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Single-Carrier Modulation versus OFDM for

Millimeter-Wave Wireless MIMO

Stefano Buzzi, Senior Member, IEEE, Carmen D’Andrea, Tommaso Foggi,

Alessandro Ugolini, and Giulio Colavolpe, Senior Member

Abstract

Future wireless networks will extensively rely upon carrier frequencies larger than 10 GHz. Indeed,

recent research has shown that, despite the large path-loss, millimeter wave (mmWave) frequencies can

be successfully exploited to transmit very large data-rates over short distances to slowly moving users.

This paper presents results on the achievable spectral efficiency on a wireless MIMO link operating at

mmWave in a typical 5G scenario. Two different single-carrier modem schemes are considered, i.e., a

traditional modulation scheme with linear equalization at the receiver, and a single-carrier modulation

with cyclic prefix, frequency-domain equalization and FFT-based processing at the receiver; these two

schemes are compared with a conventional MIMO-OFDM transceiver structure. Our analysis takes

into account the peculiar characteristics of MIMO channels at mmWave frequencies, the use of hybrid

(analog-digital) pre-coding and post-coding beamformers, and the finite cardinality of the modulation

structure. Our results show that the best performance is achieved by single-carrier modulation with

time-domain equalization, while MIMO-OFDM performs slightly better than single carrier modulation

with frequency-domain equalization. Results also confirm that the spectral efficiency increases with the

dimension of the antenna array, as well as that performance gets severely degraded when the link length

exceeds 90-100 meters and the transmit power falls below 0 dBW.
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I. INTRODUCTION

The use of carrier frequencies larger than 10 GHz will be one of the main new features of

fifth-generation (5G) wireless networks [1], and, due to the availability of large and currently

unused bandwidths, will be instrumental in delivering gigabit data-rates per users. Until few years

ago, the use of mmWave frequencies for cellular communications had been neglected due to the

higher atmospheric absorption that they suffer compared to other frequency bands and to the

larger values of the free-space path-loss. However, recent measurements suggest that mmWave

attenuation is only slightly worse than in other bands, as far as propagation in dense urban

environments and over short distances (up to about 100 meters) is concerned [2]. Additionally,

since antennas at these wavelengths are very small, arrays with several elements can be packed in

small volumes, in principle also on mobile devices, thus removing the traditional constraint that

only few antennas can be placed on a smartphone and benefiting of an array gain at both edges of

the communication link with respect to traditional cellular links. A large body of work has been

recently carried out on the use of mmWave frequencies for cellular communications [2]–[6].

Nowadays, several prototypes and test-beds showing the potentiality of mmWave frequencies

for cellular applications are already available [7] and the EU-funded project 5G-CHAMPION is

planning a large scale demo for the 2018 Winter Olympic Games in Seoul (Republic of Korea)

at 28 GHz frequency.

One of the key questions about the use of mmWave frequencies and in general about 5G

cellular systems is about the type of modulation that will be used at these frequencies. Indeed,

while it is not even sure that 5G systems will use orthogonal frequency division multiplexing

(OFDM) modulation at classical cellular frequencies [8], there are reasons that push for 5G

networks operating a single-carrier modulation (SCM) at mmWave frequencies [2]. First of

all, the propagation attenuation of mmWave frequencies makes them a viable technology only

for small-cell, dense networks, where few users will be associated to any given base station,

thus implying that the efficient frequency-multiplexing features of OFDM may not be really

needed. Additionally, the large bandwidth would cause low OFDM symbol duration, which,

coupled with small propagation delays, means that the users may be multiplexed in the time
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domain as efficiently as in the frequency domain. Finally, mmWave frequencies will be operated

together with massive antenna arrays to overcome propagation attenuation. This makes digital

beamforming unfeasible, since the energy required for digital-to-analog and analog-to-digital

conversion would be huge. Thus, each user will have an own radio-frequency beamforming,

which requires users to be separated in time rather than frequency. For efficient removal of

the intersymbol interference induced by the frequency-selective nature of the channel, the use

of SCM coupled with a cyclic prefix has been proposed, so that FFT-based processing might

be performed at the receiver [9]. In [10], [11], the null cyclic prefix single carrier (NCP-SC)

scheme has been proposed for mmWave frequencies. The concept is to transmit a single-carrier

signal, in which the usual cyclic prefix used by OFDM is replaced by nulls appended at the

end of each transmit symbol. Given the cited prohibitive hardware complexity of fully-digital

(FD) beamforming structures, several mmWave-specific MIMO architectures have been proposed,

where signal processing is accomplished in a mixture of analog and digital domains (see, for

instance, [12] and references therein). In particular, while FD beamforming requires one RF chain

for each antenna, in hybrid structures a reduced number of RF chains is used, and beamforming

is made partially in the digital domain and partially at RF frequencies, where only the signal

phase (and not the amplitude) can be tuned prior to antenna trasmission.

This paper is concerned with the evaluation of the achievable spectral efficiency (ASE)

of SCM schemes operating over MIMO links at mmWave frequencies. We consider three

possible transceiver architectures: (a) SCM with linear minimum mean square error (LMMSE)

equalization in the time domain for intersymbol interference removal and symbol-by-symbol

detection; (b) SCM with cyclic prefix and FFT-based processing and LMMSE equalization in

the frequency domain at the receiver; and (c) plain MIMO-OFDM architecture for benchmarking

purposes. The ASE is computed by using the simulation-based technique for computing

information-rates reported in [13]; this technique, that has been already used in several other

cases [14], [15], permits taking into account the finite cardinality of the modulation, and thus

provides more accurate results than the ones that are usually reported in the literature and that

refer to Gaussian signaling. The considered transceiver structures use hybrid pre-coding and

post-coding beamforming structures, with a number of RF chains equal to the used multiplexing

order - this is indeed the minimum possible number of RF chains and so the resulting structures

are the one with the lowest complexity. We also provide an analysis of the system bit-error-
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Figure 1. Transceiver block-scheme for SCM with TDE.

rate (BER), under the assumption that low-density parity-check (LDPC) codes are used. Our

results will show that, among the three considered transceiver schemes, SCM with time-domain

equalization (SCM-TDM) achieves by far the best performance, while MIMO-OFDM is only

slightly better than SCM with frequency-domain equalization (SCM-FDE). Moreover, our results

provide a further confirmation of the fact that for distances up to 100 meters, and with a transmit

power around 0 dBW, mmWave links exhibit a very good performance and may be very useful

in wireless cellular applications; for larger distances instead, either larger values of the transmit

power or a larger number of antennas must be employed to overcome the distance-dependent

increased attenuation.

The rest of this paper is organized as follows. Next Section contains the system model, with

details on the considered mmWave channel model and on the front-end transmitter and receiver.

In Section III the three considered transceiver structures, namely SCM-TDE, SCM-FDE and

MIMO-OFDM, are accurately described, while the design of the hybrid pre-coding and post-

coding beamforming structures is reported in Section IV. Extensive numerical results on the

system ASE and on the coded BER are illustrated and discussed in Section V, while, finally,

Section VI contains concluding remarks.

Notation: The symbol (·)H denotes conjugate transpose, (·)T denotes transpose, and IN denotes

the (N×N)-dimensional identity matrix. The symbol ~ denotes circular convolution, E[·] denotes

expectation, while, finally, ‖ · ‖F denotes the Frobenius norm.

II. SYSTEM MODEL

We consider a transmitter-receiver pair that may be representative of either the uplink or the

downlink of a cellular system. We denote by NT and NR the number of transmit and receive

antennas, respectively, and consider the general case of a frequency-selective channel.
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A. The channel model

The propagation channel can be modeled as an (NR × NT )-dimensional matrix-valued

continuous time function, that we denote by H(t). According to the popular clustered model

for MIMO mmWave channels, we assume that the propagation environment is made of Ncl

scattering clusters, each of which contributes with Nray,i propagation paths i = 1, . . . , Ncl, plus

a possibly present LOS component. We denote by φri,l and φti,l the azimuth angles of arrival and

departure of the lth ray in the ith scattering cluster, respectively; similarly, θri,l and θti,l are the

elevation angles of arrival and departure of the lth ray in the ith scattering cluster, respectively.

Denoting by hTX(t) the baseband equivalent transmit shaping filters,1 by hRX(t) the baseband

equivalent of the impulse response of the NR receive filters, and by h(t) = hTX(t)∗hRX(t) their

convolution, and assuming a sampling interval equal to Ts, the impulse-response of the linear

time-invariant system consisting of the NT transmit shaping filters, the propagation channel, and

the NR receive filters is a matrix-valued (of dimension NR × NT ) discrete-time sequence that

can be written as follows:

H̃(n) = γ

Ncl∑

i=1

Nray,i∑

l=1

αi,l

√
L(ri,l)ar(φ

r
i,l, θ

r
i,l)a

H
t (φti,l, θ

t
i,l)h(nTs − τi,l) + H̃LOS(n) . (1)

In the above equation, αi,l and L(ri,l) are the complex path gain and the attenuation associated

to the (i, l)-th propagation path (whose length is denoted by ri,l), respectively; τi,l = ri,l/c, with

c the speed of light, is the propagation delay associated with the (i, l)-th path. The complex gain

αi,l ∼ CN (0, σ2
α,i), with σ2

α,i = 1 [16]. The factors ar(φ
r
i,l, θ

r
i,l) and at(φ

t
i,l, θ

t
i,l) represent the

normalized receive and transmit array response vectors evaluated at the corresponding angles

of arrival and departure; additionally, γ =

√
NRNT∑Ncl

i=1Nray,i

is a normalization factor ensuring

that the received signal power scales linearly with the product NRNT . Regarding the array

response vectors ar(φ
r
i,l, θ

r
i,l) and at(φ

t
i,l, θ

t
i,l), a planar antenna array configuration is used for

the transmitter and receiver, with Yr, Zr and Yt, Zt antennas respectively on the horizontal

and vertical axes for the receiver and for the transmitter. Letting k = 2π/λ, λ the considered

1We have NT of such filters.
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wavelength, and denoting by d̃ the inter-element spacing we have

ax(φ
x
i,l, θ

x
i,l) =

1√
YxZx

[1, . . . , e−jkd̃(m sinφxi,l sin θ
x
i,l+n cos θxi,l),

. . . , e−jkd̃((Yx−1) sinφ
x
i,l sin θ

x
i,l+(Zx−1) cos θxi,l)] ,

where x may be either r or t. Let us now comment on the LOS component H̃LOS(n) in (1).

Denoting by φrLOS, φtLOS, θrLOS, and θtLOS the departure angles corresponding to the LOS link,

we assume that

HLOS(n) = ILOS(d)
√
NRNT e

jη
√
L(d)ar(φ

r
LOS, θ

r
LOS)aHt (φtLOS, θ

t
LOS)h(nTs − τLOS) . (2)

In the above equation, η ∼ U(0, 2π), while ILOS(d) is an indicator function/Bernoulli random

variable, equal to 1 if a LOS link exists between transmitter and receiver. We refer the reader to

[17] for a complete specification of all the channel parameters needed to describe the channel

model in (1). Assuming that the multipath delay spread spans P sampling intervals and that the

duration of the transmit and receive shaping filters spans Ph sampling intervals each, it is easily

seen that the matrix-valued channel sequence H̃(n) has P̃ = P + 2Ph − 1 non-zero elements;

for ease of notation, we assume, as usually happens, that the non-zero elements of H̃(n) are

those corresponding to n = 0, . . . , P̃ − 1.

B. Input-output relation

Denoting by x(n) the NT -dimensional vector to be transmitted at discrete epoch n, it is

easily shown that the received discrete-time signal at the output of the receive shaping filters is

represented by the following NR-dimensional vector

y(n) =
P̃−1∑

`=0

H̃(`)x(n− `) + w(n) , (3)

with w(n) denoting the NR-dimensional thermal noise vector at the output of the receive shaping

filters. It is seen from (3) that the input-output relationship introduces intersymbol interference

(ISI), thus implying that for SCM schemes properly equalization structures will be needed.

Regarding the additive thermal noise, it is uncorrelated across antennas, i.e., the noise samples

collected through different receive antennas are statistically independent: the vector w(n) is

thus a complex zero-mean Gaussian random variable with covariance matrix σ2
wINR

, with σ2
w =
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2N0

∫ +∞
−∞ |hRX(t)|2dt. Conversely, noise samples are in general correlated through time, i.e., we

have

E [wi(n)w∗i (n− l)] = 2N0rhRX
(lTs) , (4)

∀i = 1, . . . , NR, where wi(n) denotes the i-th entry of the vector w(n), and rhRX
(τ) =

∫ +∞
−∞ hRX(t)h∗RX(t − τ)dt denotes the correlation function of the receive shaping filter. It thus

follows that, if we arrange L consecutive noise vectors in an (NR × L)-dimensional matrix

W = [w(n) w(n− 1) . . . ,w(n− L+ 1)] ,

we have that the entries of the matrix W are vertically uncorrelated (actually, independent) and

horizontally correlated.

III. TRANSCEIVER PROCESSING

Denote now by s a column vector containing the L data-symbols – drawn either from a QAM

constellation or from a Gaussian distribution, and with average energy PT – to be transmitted:

s = [s0, s1, . . . , sL−1]
T . (5)

We assume that L = kM , where k is an integer and M , the multiplexing order, is the number

of information symbols that are simultaneously transmitted by the NT transmit antennas in each

symbol interval. In the following, we present three possible transceiver models.

A. SCM with TDE

We refer to the discrete-time block-scheme reported in Fig. 1. The QAM symbols in vector s

are fed to a serial-to-parallel (S/P) conversion block that splits them in k distinct M -dimensional

vectors s̆(1), . . . , s̆(k). These vectors are pre-coded using the (NT ×M)-dimensional precoding

matrix Q; we thus obtain the NT -dimensional vectors

x(n) = Qs̆(n) , n = 1, . . . , k .

The vectors x(n) are fed to a bank of NT identical shaping filters, converted to RF and

transmitted.

At the receiver, after baseband-conversion, the NR received signals are passed through a bank

of filters matched to those used for transmission and sampled at symbol-rate. We thus obtain the
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NR-dimensional vectors y(n), which are passed through a postcoding matrix, that we denote by

D, of dimensions (NR×M). Recalling that H̃(n) is the matrix-valued FIR filter representing the

composite channel impulse response (i.e., the convolution of the transmit filter, actual matrix-

valued channel, and receive filter) it is easy to show, by virtue of the input-output relationship

(3) that the generic M -dimensional vector at the output of the postcoding matrix, say r̃(n), is

written as

r̃(n) = DHy(n) =
P̃−1∑

`=0

DHH̃(`)Qs̆(n− `) + DHw(n) . (6)

So far, the choice of the pre-coding and post-coding beamforming matrices Q and D has been

left unspecified. Since, as already said, FD structures are not practically realizable for mobile

wireless applications due to hardware complexity and energy consumption issues, in this paper

we will consider reduced-complexity hybrid analog-digital beamforming structures in order to

approximate the desired FD beamforming strategies. In the following, we describe the considered

FD beamforming structures, leaving to the next section the exposition of the algorithms for the

design of the hybrid structures. Letting η = arg max`=0,...,P̃−1

{∥∥∥H̃(`)
∥∥∥
F

}
, we assume here that

Q contains on its columns the left eigenvectors of the matrix H̃(η) corresponding to the M largest

eigenvalues, and that the matrix D contains on its columns the corresponding right eigenvectors.

Note that, due to the presence of ISI, the proposed pre-coding and post-coding structures are

not optimal. Nevertheless, we make here this choice for the sake of simplicity, and resort to the

use of an equalizer to cancel the effects of ISI. We will adopt a linear minimum mean square

error (LMMSE) equalizer making a block processing of P̃ consecutive received data vectors:

to obtain a soft estimate of the data vector s̆(n), the P̃ observables r̃(n + P̃ − 1) . . . r̃(n) are

stacked into a single P̃M -dimensional vector, that we denote by r̃P̃ (n):

r̃P̃ (n) = [̃r(n+ P̃ − 1) . . . r̃(n)]T .

Through ordinary algebra, it is easy to recognize that this vector can be expressed in the form

r̃P̃ (n) = As̃P̃ (n) + Bw̃P̃ (n) , (7)

where s̃P̃ (n) is an M(2P̃ − 1)-dimensional vector containing the data symbols contributing to

r̃P̃ (n), i.e.:

s̆P̃ (n) = [s̆(n+ P̃ − 1) . . . s̆(n) . . . s̆(n− P̃ + 1)]T , (8)
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w̃P̃ (n) is the following NRP̃ -dimensional noise vector

w̃P̃ (n) = [w̃(n+ P̃ − 1) . . . w̃(n)]T , (9)

and A and B are suitable matrices, of dimension [MP̃ × M(2P̃ − 1)] and [MP̃ × NRP̃ ],

respectively. The LMMSE estimator of the desired data vector ̂̆s(n) is obtained through the

following processing:
̂̆s(n) = EH r̃P̃ (n) , (10)

where E is the (P̃M ×M)-dimensional matrix LMMSE estimator. Its expression is given by

[18]:

E = (E [̃rP̃ (n)r̃P̃ (n)H ])−1E [̃rP̃ (n)s̆(n)H ] , (11)

where
E [̃rP̃ (n)r̃P̃ (n)H ] = PT

M
AAH + BCw̃

P̃
BH ,

E [̃rP̃ (n)s̃(n)H ] = PT

M
AGP̃ .

(12)

In (12), Cw̃
P̃

= E[w̃P̃ (n)w̃H
P̃

(n)] is the covariance matrix of the noise vector w̃P̃ (n), while GP̃

is an [M ×M(2P̃ − 1)]-dimensional matrix defined as follows::

GP̃ =
[
0[M×M(P̃−1)] IM 0[M×M(P̃−1)]

]T
. (13)

Considerations on complexity. Regarding processing complexity, we note that the computation

of the equalization matrix E requires the inversion of the covariance matrix of the vector r̃P̃ (n),

with a computational burden proportional to (P̃M)3; then, implementing (10) requires a matrix

vector product, with a computational burden proportional to (P̃M2); this latter task must be

made k times in order to provide the soft vector estimates for all values of n = 1, . . . , k.

B. SCM with FDE

We now consider the case in which SCM is used in conjunction with a CP and FDE; we

refer to the discrete-time block-scheme reported in Fig. 2. A cyclic prefix of length CM is

added at the beginning of the block s of L = kM QAM symbols, so as to have the vector s̃

of length (k +C)M . As in the previous case, the vector s̃ is passed through a serial-to-parallel

conversion with M outputs, a precoding block (again expressed through the matrix Q), a bank

of NT transmit filters; then conversion to RF and transmission take place. At the receiver, after

baseband-conversion, the NR received signals are passed through a bank of filters matched to
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Figure 2. Transceiver block-scheme for SCM with cyclic prefix, FFT-based processing and FDE.

the ones used for transmission and sampled at symbol-rate; then, the cyclic prefix is removed.

We thus obtain the NR-dimensional vectors ỹ(n), with n = 1, . . . , k, containing a noisy version

of the circular convolution between the sequence x̃(n) and H̃(n) , i.e.:

ỹ(n) = H̃(n) ~ x̃(n) + w(n) , n = 1, . . . , k (14)

The vectors ỹ(n) are then processed by the post-coding matrix D. The choice of the matrices Q

and D is the same as that of the previous subsection (SCM with TDE), so we do not comment on

it here. After post-coding beamforming, we obtain the M -dimensional vectors r(n) = DH ỹ(n),

with n = 1, . . . , k. These vectors go through an entry-wise FFT transformation on k points; the

n-th FFT coefficient, with n = 1, . . . , k, can be shown to be expressed as

R(n) = H̃(n)X(n) + W(n) , (15)

where H̃(n) is an (M × NT )-dimensional matrix representing the n-th FFT coefficient of the

matrix-valued sequence DHH̃(n), and X(n) and W(n) are the n-th FFT coefficient of the

sequences x̃(n) and DHw(n), respectively. From (15), it is seen that, due to the presence

of multiple antennas, and, thus, of the matrix-valued channel, the useful symbols reciprocally

interfere and an equalizer is needed. (15) can be also shown to be expressed as:

R(n) = H̃(n)QS̃(n) + W(n) , (16)



11

with S̃(n) an M -dimensional vector representing the n-th FFT coefficient of the vector-valued

sequence s̃(n).2 We denote by E(n) the (M ×M)-dimensional equalization matrix, and a zero-

forcing approach is adopted, thus implying that EH(n) = (H̃(n)Q)−1. The output of the equalizer

is written as

Z(n) = EH(n)R(n) = S̃(n) + (H̃(n)Q)−1W(n) .

Then, the vectors Z(n) go through an entry-wise IFFT transformation on k points. It can be

shown that the n-th IFFT coefficient of the vector Z(n) can be expressed as:

z(n) = s̃(n) +
[
IM ⊗ [DIFFT]:,n

]
Nstacked , (17)

where [DIFFT]:,n is the n-th column of the isometric IFFT matrix DIFFT, whose (m, l)-th element

is given by

DIFFT(m, l) =
1√
k
ej2π

(m−1)(l−1)
k ,

and Nstacked is the kM -dimensional vector containing the stacked vectors

(H̃(1)Q)−1W(1), . . . , (H̃(k)Q)−1W(k).

Considerations on complexity. Looking at the scheme in Fig. 2, the computational burden of

the considered transceiver architecture is the following. 2M FFTs of length k are required,

with a complexity proportional to 2Mk log2 k; in order to compute the zero-forcing matrix, the

FFT of the matrix-valued sequence H̃(n) must be computed, with a complexity proportional to

MNT (k log2 k); computation of the matrix (H̃(n)Q) and of its inverse, for n = 1, . . . , k, finally

requires a computational burden proportional to k(NTM
2 +M3).

It can be easily seen that the complexity of the FDE scheme is lower than that of the TDE

scheme.

C. Transceiver model - OFDM

Finally, we consider, for benchmarking purposes, the MIMO-OFDM discrete-time block-

scheme reported in Fig. 3. Differently from previous schemes, we have explicitly separated

the baseband digital beamforming from its analog counterparts; such a separation is needed

in order to keep down system complexity, and to explicitly point out that while baseband FD

2We used here the relation X(n) = QS̃(n).



12

Figure 3. Transceiver block-scheme for OFDM with FDE.

beamforming is made on a "per-subcarrier" basis, the analog beamformer jointly process the

entire signal bandwidth, i.e., all the subcarriers are treated uniformly. In Fig. 3, NRF
T and NRF

R

RF chains are considered at the transmitter and at the receiver, and we have M ≤ NRF
T ≤ NT

and M ≤ NRF
R ≤ NR. Notice also that the choice NRF

T = NT and NRF
R = NR results in a

non-hybrid, FD beamforming.

Each OFDM symbol is assumed to be made of L = kM QAM data symbols; after S/P

conversion, the data symbols are split in k distinct M -dimensional vectors S(1), . . . ,S(k).

These vectors are pre-coded through the (NRF
T × M)-dimensional digital precoding matrices

QBB(1), . . . ,QBB(n), thus yielding the vectors X(n) = QBB(n)S(n) – note that we are here

assuming that the digital pre-coding matrix is not constant over all the sub-carriers [19]. These

vectors then go through an entry-wise IFFT transformation on k points; we denote by x(n)

the M -dimensional transformed vectors, with n = 1, . . . , k. A CP of length C is added at the

beginning of the block so that we have the following sequence of NT -dimensional vectors:

xCP(n) =




x(n+ k − C) , n = 1, . . . , C ,

x(n− C) , n = C + 1, . . . , C + k .
(18)

The vectors xCP(n) are precoded through the (NT ×NRF
T )-dimensional analog precoding matrix

QRF, thus yielding the vectors v(n) = QRFx
CP(n). The vectors v(n) are passed through a

bank of NT transmit filters, converted to RF and transmitted. At the receiver, after baseband-
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conversion, the NR received signals are passed through a bank of filters matched to the ones used

for transmission and sampled at symbol-rate; then, they are post-coded through the (NR×NRF
R )-

dimensional analog precoding matrix DRF and the cyclic prefix is removed. We thus obtain the

following NRF
R -dimensional vectors y(n), with n = 1, . . . , k:

y(n) = DH
RF

[
H̃(n) ~QRFx(n)

]
+ DH

RFw(n) , (19)

with H̃(n) denoting again the matrix-valued FIR filter representing the composite channel

impulse response (i.e., the convolution of the transmit filter, actual matrix-valued channel and

receive filter). These vectors go through an entry-wise FFT transformation on k points; the n-th

FFT coefficient, with n = 1, . . . , k, can be shown to be expressed as

Y(n) = DH
RFH(n)QRFQBB(n)S(n) + DH

RFW(n) , (20)

where H(n) is an (NR × NT )-dimensional matrix representing the n-th FFT coefficient of the

matrix-valued sequence H̃(n), and W(n) is the n-th FFT coefficient of the sequence w(n),

respectively. The vectors Y(n) are then processed by the digital post-coding matrix DBB(n);

we thus obtain the M -dimensional vectors

R(n) =DH
BB(n)DH

RFH(n)QRFQBB(n)S(n) + DH
BB(n)DH

RFW(n) , n = 1, . . . , k . (21)

From (20), it is seen that, due to the presence of multiple antennas, and, thus, of the matrix-valued

channel, the useful symbols reciprocally interfere and thus an equalizer is needed. Denoting by

E(n) the (M ×M)-dimensional equalization matrix, and using a zero-forcing approach, it can

be seen that E
H

(n) = (DH
BB(n)DRFH(n)QRFQBB(n))+, where (·)+ denotes the Moore-Penrose

pseudoinverse. The output of the equalizer can be shown to be expressed as:

Z(n) = E(n)HR(n) = S(n) + (DBB(n)HDH
RFH(n)QRFQBB(n))+DBB(n)HW(n) . (22)

After P/S conversion we finally obtain the soft estimates of the transmitted symbols.

IV. HYBRID ARCHITECTURE DESIGN

We now detail the low-complexity hybrid beamforming structures. We first deal with the case

of SCM, and then will examine the MIMO-OFDM case.
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A. Hybrid beamforming for SCM schemes

In order to reduce hardware complexity with respect to the FD beamforming, in hybrid

structures the (NT×M)−dimensional pre-coding matrix is written as Q = QRFQBB, where QRF

is the (NT ×NRF
T )-dimensional RF precoding matrix and QBB is the (NRF

T ×M)−dimensional

baseband precoding matrix. Since the RF precoder is implemented using phase shifters, the

entries of the matrix QRF have all the same magnitude (equal to 1√
NT

), and just differ for the

phase. Now, denoting by Qopt the (NT × M)−dimensional FD beamforming that we would

use in the situation of no hardware complexity constraints, the matrices QRF and QBB can be

found by using the Frobenius norm as a distance metric and solving the following optimization

problem:
(Q∗RF,Q

∗
BB) = arg min

QRF,QBB

||Qopt −QRFQBB||F

subject to |QRF(i, j)| = 1√
NT

, ∀i, j
||QRFQBB||2F ≤M .

(23)

Similarly, with regard to the design of the post-coding beamforming matrix, the optimal

FD beamformer Dopt that we would use in case of no hardware complexity constraints is

approximated by the product DRFDBB, where DRF is the (NR ×NRF
R )−dimensional RF post-

coding matrix and DBB is the (NRF
R ×M)−dimensional baseband post-coding matrix. The entries

of the RF post-coder DRF are constrained to have norm equal to 1√
NR

. The matrices DRF and

DBB can be then found solving the following optimization problem

(D∗RF,D
∗
BB) = arg min

DRF,DBB

||Dopt −DRFDBB||F

subject to |DRF(i, j)| = 1√
NR

, ∀i, j .

(24)

It is easy to show that optimization problems (23) and (24) are not convex optimization problem;

inspired by [20], we thus resort to the Block Coordinate Descent for Subspace Decomposition

(BCD-SD) algorithm, that basically is based on a sequential iterative update of the analog part

and of the baseband part of the beamformers. The algorithm’s recipe is reported in Algorithm

1.
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Algorithm 1 Block Coordinate Descent for Subspace Decomposition Algorithm for Hybrid

Beamforming
1: Initialize Imax and set i = 0

2: Set arbitrary QRF,0 and DRF,0

3: repeat

4: Update QBB,i+1 =
(
QH

RF,iQRF,i

)−1
QH

RF,iQ
opt

and DBB,i+1 =
(
DH

RF,iDRF,i

)−1
DH

RF,iD
opt

5: Set φi = QoptQH
BB,i+1

(
QBB,i+1Q

H
BB,i+1

)−1

and ψi = DoptDH
BB,i+1

(
DBB,i+1D

H
BB,i+1

)−1

6: Update QRF,i = 1√
NT
ejφi

and DRF,i = 1√
NR
ejψi

7: Set i = i+ 1

8: until convergence or i = Imax

B. Hybrid beamforming for the MIMO-OFDM transceiver

We now consider the issue of beamformer design for the MIMO-OFDM transceiver. From (21)

it is seen that the optimal pre-coders and post-coders for the detection of the data vector S(n)

are given by the left and right singular vectors associated to the M largest eigenvalues of the

matrix H(n), respectively. We will denote these optimal beamformers as Qopt(n) and Dopt(n),

respectively; differently from what happens for the SCM transceivers, these beamformers are

now carrier dependent. Our aim is to approximate the optimal pre-coder Qopt(n) with the product

QRFQBB(n), and the optimal post-coder Dopt(n) with the product DRFDBB(n). Now, letting

[19]:
Qopt = [Qopt(1), . . . ,Qopt(k)] ∈ CNT×kM ,

Dopt = [Dopt(1), . . . ,Dopt(k)] ∈ CNR×kM ,

QBB = [QBB(1), . . . ,QBB(k)] ∈ CNRF
T ×kM ,

DBB = [DBB(1), . . . ,DBB(k)] ∈ CNRF
R ×kM ,
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the hybrid beamformer design amount to solving the following two constrained optimization

problems
(Q∗RF,Q

∗
BB) = arg min

QRF,QBB

||Qopt −QRFQBB||F

subject to |QRF(i, j)| = 1√
NT

,

‖QRFQBB,k‖2F ≤ kM ,

(25)

and
(D∗RF,D

∗
BB) = arg min

DRF,DBB

||Dopt −DRFDBB||F

subject to |DRF(i, j) = 1√
NR

.
(26)

The above optimization problems have the same structure as problems in (23) and (24), and

can thus be solved through a straightforward application of the BCD-SD algorithm. We do not

explicitly report here the full details of the algorithm for the sake of brevity.

V. COMPUTATION OF THE ACHIEVABLE SPECTRAL EFFICIENCY

As a figure of merit to compare the different transceiver architectures we will use the ASE, that

is the maximum achievable spectral efficiency with the constraint of arbitrarily small BER and of

pre-fixed modulation type. The ASE takes the particular constellation and signaling parameters

into consideration, so it does not qualify as a normalized capacity measure; (it is derived from

the constrained capacity). We focus here on ergodic rates so the ASE is computed given the

channel realization and averaged over it (remember that we are assuming perfect channel state

information at the receiver). The spectral efficiency ρ of any practical coded modulation system

operating at a low packet error rate is upper bounded by the ASE, i.e., ρ ≤ ASE, where

ASE =
1

TsW
lim
L→∞

1

L
EH̃

[
I(s; ŝ|H̃)

]
bit/s/Hz (27)

I(s; ŝ|H̃) being the mutual information (given the channel realization) between the transmitted

data symbols and their soft estimates, Ts the symbol interval, and W the signal bandwidth (as

specified in Section VI). Although not explicitly reported, for notational simplicity, the ASE in

(27) depends on the Signal-to-Interference plus Noise Ratio (SINR).

The computation of the mutual information requires the knowledge of the channel conditional

probability density function (pdf) p(ŝ|s, H̃). As already said, it can be numerically computed
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by adopting the simulation-based technique described in [13] once the channel at hand is finite-

memory and the optimal detector for it is available. In addition, only the optimal detector for

the actual channel is able to achieve the ASE in (27).

In both transceiver models described in Section III the soft symbol estimates can be expressed

in the form

ŝ(n) = Cs(n) +
∑

`6=0

C`s(n− `) + z(n) (28)

i.e., as a linear transformation (through matrix C, which eventually is zero in the FDE case

with zero-forcing equalization) of the desired QAM data symbols, plus a linear combination of

the interfering data symbols and the colored noise z(n) having a proper covariance matrix. The

optimal receiver has a computational complexity which is out of reach and for this reason we

consider much simpler linear suboptimal receivers. Hence, we are interested in the achievable

performance when using suboptimal low-complexity detectors. We thus resort to the framework

described in [13, Section VI]. We compute proper lower bounds on the mutual information (and

thus on the ASE) obtained by substituting p(ŝ|s, H̃) in the mutual information definition with an

arbitrary auxiliary channel law q(ŝ|s, H̃) with the same input and output alphabets as the original

channel (mismatched detection [13])—the more accurately the auxiliary channel approximates

the actual one, the closer the bound is. If the auxiliary channel law can be represented/described

as a finite-state channel, the pdfs q(ŝ|s, H̃) and qp(ŝ|H̃) =
∑

s q(ŝ|s, H̃)P (s) can be computed,

this time, by using the optimal maximum a posteriori symbol detector for that auxiliary channel

[13]. This detector, that is clearly suboptimal for the actual channel, has at its input the sequence

ŝ generated by simulation according to the actual channel model (for details, see [13]). If we

change the adopted receiver (or, equivalently, if we change the auxiliary channel) we obtain

different lower bounds on the constrained capacity but, in any case, these bounds are achievable

by those receivers, according to mismatched detection theory [13]. We thus say, with a slight

abuse of terminology, that the computed lower bounds are the ASE values of the considered

channel when those receivers are employed. This technique thus allows us to take reduced-

complexity receivers into account. In fact, it is sufficient to consider an auxiliary channel which

is a simplified version of the actual channel in the sense that only a portion of the actual channel

memory and/or a limited number of impairments are present. In particular, we will use the

auxiliary channel law (28), where the sum of the interference and the thermal noise z(n) is
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assimilated to Gaussian noise with a proper covariance matrix.

The transceiver models are compared in terms of ASE without taking into account specific

coding schemes, being understood that, with a properly designed channel code, the information-

theoretic performance can be closely approached.

VI. NUMERICAL RESULTS

In our simulation setup, we consider a communication bandwidth of W = 500 MHz centered

over a mmWave carrier frequency. The MIMO propagation channel, described in Section II, has

been generated according to the statistical procedure detailed in [17]. The additive thermal noise

is assumed to have a power spectral density of -174 dBm/Hz, while the front-end receiver is

assumed to have a noise figure of 3 dB. We start by studying, in the following figures, the ASE

for varying values of the transmit power PT , of the distance d between the transmitter and the

receiver, of the number of transmit and receive antennas, of the multiplexing order M , and for

the case in which the Root Raised Cosine (RRC) pulse with roll off factor 0.22 is adopted. For

this waveform, we define the bandwidth as the frequency range such that out-of-band emissions

are 40 dB below the maximum in-band value of the Fourier transform of the pulse. For the

considered communication bandwidth of W = 500 MHz, we found that the symbol interval Ts

is 1.98 ns, for the case in which we consider its truncated version to the interval [−4Ts, 4Ts]. The

reported results are to be considered as an ideal benchmark for the ASE since we are neglecting

the interference.3 Hybrid pre-coding and post-coding, with M RF chains at the transmitter and

at the receiver, is considered, also in comparison to FD structures. Fig. 4 reports the ASE4 of

SCM-TDE, SCM-FDE and MIMO-OFDM using finite and infinite modulation cardinality versus

the transmit power PT (varying in the range [−50, 10] dBW), while instead in Fig. 5 the ASE for

the three considered access schemes is reported versus the distance d between the transmitter

and the receiver, assuming that the transmit power is PT = 0 dBW. While Fig. 4 contains

a comparison between the 16-QAM modulation scheme and the case of Gaussian-distributed

3We note however that being mmWave systems mainly noise-limited rather than interference limited, the impact of this

assumption on the obtained results is very limited.
4Of course, the achievable rates in bit/s can be immediately obtained by multiplying the ASE by the communication

bandwidth W = 500 MHz.
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data symbols, Fig. 5 focuses on the case of 4-QAM modulation and studies the impact of the

multiplexing order M . Both these figures consider a link with NR ×NT = 10× 50.

We can see that the SCM-TDE performance is much better than the MIMO-OFDM and

the SCM-FDE ones, with MIMO-OFDM slightly outperforming the SCM-FDE scheme. Figs.

6 focuses on the SCM-TDE scheme and reports the ASE versus the transmitted power PT

(assuming a link length d > 30 m), studying the impact of the multiplexing order and of the size

of the antenna arrays, while Fig. 7 reports, again for the SCM-TDE scheme, the ASE versus the

link length (assuming PT = 0 dBW), studying the impact of the modulation cardinality and of

the size of the antenna arrays. Inspecting the figures, the following remarks are in order:

- Results, in general, as it is obvious, improve for increasing transmit power, for decreasing

distance d between transmitter and receiver and for increasing values of the number of

transmit and receive antennas.

- In particular, a good performance can be attained for distances up to 100 m, whereas for

d > 100 m we have a steep degradation of the ASE. In this region, all the advantages given

by increasing the modulation cardinality or the number of antennas are essentially lost or

reduced at very small values. Of course, this performance degradation may be compensated

by increasing the transmit power.

- Regarding the multiplexing index M , it is interesting to note from Fig. 5 that for short

distances the system benefits from a large multiplexing order, while, for large distances

(which essentially correspond to low signal-to-noise ratio), the ASE corresponding to M = 1

is larger than that corresponding to the choice M > 1. This behavior is in agreement with

the well-known result that for low signal-to-noise ratio there is no advantage in increasing

the multiplexing order.

- For a reference distance of 30 m (which will be a typical one in small-cell 5G mmWave

deployments for densely crowded areas), a transmit power around 0 dBW is enough to grant

good performance and to benefit from the advantages of increased modulation cardinality,

size of the antenna array, and multiplexing order.

We now proceed to showing BER results. In Figs 8, 9 and 10 we report the BER results

respectively of 16QAM SCM-TDE, SCM-FDE and MIMO-OFDM when employing low-density-

parity-check (LDPC) codes of rate equal to 1/2 and 9/10, in order to show how practical (i.e.,
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Table I

CODE RATES AND DEGREE DISTRIBUTIONS OF THE EMPLOYED LDPC CODES.

rc variable node distribution check node distribution

1/2 a2 = 0.499985 a3 = 0.3 a8 = 0.200015 a7 = 0.999815 a8 = 0.000185185

9/10 a2 = 0.0999846 a3 = 0.8 a4 = 0.1111111 a30 = 0.999691 a31 = 0.000308642

finite-length and not ad hoc designed) codes perform in one realization of the considered scenario,

which entails M = 2, d = 30 m, NR×NT = 10× 50. The parameters of the codes are reported

in Table I where rc denotes the rate of the code and the degree distributions of variable and

check nodes are provided by giving the fraction ai (
∑

i ai = 1) of degree i nodes. In any

case, the codeword length is N = 64800 bits, and the decoder iterations are limited to 40. These

codes were designed for low intersymbol interference (ISI) channels, and, despite not specifically

designed for these systems, they closely approach the provided ASE lower bounds. Since with

M = 2 the two multiplexed streams perform differently, the code rates on each stream should

be tailored accordingly.

VII. CONCLUSION

This paper has provided a comparison between single-carrier modulation schemes and

conventional OFDM for a MIMO link operating at mmWave frequencies. In particular, two

SCM techniques have been considered, SCM-TDE and SCM-FDE, and these transceivers have

been compared with the MIMO-OFDM scheme. Our analysis has taken into account both the

peculiarity of the channel matrix at mmWave frequencies (a clustered model has been adopted),

and the adoption of hybrid analog/digital beamforming structures. Results have shown that the

SCM-TDE structure achieves superior performance with respect to the other two competing

schemes, with the MIMO-OFDM slightly outperforming the SCM-FDE scheme. The present

study can be generalized and strengthened in many directions. First of all, the considered

analysis might be applied in a multiuser environment; then, since, as already discussed, the

reduced wavelength of mmWave frequencies permits installing arrays with many antennas in

small volumes, an analysis, possibly through asymptotic analytic considerations, of the very

large number of antennas regime could also be made. Last, but not least, energy-efficiency
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considerations should also be made: both the ASE and the transceiver power consumption

increase for increasing transmit power and increasing size of the antenna arrays; if we focus on

the ratio between the ASE and the transceiver power consumption, namely on the system energy

efficiency, optimal trade-off values for the transmit power and size of the antenna arrays should

be found. These topics are certainly worth future investigation.
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Figure 5. ASE versus distance; impact of multiplexing order, comparison of hybrid (CM-HY) and digital (CM-FD) beamforming

with TDE, FDE and OFDM. Parameters: 4-QAM modulation; PT = 0 dBW; NR ×NT = 10× 50.
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Figure 6. ASE versus transmit power; impact of array size, multiplexing order and comparison of hybrid (CM-HY) and digital

(CM-FD) beamforming. Parameters: 16-QAM modulation; d = 30 m; varying NR ×NT .

Figure 7. ASE versus distance; impact of modulation cardinality, array size and comparison of hybrid (CM-HY) and digital

(CM-FD) beamforming. Parameters: PT = 0 dBW; M = 2; varying NR ×NT .



25

Figure 8. BER of TDE for 16QAM, d=30 m, M=2, NR ×NT = 10× 50.

Figure 9. BER of FDE for 16QAM, d=30 m, M=2, NR ×NT = 10× 50.
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Figure 10. BER of OFDM for 16QAM, d=30 m, M=2, NR ×NT = 10× 50.
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Single-Carrier Modulation versus OFDM for
Millimeter-Wave Wireless MIMO

Stefano Buzzi, Senior Member, IEEE, Carmen D’Andrea, Tommaso Foggi, Alessandro Ugolini, and Giulio
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Abstract—Future wireless networks will extensively rely upon
carrier frequencies larger than 10 GHz. Indeed, recent research
has shown that, despite the large path-loss, millimeter wave
(mmWave) frequencies can be successfully exploited to transmit
very large data-rates over short distances to slowly moving users.
This paper presents results on the achievable spectral efficiency
on a wireless MIMO link operating at mmWave in a typical
5G scenario. Two different single-carrier modem schemes are
considered, i.e., a traditional modulation scheme with linear
equalization at the receiver, and a single-carrier modulation
with cyclic prefix, frequency-domain equalization and FFT-based
processing at the receiver; these two schemes are compared
with a conventional MIMO-OFDM transceiver structure. Our
analysis takes into account the peculiar characteristics of MIMO
channels at mmWave frequencies, the use of hybrid (analog-
digital) pre-coding and post-coding beamformers, and the finite
cardinality of the modulation structure. Our results show that the
best performance is achieved by single-carrier modulation with
time-domain equalization, while MIMO-OFDM performs slightly
better than single carrier modulation with frequency-domain
equalization. Results also confirm that the spectral efficiency
increases with the dimension of the antenna array, as well as that
performance gets severely degraded when the link length exceeds
90-100 meters and the transmit power falls below 0 dBW.

Index Terms—mmWave, 5G, MIMO, single-carrier modula-
tion, spectral efficiency, MIMO-OFDM, time-domain equaliza-
tion, frequency-domain equalization, hybrid decoding.

I. INTRODUCTION

The use of carrier frequencies larger than 10 GHz will be
one of the main new features of fifth-generation (5G) wireless
networks [1], and, due to the availability of large and currently
unused bandwidths, will be instrumental in delivering gigabit
data-rates per users. Until few years ago, the use of mmWave
frequencies for cellular communications had been neglected
due to the higher atmospheric absorption that they suffer
compared to other frequency bands and to the larger values
of the free-space path-loss. However, recent measurements
suggest that mmWave attenuation is only slightly worse than in
other bands, as far as propagation in dense urban environments
and over short distances (up to about 100 meters) is concerned
[2]. Additionally, since antennas at these wavelengths are very
small, arrays with several elements can be packed in small
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volumes, in principle also on mobile devices, thus removing
the traditional constraint that only few antennas can be placed
on a smartphone and benefiting of an array gain at both edges
of the communication link with respect to traditional cellular
links. A large body of work has been recently carried out on
the use of mmWave frequencies for cellular communications
[2]–[6]. Nowadays, several prototypes and test-beds showing
the potentiality of mmWave frequencies for cellular appli-
cations are already available [7] and the EU-funded project
5G-CHAMPION is planning a large scale demo for the 2018
Winter Olympic Games in Seoul (Republic of Korea) at 28
GHz frequency.

One of the key questions about the use of mmWave frequen-
cies and in general about 5G cellular systems is about the type
of modulation that will be used at these frequencies. Indeed,
while it is not even sure that 5G systems will use orthogonal
frequency division multiplexing (OFDM) modulation at clas-
sical cellular frequencies [8], there are reasons that push for
5G networks operating a single-carrier modulation (SCM) at
mmWave frequencies [2]. First of all, the propagation attenua-
tion of mmWave frequencies makes them a viable technology
only for small-cell, dense networks, where few users will be
associated to any given base station, thus implying that the
efficient frequency-multiplexing features of OFDM may not
be really needed. Additionally, the large bandwidth would
cause low OFDM symbol duration, which, coupled with small
propagation delays, means that the users may be multiplexed
in the time domain as efficiently as in the frequency domain.
Finally, mmWave frequencies will be operated together with
massive antenna arrays to overcome propagation attenuation.
This makes digital beamforming unfeasible, since the energy
required for digital-to-analog and analog-to-digital conversion
would be huge. Thus, each user will have an own radio-
frequency beamforming, which requires users to be separated
in time rather than frequency. For efficient removal of the
intersymbol interference induced by the frequency-selective
nature of the channel, the use of SCM coupled with a cyclic
prefix has been proposed, so that FFT-based processing might
be performed at the receiver [9]. In [10], [11], the null cyclic
prefix single carrier (NCP-SC) scheme has been proposed for
mmWave frequencies. The concept is to transmit a single-
carrier signal, in which the usual cyclic prefix used by OFDM
is replaced by nulls appended at the end of each transmit
symbol. Given the cited prohibitive hardware complexity of
fully-digital (FD) beamforming structures, several mmWave-
specific MIMO architectures have been proposed, where signal
processing is accomplished in a mixture of analog and digital
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domains (see, for instance, [12] and references therein). In
particular, while FD beamforming requires one RF chain for
each antenna, in hybrid structures a reduced number of RF
chains is used, and beamforming is made partially in the digital
domain and partially at RF frequencies, where only the signal
phase (and not the amplitude) can be tuned prior to antenna
trasmission.

This paper is concerned with the evaluation of the achiev-
able spectral efficiency (ASE) of SCM schemes operating
over MIMO links at mmWave frequencies. We consider three
possible transceiver architectures: (a) SCM with linear min-
imum mean square error (LMMSE) equalization in the time
domain for intersymbol interference removal and symbol-by-
symbol detection; (b) SCM with cyclic prefix and FFT-based
processing and LMMSE equalization in the frequency domain
at the receiver; and (c) plain MIMO-OFDM architecture for
benchmarking purposes. The ASE is computed by using the
simulation-based technique for computing information-rates
reported in [13]; this technique, that has been already used
in several other cases [14], [15], permits taking into account
the finite cardinality of the modulation, and thus provides
more accurate results than the ones that are usually reported
in the literature and that refer to Gaussian signaling. The
considered transceiver structures use hybrid pre-coding and
post-coding beamforming structures, with a number of RF
chains equal to the used multiplexing order - this is indeed
the minimum possible number of RF chains and so the
resulting structures are the one with the lowest complexity. We
also provide an analysis of the system bit-error-rate (BER),
under the assumption that low-density parity-check (LDPC)
codes are used. Our results will show that, among the three
considered transceiver schemes, SCM with time-domain equal-
ization (SCM-TDM) achieves by far the best performance,
while MIMO-OFDM is only slightly better than SCM with
frequency-domain equalization (SCM-FDE). Moreover, our
results provide a further confirmation of the fact that for
distances up to 100 meters, and with a transmit power around
0 dBW, mmWave links exhibit a very good performance and
may be very useful in wireless cellular applications; for larger
distances instead, either larger values of the transmit power or
a larger number of antennas must be employed to overcome
the distance-dependent increased attenuation.

The rest of this paper is organized as follows. Next Section
contains the system model, with details on the considered
mmWave channel model and on the front-end transmitter
and receiver. In Section III the three considered transceiver
structures, namely SCM-TDE, SCM-FDE and MIMO-OFDM,
are accurately described, while the design of the hybrid pre-
coding and post-coding beamforming structures is reported in
Section IV. Extensive numerical results on the system ASE
and on the coded BER are illustrated and discussed in Section
V, while, finally, Section VI contains concluding remarks.

Notation: The symbol (·)H denotes conjugate transpose, (·)T
denotes transpose, and IN denotes the (N ×N)-dimensional
identity matrix. The symbol ~ denotes circular convolution,
E[·] denotes expectation, while, finally, ‖ · ‖F denotes the
Frobenius norm.

II. SYSTEM MODEL

We consider a transmitter-receiver pair that may be repre-
sentative of either the uplink or the downlink of a cellular
system. We denote by NT and NR the number of transmit
and receive antennas, respectively, and consider the general
case of a frequency-selective channel.

A. The channel model

The propagation channel can be modeled as an (NR×NT )-
dimensional matrix-valued continuous time function, that we
denote by H(t). According to the popular clustered model for
MIMO mmWave channels, we assume that the propagation
environment is made of Ncl scattering clusters, each of which
contributes with Nray,i propagation paths i = 1, . . . , Ncl, plus
a possibly present LOS component. We denote by φri,l and φti,l
the azimuth angles of arrival and departure of the lth ray in the
ith scattering cluster, respectively; similarly, θri,l and θti,l are
the elevation angles of arrival and departure of the lth ray in
the ith scattering cluster, respectively. Denoting by hTX(t) the
baseband equivalent transmit shaping filters,1 by hRX(t) the
baseband equivalent of the impulse response of the NR receive
filters, and by h(t) = hTX(t) ∗ hRX(t) their convolution,
and assuming a sampling interval equal to Ts, the impulse-
response of the linear time-invariant system consisting of the
NT transmit shaping filters, the propagation channel, and the
NR receive filters is a matrix-valued (of dimension NR×NT )
discrete-time sequence that can be written as follows:

H̃(n) = γ

Ncl∑

i=1

Nray,i∑

l=1

αi,l

√
L(ri,l)ar(φ

r
i,l, θ

r
i,l)·

aHt (φti,l, θ
t
i,l)h(nTs − τi,l) + H̃LOS(n) . (1)

In the above equation, αi,l and L(ri,l) are the complex path
gain and the attenuation associated to the (i, l)-th propagation
path (whose length is denoted by ri,l), respectively; τi,l =
ri,l/c, with c the speed of light, is the propagation delay
associated with the (i, l)-th path. The complex gain αi,l ∼
CN (0, σ2

α,i), with σ2
α,i = 1 [16]. The factors ar(φ

r
i,l, θ

r
i,l)

and at(φ
t
i,l, θ

t
i,l) represent the normalized receive and transmit

array response vectors evaluated at the corresponding angles

of arrival and departure; additionally, γ =

√
NRNT∑Ncl

i=1Nray,i

is a normalization factor ensuring that the received signal
power scales linearly with the product NRNT . Regarding the
array response vectors ar(φ

r
i,l, θ

r
i,l) and at(φ

t
i,l, θ

t
i,l), a planar

antenna array configuration is used for the transmitter and
receiver, with Yr, Zr and Yt, Zt antennas respectively on
the horizontal and vertical axes for the receiver and for the
transmitter. Letting k = 2π/λ, λ the considered wavelength,
and denoting by d̃ the inter-element spacing we have

ax(φxi,l, θ
x
i,l) = 1√

YxZx
[1, . . . , e−jkd̃(m sinφx

i,l sin θ
x
i,l+n cos θxi,l),

. . . , e−jkd̃((Yx−1) sinφx
i,l sin θ

x
i,l+(Zx−1) cos θxi,l)] ,

where x may be either r or t. Let us now comment on the LOS
component H̃LOS(n) in (1). Denoting by φrLOS, φtLOS, θrLOS,

1We have NT of such filters.
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Figure 1. Transceiver block-scheme for SCM with TDE.

and θtLOS the departure angles corresponding to the LOS link,
we assume that
HLOS(n) = ILOS(d)

√
NRNT e

jη
√
L(d)ar(φ

r
LOS, θ

r
LOS)·

aHt (φtLOS, θ
t
LOS)h(nTs − τLOS) .

(2)
In the above equation, η ∼ U(0, 2π), while ILOS(d) is an
indicator function/Bernoulli random variable, equal to 1 if a
LOS link exists between transmitter and receiver. We refer
the reader to [17] for a complete specification of all the
channel parameters needed to describe the channel model
in (1). Assuming that the multipath delay spread spans P
sampling intervals and that the duration of the transmit and
receive shaping filters spans Ph sampling intervals each, it is
easily seen that the matrix-valued channel sequence H̃(n) has
P̃ = P + 2Ph − 1 non-zero elements; for ease of notation,
we assume, as usually happens, that the non-zero elements of
H̃(n) are those corresponding to n = 0, . . . , P̃ − 1.

B. Input-output relation
Denoting by x(n) the NT -dimensional vector to be trans-

mitted at discrete epoch n, it is easily shown that the received
discrete-time signal at the output of the receive shaping filters
is represented by the following NR-dimensional vector

y(n) =

P̃−1∑

`=0

H̃(`)x(n− `) + w(n) , (3)

with w(n) denoting the NR-dimensional thermal noise vector
at the output of the receive shaping filters. It is seen from
(3) that the input-output relationship introduces intersymbol
interference (ISI), thus implying that for SCM schemes prop-
erly equalization structures will be needed. Regarding the
additive thermal noise, it is uncorrelated across antennas, i.e.,
the noise samples collected through different receive antennas
are statistically independent: the vector w(n) is thus a complex
zero-mean Gaussian random variable with covariance matrix
σ2
wINR

, with σ2
w = 2N0

∫ +∞
−∞ |hRX(t)|2dt. Conversely, noise

samples are in general correlated through time, i.e., we have

E [wi(n)w∗i (n− l)] = 2N0rhRX
(lTs) , (4)

∀i = 1, . . . , NR, where wi(n) denotes the i-th entry of
the vector w(n), and rhRX

(τ) =
∫ +∞
−∞ hRX(t)h∗RX(t − τ)dt

denotes the correlation function of the receive shaping filter.
It thus follows that, if we arrange L consecutive noise vectors
in an (NR × L)-dimensional matrix

W = [w(n) w(n− 1) . . . ,w(n− L+ 1)] ,

we have that the entries of the matrix W are vertically uncor-
related (actually, independent) and horizontally correlated.

III. TRANSCEIVER PROCESSING

Denote now by s a column vector containing the L data-
symbols – drawn either from a QAM constellation or from
a Gaussian distribution, and with average energy PT – to be
transmitted:

s = [s0, s1, . . . , sL−1]T . (5)

We assume that L = kM , where k is an integer and M , the
multiplexing order, is the number of information symbols that
are simultaneously transmitted by the NT transmit antennas
in each symbol interval. In the following, we present three
possible transceiver models.

A. SCM with TDE

We refer to the discrete-time block-scheme reported in
Fig. 1. The QAM symbols in vector s are fed to a serial-to-
parallel (S/P) conversion block that splits them in k distinct
M -dimensional vectors s̆(1), . . . , s̆(k). These vectors are pre-
coded using the (NT ×M)-dimensional precoding matrix Q;
we thus obtain the NT -dimensional vectors

x(n) = Qs̆(n) , n = 1, . . . , k .

The vectors x(n) are fed to a bank of NT identical shaping
filters, converted to RF and transmitted.

At the receiver, after baseband-conversion, the NR received
signals are passed through a bank of filters matched to those
used for transmission and sampled at symbol-rate. We thus
obtain the NR-dimensional vectors y(n), which are passed
through a postcoding matrix, that we denote by D, of dimen-
sions (NR × M). Recalling that H̃(n) is the matrix-valued
FIR filter representing the composite channel impulse response
(i.e., the convolution of the transmit filter, actual matrix-valued
channel, and receive filter) it is easy to show, by virtue of the
input-output relationship (3) that the generic M -dimensional
vector at the output of the postcoding matrix, say r̃(n), is
written as

r̃(n) = DHy(n) =
P̃−1∑

`=0

DHH̃(`)Qs̆(n−`)+DHw(n) . (6)

So far, the choice of the pre-coding and post-coding beam-
forming matrices Q and D has been left unspecified. Since,
as already said, FD structures are not practically realizable
for mobile wireless applications due to hardware complexity
and energy consumption issues, in this paper we will consider
reduced-complexity hybrid analog-digital beamforming struc-
tures in order to approximate the desired FD beamforming
strategies. In the following, we describe the considered FD
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beamforming structures, leaving to the next section the expo-
sition of the algorithms for the design of the hybrid structures.
Letting η = arg max`=0,...,P̃−1

{∥∥∥H̃(`)
∥∥∥
F

}
, we assume here

that Q contains on its columns the left eigenvectors of the
matrix H̃(η) corresponding to the M largest eigenvalues, and
that the matrix D contains on its columns the corresponding
right eigenvectors. Note that, due to the presence of ISI,
the proposed pre-coding and post-coding structures are not
optimal. Nevertheless, we make here this choice for the sake
of simplicity, and resort to the use of an equalizer to cancel the
effects of ISI. We will adopt a linear minimum mean square
error (LMMSE) equalizer making a block processing of P̃
consecutive received data vectors: to obtain a soft estimate of
the data vector s̆(n), the P̃ observables r̃(n+ P̃ − 1) . . . r̃(n)
are stacked into a single P̃M -dimensional vector, that we
denote by r̃P̃ (n):

r̃P̃ (n) = [r̃(n+ P̃ − 1) . . . r̃(n)]T .

Through ordinary algebra, it is easy to recognize that this
vector can be expressed in the form

r̃P̃ (n) = As̃P̃ (n) + Bw̃P̃ (n) , (7)

where s̃P̃ (n) is an M(2P̃ − 1)-dimensional vector containing
the data symbols contributing to r̃P̃ (n), i.e.:

s̆P̃ (n) = [s̆(n+ P̃ − 1) . . . s̆(n) . . . s̆(n− P̃ + 1)]T , (8)

w̃P̃ (n) is the following NRP̃ -dimensional noise vector

w̃P̃ (n) = [w̃(n+ P̃ − 1) . . . w̃(n)]T , (9)

and A and B are suitable matrices, of dimension [MP̃ ×
M(2P̃ − 1)] and [MP̃ × NRP̃ ], respectively. The LMMSE
estimator of the desired data vector ̂̆s(n) is obtained through
the following processing:

̂̆s(n) = EH r̃P̃ (n) , (10)

where E is the (P̃M × M)-dimensional matrix LMMSE
estimator. Its expression is given by [18]:

E = (E[r̃P̃ (n)r̃P̃ (n)H ])−1E[r̃P̃ (n)s̆(n)H ] , (11)

where

E[r̃P̃ (n)r̃P̃ (n)H ] = PT

M AAH + BCw̃P̃
BH ,

E[r̃P̃ (n)s̃(n)H ] = PT

M AGP̃ .
(12)

In (12), Cw̃P̃
= E[w̃P̃ (n)w̃H

P̃
(n)] is the covariance matrix of

the noise vector w̃P̃ (n), while GP̃ is an [M ×M(2P̃ − 1)]-
dimensional matrix defined as follows::

GP̃ =
[
0[M×M(P̃−1)] IM 0[M×M(P̃−1)]

]T
. (13)

Considerations on complexity. Regarding processing complex-
ity, we note that the computation of the equalization matrix E
requires the inversion of the covariance matrix of the vector
r̃P̃ (n), with a computational burden proportional to (P̃M)3;
then, implementing (10) requires a matrix vector product, with
a computational burden proportional to (P̃M2); this latter task
must be made k times in order to provide the soft vector
estimates for all values of n = 1, . . . , k.

B. SCM with FDE

We now consider the case in which SCM is used in
conjunction with a CP and FDE; we refer to the discrete-time
block-scheme reported in Fig. 2. A cyclic prefix of length CM
is added at the beginning of the block s of L = kM QAM
symbols, so as to have the vector s̃ of length (k + C)M . As
in the previous case, the vector s̃ is passed through a serial-to-
parallel conversion with M outputs, a precoding block (again
expressed through the matrix Q), a bank of NT transmit filters;
then conversion to RF and transmission take place. At the
receiver, after baseband-conversion, the NR received signals
are passed through a bank of filters matched to the ones used
for transmission and sampled at symbol-rate; then, the cyclic
prefix is removed. We thus obtain the NR-dimensional vectors
ỹ(n), with n = 1, . . . , k, containing a noisy version of the
circular convolution between the sequence x̃(n) and H̃(n) ,
i.e.:

ỹ(n) = H̃(n) ~ x̃(n) + w(n) , n = 1, . . . , k (14)

The vectors ỹ(n) are then processed by the post-coding matrix
D. The choice of the matrices Q and D is the same as
that of the previous subsection (SCM with TDE), so we do
not comment on it here. After post-coding beamforming, we
obtain the M -dimensional vectors r(n) = DH ỹ(n), with
n = 1, . . . , k. These vectors go through an entry-wise FFT
transformation on k points; the n-th FFT coefficient, with
n = 1, . . . , k, can be shown to be expressed as

R(n) = H̃(n)X(n) + W(n) , (15)

where H̃(n) is an (M × NT )-dimensional matrix represent-
ing the n-th FFT coefficient of the matrix-valued sequence
DHH̃(n), and X(n) and W(n) are the n-th FFT coefficient of
the sequences x̃(n) and DHw(n), respectively. From (15), it is
seen that, due to the presence of multiple antennas, and, thus,
of the matrix-valued channel, the useful symbols reciprocally
interfere and an equalizer is needed. (15) can be also shown
to be expressed as:

R(n) = H̃(n)QS̃(n) + W(n) , (16)

with S̃(n) an M -dimensional vector representing the n-th FFT
coefficient of the vector-valued sequence s̃(n).2 We denote by
E(n) the (M × M)-dimensional equalization matrix, and a
zero-forcing approach is adopted, thus implying that EH(n) =
(H̃(n)Q)−1. The output of the equalizer is written as

Z(n) = EH(n)R(n) = S̃(n) + (H̃(n)Q)−1W(n) .

Then, the vectors Z(n) go through an entry-wise IFFT trans-
formation on k points. It can be shown that the n-th IFFT
coefficient of the vector Z(n) can be expressed as:

z(n) = s̃(n) +
[
IM ⊗ [DIFFT]:,n

]
Nstacked , (17)

where [DIFFT]:,n is the n-th column of the isometric IFFT
matrix DIFFT, whose (m, l)-th element is given by

DIFFT(m, l) =
1√
k
ej2π

(m−1)(l−1)
k ,

2We used here the relation X(n) = QS̃(n).



5

Figure 2. Transceiver block-scheme for SCM with cyclic prefix, FFT-based processing and FDE.

and Nstacked is the kM -dimensional vector containing the
stacked vectors (H̃(1)Q)−1W(1), . . . , (H̃(k)Q)−1W(k).
Considerations on complexity. Looking at the scheme in Fig.
2, the computational burden of the considered transceiver
architecture is the following. 2M FFTs of length k are re-
quired, with a complexity proportional to 2Mk log2 k; in order
to compute the zero-forcing matrix, the FFT of the matrix-
valued sequence H̃(n) must be computed, with a complexity
proportional to MNT (k log2 k); computation of the matrix
(H̃(n)Q) and of its inverse, for n = 1, . . . , k, finally requires
a computational burden proportional to k(NTM

2 +M3).
It can be easily seen that the complexity of the FDE scheme

is lower than that of the TDE scheme.

C. Transceiver model - OFDM

Finally, we consider, for benchmarking purposes, the
MIMO-OFDM discrete-time block-scheme reported in Fig.
3. Differently from previous schemes, we have explicitly
separated the baseband digital beamforming from its analog
counterparts; such a separation is needed in order to keep
down system complexity, and to explicitly point out that
while baseband FD beamforming is made on a "per-subcarrier"
basis, the analog beamformer jointly process the entire signal
bandwidth, i.e., all the subcarriers are treated uniformly. In Fig.
3, NRF

T and NRF
R RF chains are considered at the transmitter

and at the receiver, and we have M ≤ NRF
T ≤ NT and

M ≤ NRF
R ≤ NR. Notice also that the choice NRF

T = NT
and NRF

R = NR results in a non-hybrid, FD beamforming.
Each OFDM symbol is assumed to be made of L = kM

QAM data symbols; after S/P conversion, the data symbols
are split in k distinct M -dimensional vectors S(1), . . . ,S(k).
These vectors are pre-coded through the (NRF

T × M)-
dimensional digital precoding matrices QBB(1), . . . ,QBB(n),
thus yielding the vectors X(n) = QBB(n)S(n) – note that
we are here assuming that the digital pre-coding matrix is not
constant over all the sub-carriers [19]. These vectors then go
through an entry-wise IFFT transformation on k points; we

denote by x(n) the M -dimensional transformed vectors, with
n = 1, . . . , k. A CP of length C is added at the beginning
of the block so that we have the following sequence of NT -
dimensional vectors:

xCP(n) =

{
x(n+ k − C) , n = 1, . . . , C ,
x(n− C) , n = C + 1, . . . , C + k .

(18)

The vectors xCP(n) are precoded through the (NT ×NRF
T )-

dimensional analog precoding matrix QRF, thus yielding the
vectors v(n) = QRFx

CP(n). The vectors v(n) are passed
through a bank of NT transmit filters, converted to RF and
transmitted. At the receiver, after baseband-conversion, the NR
received signals are passed through a bank of filters matched
to the ones used for transmission and sampled at symbol-
rate; then, they are post-coded through the (NR × NRF

R )-
dimensional analog precoding matrix DRF and the cyclic pre-
fix is removed. We thus obtain the following NRF

R -dimensional
vectors y(n), with n = 1, . . . , k:

y(n) = DH
RF

[
H̃(n) ~QRFx(n)

]
+ DH

RFw(n) , (19)

with H̃(n) denoting again the matrix-valued FIR filter rep-
resenting the composite channel impulse response (i.e., the
convolution of the transmit filter, actual matrix-valued channel
and receive filter). These vectors go through an entry-wise
FFT transformation on k points; the n-th FFT coefficient, with
n = 1, . . . , k, can be shown to be expressed as

Y(n) = DH
RFH(n)QRFQBB(n)S(n) + DH

RFW(n) , (20)

where H(n) is an (NR×NT )-dimensional matrix representing
the n-th FFT coefficient of the matrix-valued sequence H̃(n),
and W(n) is the n-th FFT coefficient of the sequence w(n),
respectively. The vectors Y(n) are then processed by the
digital post-coding matrix DBB(n); we thus obtain the M -
dimensional vectors

R(n) = DH
BB(n)DH

RFH(n)QRFQBB(n)S(n)+

DH
BB(n)DH

RFW(n) , n = 1, . . . , k .
(21)
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Figure 3. Transceiver block-scheme for OFDM with FDE.

From (20), it is seen that, due to the presence of multiple
antennas, and, thus, of the matrix-valued channel, the useful
symbols reciprocally interfere and thus an equalizer is needed.
Denoting by E(n) the (M × M)-dimensional equalization
matrix, and using a zero-forcing approach, it can be seen that
E
H

(n) = (DH
BB(n)DRFH(n)QRFQBB(n))+, where (·)+

denotes the Moore-Penrose pseudoinverse. The output of the
equalizer can be shown to be expressed as:

Z(n) = E(n)HR(n) = S(n)+

(DBB(n)HDH
RFH(n)QRFQBB(n))+DBB(n)HW(n) .

(22)

After P/S conversion we finally obtain the soft estimates of
the transmitted symbols.

IV. HYBRID ARCHITECTURE DESIGN

We now detail the low-complexity hybrid beamforming
structures. We first deal with the case of SCM, and then will
examine the MIMO-OFDM case.

A. Hybrid beamforming for SCM schemes

In order to reduce hardware complexity with respect
to the FD beamforming, in hybrid structures the (NT ×
M)−dimensional pre-coding matrix is written as Q =
QRFQBB, where QRF is the (NT × NRF

T )-dimensional RF
precoding matrix and QBB is the (NRF

T ×M)−dimensional
baseband precoding matrix. Since the RF precoder is imple-
mented using phase shifters, the entries of the matrix QRF

have all the same magnitude (equal to 1√
NT

), and just differ for
the phase. Now, denoting by Qopt the (NT×M)−dimensional
FD beamforming that we would use in the situation of no
hardware complexity constraints, the matrices QRF and QBB

can be found by using the Frobenius norm as a distance metric

and solving the following optimization problem:

(Q∗RF,Q
∗
BB) = arg min

QRF,QBB

||Qopt −QRFQBB||F

subject to |QRF(i, j)| = 1√
NT

, ∀i, j
||QRFQBB||2F ≤M .

(23)

Similarly, with regard to the design of the post-coding beam-
forming matrix, the optimal FD beamformer Dopt that we
would use in case of no hardware complexity constraints is
approximated by the product DRFDBB, where DRF is the
(NR ×NRF

R )−dimensional RF post-coding matrix and DBB

is the (NRF
R ×M)−dimensional baseband post-coding matrix.

The entries of the RF post-coder DRF are constrained to have
norm equal to 1√

NR
. The matrices DRF and DBB can be then

found solving the following optimization problem

(D∗RF,D
∗
BB) = arg min

DRF,DBB

||Dopt −DRFDBB||F

subject to |DRF(i, j)| = 1√
NR

, ∀i, j .
(24)

It is easy to show that optimization problems (23) and (24)
are not convex optimization problem; inspired by [20], we
thus resort to the Block Coordinate Descent for Subspace
Decomposition (BCD-SD) algorithm, that basically is based
on a sequential iterative update of the analog part and of the
baseband part of the beamformers. The algorithm’s recipe is
reported in Algorithm 1.

B. Hybrid beamforming for the MIMO-OFDM transceiver

We now consider the issue of beamformer design for the
MIMO-OFDM transceiver. From (21) it is seen that the
optimal pre-coders and post-coders for the detection of the
data vector S(n) are given by the left and right singular
vectors associated to the M largest eigenvalues of the matrix
H(n), respectively. We will denote these optimal beamformers
as Qopt(n) and Dopt(n), respectively; differently from what
happens for the SCM transceivers, these beamformers are now
carrier dependent. Our aim is to approximate the optimal
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Algorithm 1 Block Coordinate Descent for Subspace Decom-
position Algorithm for Hybrid Beamforming

1: Initialize Imax and set i = 0
2: Set arbitrary QRF,0 and DRF,0

3: repeat
4: Update QBB,i+1 =

(
QH

RF,iQRF,i

)−1
QH

RF,iQ
opt

and DBB,i+1 =
(
DH

RF,iDRF,i

)−1
DH

RF,iD
opt

5: Set φi = QoptQH
BB,i+1

(
QBB,i+1Q

H
BB,i+1

)−1

and ψi = DoptDH
BB,i+1

(
DBB,i+1D

H
BB,i+1

)−1
6: Update QRF,i = 1√

NT
ejφi

and DRF,i = 1√
NR

ejψi

7: Set i = i+ 1
8: until convergence or i = Imax

pre-coder Qopt(n) with the product QRFQBB(n), and the
optimal post-coder Dopt(n) with the product DRFDBB(n).
Now, letting [19]

Qopt = [Qopt(1), . . . ,Qopt(k)] ∈ CNT×kM ,
Dopt = [Dopt(1), . . . ,Dopt(k)] ∈ CNR×kM ,

QBB = [QBB(1), . . . ,QBB(k)] ∈ CNRF
T ×kM ,

DBB = [DBB(1), . . . ,DBB(k)] ∈ CNRF
R ×kM ,

the hybrid beamformer design amount to solving the following
two constrained optimization problems

(Q∗RF,Q
∗
BB) = arg min

QRF,QBB

||Qopt −QRFQBB||F
subject to |QRF(i, j)| = 1√

NT
,

‖QRFQBB,k‖2F ≤ kM ,

(25)

and
(D∗RF,D

∗
BB) = arg min

DRF,DBB

||Dopt −DRFDBB||F
subject to |DRF(i, j) = 1√

NR
.

(26)

The above optimization problems have the same structure as
problems in (23) and (24), and can thus be solved through a
straightforward application of the BCD-SD algorithm. We do
not explicitly report here the full details of the algorithm for
the sake of brevity.

V. COMPUTATION OF THE ACHIEVABLE SPECTRAL
EFFICIENCY

As a figure of merit to compare the different transceiver
architectures we will use the ASE, that is the maximum
achievable spectral efficiency with the constraint of arbitrar-
ily small BER and of pre-fixed modulation type. The ASE
takes the particular constellation and signaling parameters into
consideration, so it does not qualify as a normalized capacity
measure; (it is derived from the constrained capacity). We
focus here on ergodic rates so the ASE is computed given the
channel realization and averaged over it (remember that we are
assuming perfect channel state information at the receiver).
The spectral efficiency ρ of any practical coded modulation
system operating at a low packet error rate is upper bounded
by the ASE, i.e., ρ ≤ ASE, where

ASE =
1

TsW
lim
L→∞

1

L
EH̃

[
I(s; ŝ|H̃)

]
bit/s/Hz (27)

I(s; ŝ|H̃) being the mutual information (given the channel
realization) between the transmitted data symbols and their
soft estimates, Ts the symbol interval, and W the signal
bandwidth (as specified in Section VI). Although not explicitly
reported, for notational simplicity, the ASE in (27) depends on
the Signal-to-Interference plus Noise Ratio (SINR).

The computation of the mutual information requires the
knowledge of the channel conditional probability density
function (pdf) p(ŝ|s, H̃). As already said, it can be numer-
ically computed by adopting the simulation-based technique
described in [13] once the channel at hand is finite-memory
and the optimal detector for it is available. In addition, only
the optimal detector for the actual channel is able to achieve
the ASE in (27).

In both transceiver models described in Section III the soft
symbol estimates can be expressed in the form

ŝ(n) = Cs(n) +
∑

` 6=0

C`s(n− `) + z(n) (28)

i.e., as a linear transformation (through matrix C, which even-
tually is zero in the FDE case with zero-forcing equalization)
of the desired QAM data symbols, plus a linear combination
of the interfering data symbols and the colored noise z(n)
having a proper covariance matrix. The optimal receiver has
a computational complexity which is out of reach and for this
reason we consider much simpler linear suboptimal receivers.
Hence, we are interested in the achievable performance when
using suboptimal low-complexity detectors. We thus resort to
the framework described in [13, Section VI]. We compute
proper lower bounds on the mutual information (and thus on
the ASE) obtained by substituting p(ŝ|s, H̃) in the mutual
information definition with an arbitrary auxiliary channel
law q(ŝ|s, H̃) with the same input and output alphabets as
the original channel (mismatched detection [13])—the more
accurately the auxiliary channel approximates the actual one,
the closer the bound is. If the auxiliary channel law can
be represented/described as a finite-state channel, the pdfs
q(ŝ|s, H̃) and qp(ŝ|H̃) =

∑
s q(ŝ|s, H̃)P (s) can be computed,

this time, by using the optimal maximum a posteriori symbol
detector for that auxiliary channel [13]. This detector, that
is clearly suboptimal for the actual channel, has at its input
the sequence ŝ generated by simulation according to the
actual channel model (for details, see [13]). If we change the
adopted receiver (or, equivalently, if we change the auxiliary
channel) we obtain different lower bounds on the constrained
capacity but, in any case, these bounds are achievable by those
receivers, according to mismatched detection theory [13]. We
thus say, with a slight abuse of terminology, that the computed
lower bounds are the ASE values of the considered channel
when those receivers are employed. This technique thus allows
us to take reduced-complexity receivers into account. In fact,
it is sufficient to consider an auxiliary channel which is a
simplified version of the actual channel in the sense that only a
portion of the actual channel memory and/or a limited number
of impairments are present. In particular, we will use the
auxiliary channel law (28), where the sum of the interference
and the thermal noise z(n) is assimilated to Gaussian noise
with a proper covariance matrix.



8

Figure 4. ASE versus transmit power; comparison of TDE, FDE and OFDM,
with finite and infinite modulation cardinality and with comparison of hybrid
(CM-HY) and digital (CM-FD) beamforming. Parameters: M = 2; d = 30
m NR ×NT = 10× 50.

Figure 5. ASE versus distance; impact of multiplexing order, comparison
of hybrid (CM-HY) and digital (CM-FD) beamforming with TDE, FDE and
OFDM. Parameters: 4-QAM modulation; PT = 0 dBW; NR ×NT = 10×
50.

The transceiver models are compared in terms of ASE
without taking into account specific coding schemes, being
understood that, with a properly designed channel code, the
information-theoretic performance can be closely approached.

VI. NUMERICAL RESULTS

In our simulation setup, we consider a communication
bandwidth of W = 500 MHz centered over a mmWave
carrier frequency. The MIMO propagation channel, described
in Section II, has been generated according to the statistical
procedure detailed in [17]. The additive thermal noise is
assumed to have a power spectral density of -174 dBm/Hz,
while the front-end receiver is assumed to have a noise figure
of 3 dB. We start by studying, in the following figures, the
ASE for varying values of the transmit power PT , of the

Figure 6. ASE versus transmit power; impact of array size, multiplexing
order and comparison of hybrid (CM-HY) and digital (CM-FD) beamforming.
Parameters: 16-QAM modulation; d = 30 m; varying NR ×NT .

distance d between the transmitter and the receiver, of the
number of transmit and receive antennas, of the multiplexing
order M , and for the case in which the Root Raised Cosine
(RRC) pulse with roll off factor 0.22 is adopted. For this
waveform, we define the bandwidth as the frequency range
such that out-of-band emissions are 40 dB below the maximum
in-band value of the Fourier transform of the pulse. For the
considered communication bandwidth of W = 500 MHz, we
found that the symbol interval Ts is 1.98 ns, for the case
in which we consider its truncated version to the interval
[−4Ts, 4Ts]. The reported results are to be considered as an
ideal benchmark for the ASE since we are neglecting the
interference.3 Hybrid pre-coding and post-coding, with M RF
chains at the transmitter and at the receiver, is considered,
also in comparison to FD structures. Fig. 4 reports the ASE4

of SCM-TDE, SCM-FDE and MIMO-OFDM using finite and
infinite modulation cardinality versus the transmit power PT
(varying in the range [−50, 10] dBW), while instead in Fig. 5
the ASE for the three considered access schemes is reported
versus the distance d between the transmitter and the receiver,
assuming that the transmit power is PT = 0 dBW. While Fig.
4 contains a comparison between the 16-QAM modulation
scheme and the case of Gaussian-distributed data symbols,
Fig. 5 focuses on the case of 4-QAM modulation and studies
the impact of the multiplexing order M . Both these figures
consider a link with NR ×NT = 10× 50.

We can see that the SCM-TDE performance is much better
than the MIMO-OFDM and the SCM-FDE ones, with MIMO-
OFDM slightly outperforming the SCM-FDE scheme. Figs. 6
focuses on the SCM-TDE scheme and reports the ASE versus
the transmitted power PT (assuming a link length d > 30 m),
studying the impact of the multiplexing order and of the size

3We note however that being mmWave systems mainly noise-limited
rather than interference limited, the impact of this assumption on the obtained
results is very limited.

4Of course, the achievable rates in bit/s can be immediately obtained by
multiplying the ASE by the communication bandwidth W = 500 MHz.
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of the antenna arrays, while Fig. 7 reports, again for the SCM-
TDE scheme, the ASE versus the link length (assuming PT =
0 dBW), studying the impact of the modulation cardinality
and of the size of the antenna arrays. Inspecting the figures,
the following remarks are in order:

- Results, in general, as it is obvious, improve for increas-
ing transmit power, for decreasing distance d between
transmitter and receiver and for increasing values of the
number of transmit and receive antennas.

- In particular, a good performance can be attained for
distances up to 100 m, whereas for d > 100 m we have
a steep degradation of the ASE. In this region, all the
advantages given by increasing the modulation cardinality
or the number of antennas are essentially lost or reduced
at very small values. Of course, this performance degra-
dation may be compensated by increasing the transmit
power.

- Regarding the multiplexing index M , it is interesting
to note from Fig. 5 that for short distances the system
benefits from a large multiplexing order, while, for large
distances (which essentially correspond to low signal-
to-noise ratio), the ASE corresponding to M = 1 is
larger than that corresponding to the choice M > 1.
This behavior is in agreement with the well-known result
that for low signal-to-noise ratio there is no advantage in
increasing the multiplexing order.

- For a reference distance of 30 m (which will be a
typical one in small-cell 5G mmWave deployments for
densely crowded areas), a transmit power around 0 dBW
is enough to grant good performance and to benefit from
the advantages of increased modulation cardinality, size
of the antenna array, and multiplexing order.

We now proceed to showing BER results. In Figs 8, 9 and
10 we report the BER results respectively of 16QAM SCM-
TDE, SCM-FDE and MIMO-OFDM when employing low-
density-parity-check (LDPC) codes of rate equal to 1/2 and
9/10, in order to show how practical (i.e., finite-length and
not ad hoc designed) codes perform in one realization of
the considered scenario, which entails M = 2, d = 30 m,
NR×NT = 10×50. The parameters of the codes are reported
in Table I where rc denotes the rate of the code and the
degree distributions of variable and check nodes are provided
by giving the fraction ai (

∑
i ai = 1) of degree i nodes. In any

case, the codeword length is N = 64800 bits, and the decoder
iterations are limited to 40. These codes were designed for
low intersymbol interference (ISI) channels, and, despite not
specifically designed for these systems, they closely approach
the provided ASE lower bounds. Since with M = 2 the two
multiplexed streams perform differently, the code rates on each
stream should be tailored accordingly.

VII. CONCLUSION

This paper has provided a comparison between single-
carrier modulation schemes and conventional OFDM for a
MIMO link operating at mmWave frequencies. In particular,
two SCM techniques have been considered, SCM-TDE and
SCM-FDE, and these transceivers have been compared with

Figure 7. ASE versus distance; impact of modulation cardinality, array
size and comparison of hybrid (CM-HY) and digital (CM-FD) beamforming.
Parameters: PT = 0 dBW; M = 2; varying NR ×NT .

Figure 8. BER of TDE for 16QAM, d=30 m, M=2, NR ×NT = 10× 50.

the MIMO-OFDM scheme. Our analysis has taken into ac-
count both the peculiarity of the channel matrix at mmWave
frequencies (a clustered model has been adopted), and the
adoption of hybrid analog/digital beamforming structures.
Results have shown that the SCM-TDE structure achieves
superior performance with respect to the other two competing
schemes, with the MIMO-OFDM slightly outperforming the
SCM-FDE scheme. The present study can be generalized
and strengthened in many directions. First of all, the consid-
ered analysis might be applied in a multiuser environment;
then, since, as already discussed, the reduced wavelength
of mmWave frequencies permits installing arrays with many
antennas in small volumes, an analysis, possibly through
asymptotic analytic considerations, of the very large number
of antennas regime could also be made. Last, but not least,
energy-efficiency considerations should also be made: both
the ASE and the transceiver power consumption increase for
increasing transmit power and increasing size of the antenna
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Table I
CODE RATES AND DEGREE DISTRIBUTIONS OF THE EMPLOYED LDPC CODES.

rc variable node distribution check node distribution
1/2 a2 = 0.499985 a3 = 0.3 a8 = 0.200015 a7 = 0.999815 a8 = 0.000185185

9/10 a2 = 0.0999846 a3 = 0.8 a4 = 0.1111111 a30 = 0.999691 a31 = 0.000308642

Figure 9. BER of FDE for 16QAM, d=30 m, M=2, NR ×NT = 10× 50.

Figure 10. BER of OFDM for 16QAM, d=30 m, M=2, NR×NT = 10×50.

arrays; if we focus on the ratio between the ASE and the
transceiver power consumption, namely on the system energy
efficiency, optimal trade-off values for the transmit power and
size of the antenna arrays should be found. These topics are
certainly worth future investigation.
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