencil 100 0.63 100 0.63 100 0.55 100 1.01 100 0.59
personalcar 100 0.60 100 0.74 100 0.50 100 0.95 100 0.24
pocket 90 1.05 90 1.10 90 1.10 80 1.48 100 0.58
rat 90 2.07 95 2.30 95 1.68 70 2.09 95 0.54
ray 100 0.69 100 0.68 100 0.65 85 0.80 100 0.35
seasnake 95 0.79 100 1.16 95 0.74 90 1.41 100 0.81
shoe 100 0.73 100 0.95 100 0.53 100 0.84 100 0.28
spoon 95 0.83 95 0.83 95 0.81 95 1.37 95 0.72
spring 100 0.31 100 0.34 100 0.27 100 0.69 100 0.26
stef 55 2.69 50 2.72 60 2.38 35 1.95 65 2.03
teddy 85 2.25 75 1.83 55 3.09 70 3.40 100 0.39
tree 100 1.40 100 1.54 95 1.17 95 1.78 95 0.65
truck 70 1.93 60 2.09 65 1.74 65 2.28 85 2.07
turtle 100 1.03 100 1.23 100 0.88 90 1.55 100 0.39
watch 100 0.33 100 0.38 100 0.33 100 0.56 100 0.35

Table 1: Positive estimation percentage and mean angular error obtained by ARS, HS, PCA,

ICP and VFC methods by different shape categories in noise test where Gaussian noise has

standard deviation σ = 20.0.
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ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

category ARS HS PCA ICP VFC
perc err [◦] perc err [◦] perc err [◦] perc err [◦] perc err [◦]

Bone 80 1.21 85 0.57 80 2.27 45 2.53 55 2.05
Comma 100 1.27 100 0.91 50 2.54 35 1.66 65 2.62
Glas 75 0.28 85 0.37 35 1.88 20 1.75 35 1.73
HCircle 95 0.29 95 0.25 40 2.78 25 2.55 30 2.66
Heart 90 1.02 100 1.10 15 1.89 15 3.53 40 1.79
Misk 95 1.24 100 0.84 5 4.79 10 1.41 45 2.84
apple 20 1.02 20 0.54 25 2.61 15 1.60 25 1.57
bat 80 0.79 70 0.86 45 2.27 35 2.02 55 1.85
beetle 65 1.44 70 1.37 15 2.70 15 2.49 40 1.33
bell 85 0.85 85 0.80 30 2.94 10 2.41 50 2.52
bird 65 1.32 70 1.48 40 2.23 30 2.81 50 1.82
bottle 100 1.41 100 1.43 100 1.75 65 1.88 65 2.20
brick 100 0.60 100 0.65 45 2.61 20 2.12 60 2.36
butterfly 55 2.00 45 1.69 15 2.10 5 1.21 25 2.57
camel 80 1.92 90 1.37 10 3.94 5 4.23 50 2.46
car 100 1.41 95 0.92 50 2.82 25 2.85 75 2.82
carriage 75 2.02 85 1.91 80 1.98 60 1.94 80 1.89
cattle 65 1.23 75 1.09 40 2.18 30 2.24 35 1.59
cellularphone 100 0.39 100 0.36 75 2.46 35 2.65 85 2.09
chicken 50 2.70 50 2.47 0 − 10 2.01 40 2.64
children 100 1.03 100 1.05 95 2.47 50 2.91 35 2.62
chopper 80 1.36 80 1.29 25 2.53 25 4.08 70 1.91
classic 95 1.35 95 1.12 90 2.09 65 2.80 95 1.76
crown 75 2.34 75 2.38 70 2.19 35 3.20 70 2.30
cup 80 1.26 75 1.07 15 1.58 15 3.04 60 2.30
deer 50 1.10 45 0.66 30 1.66 20 0.97 40 2.56
device0 15 0.05 20 0.19 0 − 0 − 65 1.81
device1 20 0.23 20 0.41 0 − 10 3.93 45 2.77
device2 55 0.13 45 0.15 5 2.64 10 1.21 50 2.34
device3 65 0.34 70 0.72 5 1.43 5 4.92 40 1.57
device4 45 0.94 55 0.88 10 2.55 10 1.66 20 0.94
device5 55 0.19 65 0.37 10 2.90 15 3.98 80 1.66
device6 55 0.80 60 0.89 5 0.62 0 − 30 2.18
device7 35 0.11 35 0.23 10 2.47 10 2.80 60 1.56
device8 85 0.70 75 0.53 15 2.85 15 2.16 50 2.18
device9 55 1.32 65 1.01 10 2.36 10 2.53 40 1.60
dog 60 2.59 45 1.92 35 2.25 15 2.37 45 2.97
elephant 70 1.44 55 1.45 45 2.38 35 2.72 60 2.01
face 70 1.48 70 1.50 35 2.49 25 3.89 35 2.57
fish 100 1.09 90 0.84 85 2.05 65 2.16 95 2.10
flatfish 85 1.48 90 1.37 65 1.96 40 1.49 80 2.10
fly 45 1.28 55 0.89 30 2.42 10 2.73 40 2.81
fork 95 1.48 100 0.95 80 1.71 55 1.59 65 1.57
fountain 55 1.56 70 1.43 0 − 0 − 40 2.83
frog 50 1.75 55 1.68 35 2.38 10 1.51 25 1.56
guitar 85 1.58 85 1.49 85 1.92 50 2.10 70 2.20
hammer 100 0.81 100 0.58 65 1.60 40 2.01 70 1.47
hat 85 1.28 85 1.36 30 2.97 15 1.09 40 1.49
horse 75 1.39 55 0.78 55 2.07 40 1.96 50 3.14
horseshoe 60 2.39 75 2.28 10 0.74 10 0.80 35 1.90
jar 95 1.42 85 1.26 35 1.72 30 3.53 50 2.24
key 95 1.68 100 1.33 75 2.15 45 1.95 85 2.15
lizzard 75 1.43 85 1.49 45 0.89 25 1.59 75 2.76
lmfish 100 0.92 100 0.77 90 1.56 70 2.24 90 2.08
octopus 45 1.31 45 1.46 0 − 5 1.88 45 2.08
pencil 100 0.39 100 0.30 100 0.92 95 1.32 100 0.77
personalcar 100 1.08 95 1.47 45 2.35 25 2.46 70 2.70
pocket 25 1.64 40 2.58 35 2.59 20 1.85 50 2.38
rat 70 2.12 75 1.79 50 2.06 25 2.74 65 2.04
ray 85 1.42 90 1.43 30 1.85 15 2.56 15 3.54
seasnake 100 1.34 100 1.29 55 1.97 45 2.47 60 2.36
shoe 95 0.72 90 0.54 60 2.34 35 1.84 75 1.85
spoon 95 1.51 95 1.45 85 1.78 50 1.86 85 2.32
spring 45 1.90 50 1.66 55 2.29 45 2.25 45 1.97
stef 55 1.71 50 1.57 40 2.26 25 2.41 50 1.66
teddy 55 1.42 55 1.27 0 − 5 1.07 30 2.56
tree 95 0.65 95 0.57 65 2.17 35 1.61 65 2.02
truck 75 1.83 80 1.14 45 3.01 20 2.31 55 3.00
turtle 85 1.47 90 1.20 20 1.73 15 3.43 45 2.33
watch 100 0.20 100 0.16 95 1.40 75 1.62 95 1.32

Table 2: Positive estimation percentage and mean angular error obtained by ARS, HS, PCA,

ICP and VFC methods by different shape categories in occlusion test with occlusion rate

equal to β = 20% of shape dimension.
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category ARS HS PCA ICP VFC
perc err [◦] perc err [◦] perc err [◦] perc err [◦] perc err [◦]

Bone 100 0.45 100 0.28 85 1.92 65 2.27 90 2.36
Comma 100 0.19 100 0.18 55 2.81 40 2.82 90 2.25
Glas 100 0.29 100 0.19 35 2.75 35 3.45 95 1.86
HCircle 100 0.21 100 0.21 50 1.92 40 2.12 75 1.88
Heart 95 0.37 100 0.33 20 3.45 5 2.44 100 1.71
Misk 95 1.17 95 0.47 20 1.60 20 1.51 90 1.58
apple 80 1.04 100 1.30 15 2.32 10 2.24 100 2.14
bat 100 0.30 100 0.25 80 1.97 65 2.90 95 1.86
beetle 100 0.74 100 0.64 55 2.36 45 2.93 85 2.07
bell 100 0.65 100 0.56 50 2.76 35 2.99 90 1.97
bird 100 1.12 100 0.61 65 2.74 50 2.68 85 2.01
bottle 100 0.47 100 0.36 60 3.31 30 2.73 60 1.74
brick 100 0.61 100 0.36 35 2.34 30 2.50 50 2.61
butterfly 100 0.95 100 0.72 60 2.30 55 2.66 60 1.70
camel 95 1.27 100 0.62 65 2.15 55 2.01 95 1.33
car 100 0.79 100 0.79 60 2.88 55 3.26 65 2.90
carriage 100 1.53 100 1.25 60 2.86 45 3.32 60 1.75
cattle 100 0.71 95 0.40 85 2.25 60 2.52 50 1.70
cellularphone 100 0.09 100 0.12 80 2.34 60 2.71 80 1.93
chicken 80 0.95 85 1.11 30 1.96 25 2.73 85 1.83
children 100 0.84 100 0.62 45 2.89 25 3.50 55 2.70
chopper 100 1.19 100 0.76 50 3.08 15 1.79 75 1.53
classic 100 0.47 100 0.30 65 2.30 55 2.90 80 1.75
crown 90 1.68 90 1.49 30 2.01 25 1.49 55 2.52
cup 100 0.31 100 0.31 10 2.83 5 0.54 100 1.45
deer 100 0.54 100 0.40 100 1.85 90 2.62 25 2.38
device0 70 0.20 75 0.26 10 1.89 10 3.02 95 1.73
device1 55 0.13 75 0.19 20 1.56 20 2.70 100 2.04
device2 60 0.16 70 0.17 0 − 0 − 95 1.51
device3 80 0.16 95 0.14 10 3.76 5 2.77 100 0.65
device4 100 0.10 100 0.15 15 0.93 15 1.95 100 2.07
device5 85 0.23 95 0.13 15 1.90 10 0.36 90 1.64
device6 95 0.27 95 0.20 25 2.21 25 2.67 90 1.57
device7 15 0.12 45 0.11 5 1.51 5 2.80 90 1.54
device8 100 0.17 100 0.19 0 − 0 − 85 1.65
device9 90 0.58 85 0.18 25 2.39 25 2.15 95 1.36
dog 95 0.92 95 0.77 70 2.31 50 2.59 70 1.95
elephant 100 0.63 100 0.31 70 2.49 55 2.48 100 1.67
face 100 1.30 100 0.86 30 2.53 35 3.10 75 1.64
fish 100 0.74 100 0.52 55 2.39 30 1.88 80 2.36
flatfish 95 1.67 95 0.74 35 2.34 25 2.06 75 2.47
fly 100 0.82 100 0.55 60 2.54 45 2.80 95 2.39
fork 100 0.24 100 0.13 85 2.16 65 1.96 95 2.15
fountain 100 0.77 100 0.77 5 3.53 0 − 80 1.91
frog 100 1.44 100 1.28 55 1.65 50 2.56 95 2.41
guitar 100 0.60 100 0.33 70 1.95 55 2.50 70 2.09
hammer 100 0.38 100 0.32 55 2.15 50 1.88 75 2.11
hat 80 0.62 85 0.71 35 3.06 25 3.39 90 2.95
horse 100 0.81 100 0.59 70 2.05 55 2.40 95 1.87
horseshoe 70 1.53 70 1.60 10 1.59 15 2.66 85 1.60
jar 100 1.12 100 0.56 55 2.85 30 2.49 100 1.16
key 100 0.81 100 0.47 40 3.15 20 3.48 80 2.65
lizzard 100 1.12 100 0.86 85 2.38 65 2.50 90 1.53
lmfish 100 0.59 100 0.43 65 2.58 45 2.69 70 1.65
octopus 55 2.08 70 1.89 15 1.96 5 0.39 90 2.14
pencil 100 0.16 100 0.19 60 2.69 30 2.70 75 2.30
personalcar 100 0.50 100 0.34 65 2.91 40 2.40 80 2.54
pocket 85 1.87 90 1.75 30 2.61 30 1.98 70 2.59
rat 100 1.60 100 1.34 50 2.02 45 1.78 95 1.68
ray 100 0.97 100 0.39 60 2.70 30 1.86 90 1.55
seasnake 95 0.81 100 0.69 55 2.09 45 2.47 100 1.79
shoe 100 0.54 100 0.29 75 2.43 55 2.90 85 1.83
spoon 100 0.55 100 0.46 70 1.81 65 2.22 65 2.27
spring 100 0.53 100 0.43 100 1.44 95 2.30 95 1.24
stef 80 1.84 80 1.65 35 2.73 25 1.78 65 1.92
teddy 85 1.05 95 0.99 20 3.64 15 4.68 90 1.69
tree 95 1.05 95 0.67 30 2.26 20 2.39 70 2.28
truck 95 2.23 100 1.83 35 1.26 35 2.19 70 2.00
turtle 100 0.90 100 0.60 60 2.41 50 2.86 95 1.89
watch 100 0.18 100 0.14 60 1.84 40 1.55 35 1.44

Table 3: Positive estimation percentage and mean angular error obtained by ARS, HS, PCA,

ICP and VFC methods by different shape categories in random point test with random

point rate γ = 100%.
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ACCEPTED MANUSCRIPT
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algorithm average time [ms]

ARS 794.8

HS 18.3

PCA 8.8

ICP 12.3

VFC 69.2

Table 4: Average execution time of algorithms on 1400 shapes of MPEG-7 dataset. The

average number of points per shape is 1443.8.
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