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An adapted ant colony optimization 
algorithm for the minimization of the 
travel distance of pickers in manual 

warehouses 

Abstract 

This paper proposes a new metaheuristic routing algorithm for the minimization of the travel distance 

of pickers in manual warehouses. The algorithm is based on the ant colony optimization (ACO) 

metaheuristic, which is combined and integrated with the Floyd-Warshall (FW) algorithm, and is 

therefore referred to as FW-ACO. To assess the performance of the FW-ACO algorithm, two sets of 

analyses are carried out. Firstly, the capability of the algorithm to provide effective solutions for the 

picking problem is analysed as a function of the settings of the main ACO parameters. Secondly, the 

performance of the FW-ACO algorithm is compared with that of six algorithms typically used to 

optimize the travel distance of pickers, including exact algorithms for the solution of the travelling 

salesman problem (where available), two heuristic routing strategies (i.e. S-shape and largest gap) and 

two metaheuristic algorithms (i.e. the MIN-MAX ant system and Combined+). The comparison is 

made considering different warehouse layouts and problem complexities. The outcomes obtained 

suggest that the FW-ACO is a promising algorithm generally able to provide better results than the 

heuristic and metaheuristic algorithms, and often able to find an exact solution. The FW-ACO 

algorithm also shows a very efficient computational time, which makes it suitable for defining the 

route of pickers in real time. The FW-ACO algorithm is finally implemented in a real case study, 

where constraints exist on the order in which items should be picked, to show its practical usefulness 

and quantify the resulting savings.  

Keywords: logistics; ant-colony optimization (ACO); Floyd-Warshall (FW) algorithm; order picker 

routing; travel distance. 

1 Introduction 

Warehouse operation and management is an essential part of manufacturing and service operations 

(Zhang & Lai, 2006). The efficiency and effectiveness of logistics activities in general and of 

distribution networks in particular, is in fact largely determined by the way warehouses operate as the 

nodes of these networks. The logistics cost relating to warehouse processes, including receiving, 

storage, order picking and shipping, is often high (Rouwenhorst et al., 2000). Among the different 

processes, order picking is generally recognized as the most expensive activity, because it tends to be 



3 

 

either very labour intensive or capital intensive (Frazelle, 2002). Order picking is the process of 

selecting a set of items, retrieving them from their storage locations and transporting them to a 

sorting/consolidation process for order fulfilment and shipment, in response to a customer’s request 

(Rouwenhorst et al., 2000).  

The picking process can either be performed manually or (partly) automated. In the case of a manual 

process, it is estimated that picking operations account for more than 55% of the total cost of 

warehouse operations (Coyle et al., 1996; Tompkins et al., 1996; Bottani et al., 2015). For this reason, 

both researchers and logistics managers consider order picking as a promising area for productivity 

improvement (de Koster et al., 2007). The high cost of picking is mainly due to the fact that pickers 

spend approximately 50% of the total order picking time (unproductively) travelling. This part of the 

order picking time is commonly known as the “travel time” of pickers and affects the total order 

picking time to the largest extent (Tompkins et al., 1996). As the travel time is an increasing function 

of the travel distance, minimizing this distance has been suggested by many authors as potential 

leverage for optimising the total picking time of warehouses (Jarvis & McDowell, 1991; Hall, 1993; 

Petersen, 1999; Roodbergen & de Koster, 2001a; Petersen & Aase, 2004). Reducing the travel 

distance of pickers has a direct impact on warehouse performance in terms of cost and delivery lead-

time, and consequently affects the performance of the whole supply chain. The faster items are picked 

from the warehouse, the shorter the time spent on order fulfilment; the lead-time required for 

delivering the product to the final customer therefore decreases correspondingly (de Koster, Le-Duc & 

Roodbergen, 2007; Bottani et al., 2012).  

Researchers (e.g. Gu et al., 2007 or de Koster et al., 2007) agree that several factors affect travel 

distance in an order picking system, including: 

1. the overall structure of the warehouse in terms of size and layout (Roodbergen & Vis, 2006; 

Parikh & Meller, 2010); 

2. the operational strategy, e.g. order picking vs. batch picking (Van Nieuwenhuyse & de Koster, 

2009; Le-Duc & de Koster, 2007; Gademann & Van de Velde, 2005; Henn, 2012; Hong et al., 

2012);  

3. the storage assignment policy (Petersen & Schmenner, 1999; Webster et al., 2012; Bottani et al. 

2012; Jane & Laih, 2005); 

4. the use of zone picking (de Koster et al. 2012; Petersen, 2002); 

5. the picker routing (Petersen & Aase, 2004; Kulak et al., 2012); 

6. the use of narrow aisles, which increase the likelihood of congestion whenever more pickers 

operate simultaneously in the warehouse (Pan & Wu, 2012; Chen et al., 2013, 2016; Mowrey & 

Parikh, 2014).  
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The proper design and management of all the factors listed above contribute to minimizing the travel 

distance of pickers, both per se and due to interdependencies between those factors (de Koster et al., 

2007). However, these factors cannot all be dealt with and optimised at the same time; researchers 

typically focus on a specific topic to be analysed and optimised (de Koster et al., 2007; Bottani et al., 

2012, 2015; Manzini et al., 2012). In this paper, we focus on the optimization of the routing policy of 

the picker; this is suggested to have greater potential for dynamic adjustment due to its flexibility 

(Chen et al., 2013). Moreover, significant savings in the travel time of pickers can be made using a 

dedicated routing heuristic, because in real cases most warehouses use very simple routing policies 

and the picking process is carried out manually (Petersen, 1999). 

Sequencing and routing pickers in conventional multi-parallel-aisle warehouses starting from the set of 

items to be picked, is an NP-hard travelling salesman problem (TSP) (Theys et al., 2010; Lu et al., 

2016; Scholz et al., 2016). Very few exact algorithms are able to solve this problem, and only apply 

under specific conditions. Nonetheless, Brezina & Čičková (2011) showed that the ant colony 

optimization (ACO) metaheuristic algorithm could be used to solve the TSP efficiently. ACO was also 

found to perform better than other metaheuristic algorithms (i.e. simulated annealing, genetic 

algorithms and evolutionary programming) when applied to different TSPs (Shtovba, 2005). On the 

basis of these findings, this paper proposes an adapted ACO metaheuristic algorithm to minimize the 

travel distance of pickers. The approach developed integrates the traditional ACO and Floyd-Warshall 

(FW) algorithms (Floyd, 1962; Warshall, 1962), and will be referred to as FW-ACO throughout the 

paper. The rationale behind their integration is to combine the ability of the FW algorithm to find the 

shortest path between any pair of nodes even in a complex graph (Cormen et al., 2009) and the 

effectiveness of the ACO algorithm in solving the TSP. This integration is also expected to be efficient 

from a computational point of view, as the computational complexity of the FW algorithm is O(n3), n 

being the number of vertices of the graph (Cormen et al., 2009).  

The remainder of the paper is organized as follows. Section 2 reviews the literature relating to the 

optimization of the routing of pickers in manual warehouses, provides background on the ACO 

algorithm and its applications in the picking process and lastly highlights how this study goes beyond 

existing literature. Section 3 details the FW-ACO algorithm. In section 4, we evaluate the performance 

of the FW-ACO algorithm by means of two sets of analyses. The first is intended to evaluate the 

ability of the algorithm to provide effective solutions for the problem investigated, as a function of the 

settings of the main ACO algorithm parameters. In the second set of analyses, the performance of the 

FW-ACO algorithm is compared to those of six algorithms typically adopted to route order pickers in 

manual warehouses. In section 5, we apply the algorithm to a real case, involving a major Italian 

logistics company. Section 6 concludes by summarising the main findings of this study, discussing the 

main implications (both practical and theoretical) and outlining future research directions. 
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2 Literature review 

2.1 Routing algorithms for manual warehouses 

Routing policies for pickers in manual warehouses range from simple heuristics to optimal procedures. 

Optimal routing policies typically approach the routing problem as a special case of the TSP and try to 

find the exact solution to this problem. Such policies obviously result in shorter travel times, but can 

be negatively affected by some key issues. First, exact routing policies exist only for specific (or 

simple) warehouse configurations, while for more complex warehouse layouts, no exact procedures 

are available. To be more precise, an exact algorithm for solving the TSP exists for rectangular 

warehouses, which only have crossovers at the ends of the aisles (Ratliff & Rosenthal, 1983). The 

algorithm is fast enough to be applied to 1-block warehouses of any size: as an example, a 50-aisle 

problem requires about l minute to be solved. De Koster & Van der Poort (1998) also proposed a 

polynomial algorithm for a 1-block warehouse, extending that created by Ratliff & Rosenthal (1983) 

to solve the routing problem for a non-central location of the depot. This should reflect a more modern 

situation, where order picking trucks can pick up and deposit pallets at the head of every aisle without 

returning to the depot. Scholz et al. (2016) proposed an alternative mathematical formulation of the 

TSP, to capture some specific features relating to the single picker routing problem. Other authors 

(Roodbergen & de Koster, 2001b) have extended Ratliff & Rosenthal’s algorithm to 2-block 

warehouses. The authors considered a parallel-aisle rectangular warehouse, where order pickers can 

change aisle either at the end of the aisle or at the cross-aisle halfway along the aisle. Another 

extension of the Ratliff & Rosenthal algorithm has been proposed for the dynamic order picking 

problem, in which the picker might receive instructions for a new picking mission where he/she is 

located in a random position in the warehouse (Lu et al., 2016). Some authors take a different 

approach, i.e. they minimize the travel distance of pickers by identifying the optimal layout of the 

warehouse (in terms of number of aisles and depot location), given the routing policy that will be 

adopted, both for 1-block (Roodbergen & Vis, 2006) and multiple-block warehouses (Roodbergen, 

Sharp & Vis, 2008). A similar approach has been adopted by Pan et al. (2014) for high-level picking. 

An exact algorithm for routing order pickers in a warehouse with fishbone layout has been developed 

by Çelk & Süral (2014). 

Besides the fact that they can only be applied to a limited set of warehouse layouts, exact algorithms, 

as well as metaheuristic algorithms generating complex routes, involve a second issue in that their 

logic is not straightforward or easily understood by pickers (Henn et al., 2011). In practice, companies 

prefer to adopt very simple routing strategies (Petersen, 1999), which are more immediate for order 

pickers, although they usually do not result in an optimal travel time (Hall, 1993; de Koster et al., 

2007). Examples of these simple strategies include S-shape, largest gap or midpoint (see e.g. Petersen, 
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1997, or Roodbergen & de Koster, 2001a, for a description of these policies). Order pickers become 

quickly familiar with these strategies, thus minimizing the risk of a missed pick (Petersen, 1999).  

For more complex warehouse configurations, i.e. warehouses with more than two blocks, no exact 

algorithms are available. Moreover, it is no easy matter to extend existing ones to these configurations, 

as computational complexity increases rapidly with warehouse size and number of items in the picking 

list (Roodbergen & de Koster, 2001a; Theys et al., 2010; Scholz et al. 2016). Consequently, heuristic 

algorithms have been proposed for warehouse configurations with more than one cross-aisle. A 

heuristic algorithm for warehouses with two cross-aisles can be found in Hall (1993). Roodbergen & 

De Koster (1998) compared three heuristic routing algorithms for warehouses with more than two 

cross-aisles, covering several different situations, which include a narrow-aisle high-bay warehouse 

where order picking trucks are used. A heuristic routing algorithm, which makes use of dynamic 

programming, was also proposed for warehouses with more than two cross-aisles (Vaughan & 

Petersen, 1999). Roodbergen & de Koster (2001a) extended the heuristics available for warehouses 

with two cross-aisles to those with more than two cross-aisles. Their proposed algorithm, called 

Combined+, exploits dynamic programming to determine the order picker route. Theys et al. (2010) 

have reformulated the routing problem using the Lin–Kernighan–Helsgaun TSP heuristic and 

evaluated the improvement to performance compared to existing heuristics, including S-shape and 

largest gap. Heuristic algorithms have also been adopted for batch picking problems (Matusiak et al., 

2014; Henn and Schmid,, 2013). Scientific literature typically compares the performance of heuristic 

routing algorithms to the optimal routing (where available), to assess whether the advantages in terms 

of simplicity or reduced computational time offset the increase in travel time generated. Largest gap 

and S-shape routing strategies, although non-optimal, are nonetheless often used as a benchmark (as 

also done, e.g., by Theys et al., 2010), as both policies are popular in the industry and are frequently 

adopted in practice because of their simplicity (Petersen, 1999). 

Almost all of the abovementioned studies assume random storage of items in the warehouse. On the 

contrary, very few studies have examined the routing issue coupled with other storage assignment 

policies, to identify possible interdependencies among these factors. Among them, Caron et al. (1998) 

evaluated two simple routing heuristics in a manual, single cross-aisle warehouse, with a cube per 

order index (COI)-based allocation strategy. Petersen (1997) carried out a detailed analysis of variance 

to examine the interactions of routing policies, warehouse layout and depot location under different 

warehouse operating conditions. In a subsequent study, the same author addressed the issue of 

optimizing the routing strategy in a class-based storage system (Petersen, 1999). Dukic & Oluic (2007) 

evaluated the performances of routing, storage and order batching methods in combination, depending 

on the given situation (layout, order size and order-picker capacity). The correlation between number 

of aisles, picking list size and path length in a class-based storage environment has been examined by 

Rao & Adil (2013) for a 2-block warehouse.  
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2.2 ACO in the picking context 

The ACO algorithm was originally introduced by Colorni et al. (1991) and Dorigo et al. (1996) as a 

probabilistic technique for solving computational problems. ACO is inspired by real ant colonies: 

when moving, ants leave pheromone on the ground, thus marking the path. An isolated ant is expected 

to move essentially at random; conversely, an ant encountering a previously laid trail can detect it and 

decide, with high probability, to follow it, thus reinforcing the trail with its own pheromone. Overall, 

the greater the number of ants following a trail, the more attractive that trail becomes for other ants 

(Dorigo et al., 1996). 

ACO is commonly adopted to solve optimization problems where the goal is to identify the shortest 

path and has been applied to this end to solve the TSP, both in its traditional formulation (Brezina & 

Čičková, 2011; Colorni et al., 1991) and in the MAX-MIN ant system (MMAS) variant (Stützle & 

Hoos, 2000; Shtovba, 2005). Moreover, ACO has been adopted in many different engineering fields 

(see, e.g., Mariano & Morales, 1999; Eggers et al., 2003; De Jong & Wiering, 2001; Lucic, 2002), 

suggesting that the algorithm has a potential for numerous areas of application. Looking specifically at 

the order picking context, the application of ACO to this problem is primarily intended to minimize 

the travel distance by identifying the shortest path for pickers. However, we have only found a limited 

number of studies proposing the use of the ACO algorithm for the case of picking in manual 

warehouses. More precisely, Xing et al. (2010) applied the ACO algorithm to optimize the travel path 

of a storage and retrieval machine used for batch order picking. They found that ACO effectively 

minimizes the path of the machine considered. An adapted ACO algorithm, called G-A (Genetic-Ant 

colony) was developed by Fu et al. (2011) with the aim to increase the efficiency of high-level order 

pickers in a warehouse. The algorithm performed well in terms of search ability and was able to 

reduce the travel time of pickers significantly, compared to the traditional S-shape heuristic, which 

reflected the most frequently investigated heuristic in order picking literature. There are also examples 

of ACO-based routing algorithms for two (Chen et al., 2013) or multiple pickers (Chen et al., 2016), 

with congestion considerations. The performance of these algorithms was assessed and compared to 

that of the traditional S-shape routing strategy, finding that ACO-based algorithms perform better than 

that policy in most of the scenarios examined. 

2.3 Gaps and contributions of this study 

From the review of the studies proposed above, several considerations can be made. Firstly, exact 

routing algorithms are only available for a limited set of warehouse layouts. Extending the exact 

approaches to the case of a more complex warehouse is non-trivial, and in any case, the computation 

times increase rapidly when more than two blocks need to be evaluated (Roodbergen & de Koster, 

2001a; Theys et al., 2010). The complexity of the TSP increases with the number of items in the 

picking list as well (Scholz et al., 2016). Consequently, authors have proposed (and are still proposing) 
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heuristic algorithms to route order pickers in complex scenarios. This suggests that there is room for 

new algorithms that are effective for warehouse configurations with more than two blocks, from the 

point of view of both solution quality and computational performance. Secondly, existing studies show 

that the ACO algorithm is effective in solving many engineering problems, including the TSP, of 

which order picking is a special case. Authors sometimes combine ACO with other algorithms (e.g. 

genetic algorithms) to enhance its solution potential. The algorithm we propose in this paper is also a 

combination, as it integrates ACO with an operational research algorithm (i.e. the Floyd Warshall 

algorithm); this is expected to enhance the solution potential of the algorithm and to make it effective 

from a computational perspective. To date, applications of ACO within the picking context are limited 

in number and often focus on very specific issues. Only two examples refer expressly to the case of 

order pickers in manual warehouses, despite the fact that this is the context where the incidence of 

travel time of pickers on the overall effectiveness of the picking process is higher (Tompkins et al., 

1996). 

On the basis of the abovementioned considerations, we have developed an adapted ACO algorithm, 

integrated with the FW algorithm, with the purpose of enhancing its capability to identify the shortest 

path of pickers. The FW-ACO algorithm is specifically designed to minimise the travel distance of 

pickers in a context where its incidence is particularly significant, i.e. the case of manual warehouses 

operating in accordance with a low-level, picker-to-parts strategy. The algorithm is also designed to be 

flexible enough to adapt easily to any warehouse layout, and, in particular, is expected to be useful for 

warehouse configurations that cannot be solved by means of exact approaches. To this end, it will be 

shown that the algorithm can be effectively adopted in complex warehouse configurations and with 

high number of items in the picking list, and that it is able to provide highly effective solutions with an 

efficient computational time. 

3 The proposed approach 

The overall scheme of the approach developed in this paper, including the FW-ACO algorithm and 

some preliminary steps, is shown in Figure 1. The nomenclature used during the description of the 

approach is illustrated in Table 1. In the subsections that follow, we will detail the steps of the 

approach. 

Parameter Description 

Warehouse and picking parameters 

𝑛 number of items in the picking list 

𝐴 set of arcs in a graph 

𝑉 set of nodes in a graph 

𝑁 number of nodes in the warehouse graph 

𝑁𝑝 number of picking nodes in the warehouse graph 

𝑁𝑠 number of service nodes in the warehouse graph 

𝑘𝑥 distance between two subsequent aisles (>0) [m] 

𝑘𝑦 distance between two adjacent storage locations (>0) [m] 
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Floyd-Warshall parameters 

𝐿𝑖𝑗 length of the arc (>0) connecting nodes 𝑖 and 𝑗 (𝑖, 𝑗 = 1, … 𝑁) [m] 

ℎ step of the algorithm (ℎ = 1, … 𝑁) 

𝐷𝑖𝑗
ℎ  length of the shortest path connecting nodes 𝑖 and 𝑗 at step ℎ [m] 

𝐷(ℎ) distance matrix at step ℎ 

𝑃𝑖𝑗
ℎ generic entry of the predecessors’ matrix at step ℎ 

𝑃(ℎ) predecessors’ matrix at step ℎ 

  

FW-ACO parameters 

𝑛′ number of nodes in the warehouse graph that should be visited by the picker 

𝑚 number of ants in the system (𝑘 = 1, … 𝑚) 

𝑝𝑎𝑡ℎ𝑖′𝑗′ path connecting points 𝑖′ and 𝑗′ (𝑖′, 𝑗′ = 1, … 𝑛′, 𝑖′ ≠ 𝑗′) 

𝑡 iteration step 

𝜌 evaporation rate of the pheromone (0 < 𝜌 < 1) 

𝜏𝑖′𝑗′(𝑡) intensity of the pheromone on 𝑝𝑎𝑡ℎ𝑖′𝑗′ at time 𝑡 

∆𝜏𝑖′𝑗′
𝑘 (𝑡) quantity of pheromone left by ant 𝑘 on 𝑝𝑎𝑡ℎ𝑖′𝑗′ at time 𝑡 

𝑑𝑖′𝑗′ distance between points 𝑖′ and 𝑗′ 

𝜂𝑖′𝑗′ visibility between points 𝑖′ and 𝑗′ 

𝑑𝑖′𝑗′
𝑘 (𝑡) length of 𝑝𝑎𝑡ℎ𝑖′𝑗′covered by ant 𝑘 at iteration 𝑡 [m] 

𝑝𝑖′𝑗′
𝑘 (𝑡) probability that ant 𝑘 moves from point 𝑖′ to point 𝑗′ at time 𝑡 

𝛼 relative importance of the pheromone trail 

𝛽 relative importance of the distance 

𝑄 pheromone update constant 

𝐽𝑖′𝑘 list of nodes yet to be visited by ant 𝑘, located in node 𝑖′ 

𝐿𝑜𝑜𝑝𝑠𝑇𝑂𝑇  number of iterations allowed for the algorithm (𝑡 = 1, … 𝐿𝑜𝑜𝑝𝑠𝑇𝑂𝑇) 

𝑛𝑠𝑖𝑚 number of runs of the algorithm (𝑠 = 1, … 𝑛𝑠𝑖𝑚) 

𝑥 𝑚𝑖𝑛 “best found” solution (shortest path) of the problem returned by the algorithm [m] 

𝑥 𝑠 solution returned by the algorithm in run 𝑠 [m] 

𝐺 percentage of runs where the algorithm converged to the “best found” solution [%] 

𝐸 average error rate of the algorithm [%] 

Table 1: nomenclature. 

 

Figure 1: flowchart of the proposed approach. 
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3.1 Key elements of the warehouse layout 

To make the FW-ACO algorithm suitable for adoption in any warehouse layout, it is first necessary to 

identify a limited number of essential pieces of information, which describe the warehouse layout 

univocally and can be processed by algorithm in a mathematical form. This is the rationale behind the 

first step of the approach. 

A warehouse of regular shape consists of a number of parallel longitudinal aisles (simply called 

“aisles”) of equal length, with the items being stored in storage locations on both sides of the aisles 

(De Koster & Van der Poort, 1998). A picking location (highlighted in blue in Figure 2) is a storage 

location where a picking item is located. Whenever cross-aisles are present, the warehouse is divided 

into a number of blocks equal to the number of cross-aisles plus one (Roodbergen & de Koster, 

2001a). Hence, the essential data required to describe a warehouse layout consist of three elements, 

namely: (1) the number of blocks; (2) the number of aisles; (3) the number of storage locations per 

aisle side. Figure 2 shows a representation of the elements listed above in a warehouse layout with 2 

blocks, 3 aisles and 12 storage locations per aisle side. Aisles provide access to the storage locations 

and therefore reflect the points where picking activities take place. Depending on the warehouse 

layout, starting from a given picking aisle, the picker will have access to one or two picking lanes. 

Cross-aisles do not provide direct access to the items to be picked; instead, the pickers can change 

picking lane using them. 

 

Figure 2: scheme of a generic warehouse indicating the key components. 
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3.2 Model assumptions 

The approach is based on the assumptions described below. 

1. Since low-level picking is one of the most frequent operating conditions in a warehouse (Caron et 

al., 2000), the FW-ACO algorithm will only work on the first level of storage; 

2. The minimization of the travel distance of pickers can be approached as a TSP, where the picking 

locations listed in the picking list reflect the cities to be visited; 

3. The longitudinal aisles are narrow enough to allow the operator to pick the item from both sides. 

We consider the presence of only one picker at a time and thus congestions among pickers (Chen 

et al., 2013; Mowrey & Parikh, 2014) are not evaluated; 

4. The picker can change direction in the aisle; 

5. The picker starts at the depot and returns to the depot once he/she has picked the items on one 

picking list; 

6. The aisles can be travelled in both directions; 

7. The warehouse has a regular (e.g. rectangular) shape with parallel longitudinal aisles. 

3.3 Warehouse representation by graph 

The next step is to represent the warehouse layout in the form of a graph able to provide a faithful 

reproduction of the geometry of the warehouse, taking into account the key elements of the warehouse 

layout. This step is quite common in literature (e.g. Ratliff & Rosenthal, 1983; Roodbergen & de 

Koster, 2001b) and, for the purposes of this study, it is required because the FW algorithm is designed 

to find the shortest path between pairs of nodes in a graph. 

Any graph is a set of arcs 𝐴 and nodes 𝑉. In our case, the nodes of the graph (circles) reflect the 

locations where the picker can move between, while the arcs (arrows) provide the connections 

between nodes. Figure 3 shows the representation of the warehouse in Figure 2 by graph. We 

categorise the 𝑁 nodes of the warehouse graph into picking nodes 𝑁𝑝 or service nodes 𝑁𝑠 (𝑁 = 𝑁𝑝 +

𝑁𝑠), depending on their function in the warehouse. The picking nodes (e.g. node 1 or 2 in Figure 3) are 

adjacent to the storage locations, while the service nodes (e.g. node 0 or 13) are used by the picker to 

reach a different aisle. 

Figure 3 also shows that two additional parameters, denoted as 𝑘𝑥 and𝑘𝑦, should be introduced into 

the warehouse graph. To explain the rationale behind those parameters, we should recall that the 

structure of a regular warehouse can be represented on the Cartesian plane, as was also done in Figure 

3. Because of the regular shape, it is reasonable to assume that nodes located on the 𝑥-axis are 

equidistant from each other and that the same assumption holds true for the nodes located on the 𝑦-

axis. To describe their position, therefore, a constant value can be used, which is called 𝑘𝑥 or 𝑘𝑦 

depending on the axis considered. More precisely, 𝑘𝑥 reflects the distance between two subsequent 
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aisles, while 𝑘𝑦 represents the distance between two adjacent picking positions. The graph nodes can 

be represented in Cartesian coordinates, exploiting 𝑘𝑥 and 𝑘𝑦. For instance, the coordinates of node 0 

in Figure 3 are (0;0), while the coordinates of node 55 in the same figure are (2𝑘𝑥;1𝑘𝑦). 

It is evident that, once set, 𝑘𝑥 and 𝑘𝑦 should not be modified, since they reflect the geometrical 

structure of the warehouse analysed. Nonetheless, by varying 𝑘𝑥 and 𝑘𝑦 (as well as the number of 

blocks, the number of aisles and the number of storage locations per aisle side), the layout of any 

regular warehouse can be represented in mathematical form. 

 

Figure 3: scheme of a warehouse and corresponding representation by graph. 

3.4 The FW-ACO algorithm 

The FW-ACO procedure consists of 6 steps grouped into 2 stages (see Figure 1). In the first one (FW 

stage), the warehouse layout is schematically represented as a graph and the FW algorithm is used to 

identify the shortest path connecting each pair of nodes in the graph. ACO is used in the second stage 

to identify the shortest picker route (ACO stage). The corresponding details are provided in the 

following subsections. 
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3.4.1 Step 1: geometry initialization 

In step 1, the main parameters of the warehouse layout are initialized. According to the description in 

sections 3.1 and 3.3, these parameters include: 

(1) the number of blocks; 

(2) the number of aisles; 

(3) the number of storage locations per aisle side; 

(4) 𝑘𝑥; 

(5) 𝑘𝑦. 

3.4.2 Step 2: geometry computation 

Step 2 involves translating the warehouse layout into a graph, with the corresponding coordinates 

according to the description in section 3.3. 

3.4.3 Step 3: Floyd-Warshall computation 

The FW algorithm is introduced in this step to identify the shortest path connecting each pair of nodes 

(𝑖, 𝑗) in the warehouse. The genius of the FW algorithm is in finding a different formulation for the 

shortest path sub-problem than the path length formulation introduced earlier. This enables the 

algorithm to find the shortest path between any pair of nodes even in a complex graph (Cormen et al. 

2009).  

As already mentioned, a graph consists of a set of nodes connected by arcs. In general, for each arc 

connecting points 𝑖 and 𝑗, a parameter 𝐿𝑖𝑗 ∈ ℝ can be computed. For the purposes of our application, 

𝐿𝑖𝑗 reflects the length of the arc connecting nodes 𝑖 and 𝑗. Accordingly, if 𝑝𝑎𝑡ℎ1𝑗 describes the path 

from node 1 to node 𝑗, the corresponding length can be computed as 𝐿(𝑝𝑎𝑡ℎ1𝑗) = 𝐿12 + 𝐿23 + 𝐿34 +

⋯ + 𝐿𝑗−1,𝑗. 

To identify the shortest path, the FW algorithm makes use of two ad hoc matrices, known as the 

“distance matrix” and the “predecessors’ matrix”, which are generated and updated iteratively 

applying the following steps: 

1. initialization. At the beginning of the process (ℎ = 0), the structure of the distance matrix is 

initialized as follows: 

𝐷(0) = (𝐷𝑖𝑗
0 ) where 𝐷𝑖𝑗

0 = {

𝐿𝑖𝑗 , 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐴

0, 𝑖𝑓   𝑖 = 𝑗

∞, 𝑖𝑓 (𝑖, 𝑗) ∉ A 

 (1) 

while the generic entry of the predecessors’ matrix 𝑃𝑖𝑗
0  is initialized as follows: 

𝑃(0) = (𝑃𝑖𝑗
0 ) where 𝑝𝑖𝑗

0 = {
𝑖, 𝑖𝑓 𝑖 ≠ 𝑗
−, 𝑖𝑓 𝑖 = 𝑗

 (2) 
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2. matrix update. A new node is added for the computation of the shortest path between nodes 𝑖 and 

𝑗. Therefore, the distance matrix is updated to 𝐷𝑖𝑗
ℎ  applying the following formula: 

𝐷𝑖𝑗
ℎ = 𝑚𝑖𝑛{𝐷𝑖𝑗

ℎ−1, 𝐷𝑖,ℎ
ℎ−1 + 𝐷ℎ,𝑗

ℎ−1} if 𝑖 ≠ 𝑗 (3) 

𝐷𝑖𝑗
ℎ  describes the updated distance between nodes 𝑖 and 𝑗, computed exploiting ℎ intermediate 

nodes {1, … , ℎ}. The update of the distance matrix is based on Bellman’s (1958) theory of 

optimality, according to which, if 𝑝𝑎𝑡ℎ1𝑗 is the shortest path from node 1 to node 𝑗 and ℎ is an 

intermediate node between 1 and 𝑗 along 𝑝𝑎𝑡ℎ1𝑗, then path 𝑝𝑎𝑡ℎ1ℎ connecting node 1 and node ℎ 

is the shortest path from 1 to ℎ. Overall, at the ℎ-th step of the process, each entry of the distance 

matrix 𝐷𝑖𝑗
ℎ  indicates the length of the shortest path which connects nodes 𝑖 and 𝑗 exploiting ℎ 

intermediate nodes {1, … , ℎ}. Therefore, the whole set of nodes used for the computation of 𝐷𝑖𝑗
ℎ  is 

{1, … , ℎ} ∪ {𝑖, 𝑗}. 

The predecessor’s matrix 𝑃(ℎ) = (𝑃𝑖𝑗
ℎ) is updated according to the following formula: 

𝑃𝑖𝑗
ℎ = {

𝑃ℎ−1𝑗
ℎ−1 , if 𝐷𝑖𝑗

ℎ ≠ 𝐷𝑖𝑗
ℎ−1

𝑃𝑖𝑗
ℎ−1,   otherwise

 (4) 

3. check the termination condition. If ℎ = 𝑁, i.e. all the nodes have been added, the algorithm stops. 

Under this condition, the length of the shortest path connecting nodes 𝑖 and 𝑗 can be read in the 

𝐷𝑖𝑗
𝑁 element of the distance matrix 𝐷(𝑁). The 𝑃(𝑁) matrix can instead be used to track back how 

the shortest path was obtained. Otherwise, if ℎ < 𝑁, ℎ is updated (i.e. ℎ = ℎ + 1) and steps 1-3 

are repeated until the termination condition is reached. 

In our approach, the input of the FW algorithm is the warehouse graph (𝑁 nodes). With this graph, the 

algorithm generates the (𝑁x𝑁) distance matrix and the (𝑁x𝑁) predecessors’ matrix as outputs. The 

first indicates the shortest distance between any pair of picking positions, on the basis of the physical 

distance between two adjacent nodes. The predecessors’ matrix indicates which nodes are to be visited 

when moving from node 𝑖 to node 𝑗, with the aim of covering the shortest path between these nodes. 

3.4.4 Step 4: ACO parameter initialization 

Step 4 consists of the initialization of the main parameters of the ACO algorithm. Specifically, these 

parameters are , 𝛽, , 𝑄 and  (Colorni et al., 1991). The maximum number of iterations 𝐿𝑜𝑜𝑝𝑠𝑇𝑂𝑇 

allowed for the algorithm to reach convergence should also be defined. As further input parameters, 

the ACO algorithm requires the following data: 

(1) the starting node; 

(2) the set of elements of the picking list (𝑛). 

The starting node is typically the warehouse input/output gate: indeed, the picker usually starts from 

the depot, picks up the items included in the picking list and returns to the depot. Nonetheless, other 

nodes could be set as starting nodes: for instance, a picker who is already carrying out picking 
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activities in the warehouse might receive instructions (e.g. via a mobile terminal) about an additional 

picking mission. In this latter case, the starting node is the node where the operator is located at the 

moment of receiving the instructions and from which he/she starts the new mission. Taking into 

account these possible scenarios, the starting point was not considered as a fixed element of the 

warehouse layout; it was instead treated as an ACO input during the initialization phase, to make the 

algorithm flexible enough to set the start point on the specific problem investigated. 

3.4.5 Step 5: matrix and variable initialization 

Starting from the distance matrix of the FW algorithm, as well as from the set of 𝑛 elements of the 

picking list, a reduced (𝑛’x𝑛’) distance matrix is elaborated in this step. This sub-matrix is limited to 

the 𝑛’ ≤ 𝑛 nodes of the warehouse that should be visited by the picker, which, in turn, reflect the 

nodes where the ACO algorithm should work1. For the same nodes, the pheromone matrix is 

initialized at a fixed quantity 𝜏𝑖′,𝑗′  =  𝜏 , (∀𝑖′ ≠ 𝑗′, 𝑖′, 𝑗′ = 1, … 𝑛′). An arbitrary (random) path is set 

as the “best path” and the corresponding length as the “best length”. The iteration counter 𝑡 is 

initialized at 0. 

3.4.6 Step 6: ACO execution 

ACO execution consists of 𝐿𝑜𝑜𝑝𝑠𝑇𝑂𝑇   iterations. At each iteration 𝑡, the algorithm takes into account 

the set of 𝑛′ points (𝑗′ = 1, … 𝑛′) to be visited by the 𝑚 ants (𝑘 = 1, … 𝑚) in the system. The path 

connecting two points 𝑖′ and 𝑗′ (𝑖′, 𝑗′ = 1, … 𝑛′, 𝑖′ ≠ 𝑗′) is denoted as 𝑝𝑎𝑡ℎ𝑖′𝑗′ and its length is 𝑑𝑖′𝑗′, 

resulting from the distance matrix. The visibility 𝜂𝑖′𝑗′ between two points 𝑖′ and 𝑗′ is computed as 𝜂𝑖′𝑗′ =

1/𝑑𝑖′𝑗′. The new path connecting the 𝑛′ nodes is generated by applying the following steps: 

1. computation of the probability to reach each node. The probability 𝑝𝑖′𝑗′
𝑘 (𝑡) that ant 𝑘 moves from 

point 𝑖′ to point 𝑗′ is computed according to the equation below (Shtovba, 2005): 

𝑝𝑖′𝑗′
𝑘 (𝑡) = {

[𝜏𝑖′𝑗′(𝑡)]
𝛼

(𝜂𝑖′𝑗′)𝛽

∑ [𝜏𝑖′𝑙(𝑡)]𝛼(𝜂𝑖′𝑙)𝛽
𝑙∈𝐽𝑖𝑘

𝑖𝑓 𝑗′ ∈ 𝐽𝑖′𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5) 

2. choice of the next node. Whenever an ant can reach more than one node, the choice of the specific 

node will be made according to 𝑝𝑖′𝑗′
𝑘 (𝑡) (the higher the better), reflecting a sort of roulette wheel 

selection method (Bäck, 1996); 

3. transfer to the chosen node and modification of the path. The chosen node will be added to the new 

path; at the same time, the list of nodes 𝐽𝑖′𝑘 will be updated by removing the node that has been just 

added to the path. 

                                                      
1 The number of nodes where ACO should work (𝑛’) does not necessarily correspond to the number of elements 

on the picking list (𝑛). Indeed, the same picking node can give access to two picking locations, i.e. up to two 

elements on the picking list, depending on the specific case (see e.g. Ratliff & Rosenthal, 1983). 
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Steps 1-3 are repeated until all the 𝑛′ nodes have been visited. The total length of the resulting path is 

then calculated. Whenever this length is lower than the “best length” found so far by the algorithm, the 

resulting path will become the new “best path” and will represent the benchmark for the evaluation of 

the paths identified in subsequent iterations. In addition, while the visibility matrix does not vary when 

running the algorithm, the pheromone matrix will be updated when a new “best path” is found. A 

hybrid approach between the ant-quantity and the ant-cycle methods (Colorni et al., 1991) has been 

adopted to update the pheromone trail. The ant-cycle approach is actually an adaptation of the ant-

quantity approach, where the pheromone update is made at the end of the tour of an ant, instead of at 

each movement. Such an approach is effective for the problem in question, as it will prioritise the 

tours that overall generate a shorter path. Accordingly, if a new “best path” is found at iteration 𝑡, the 

pheromone matrix will be updated as follows: 

𝜏𝑖′𝑗′(𝑡) = 𝜌 ∗ 𝜏𝑖′𝑗′(𝑡 − 1) + ∑ ∆𝜏𝑖′𝑗′
𝑘 (𝑡 − 1)𝑚

𝑘=1  (6) 

∑ ∆𝜏𝑖′𝑗′
𝑘 (𝑡 − 1)𝑚

𝑘=1  reflects the overall quantity of pheromone per unit of length left on 𝑝𝑎𝑡ℎ𝑖′𝑗′ at 

iteration 𝑡 − 1 and is computed as the sum of the quantities of pheromone left on the path by each ant. 

∆𝜏𝑖′𝑗′
𝑘 (𝑡) is computed as follows: 

∆𝜏𝑖′𝑗′
𝑘 (𝑡 − 1) = {

𝑄

𝑑
𝑖′𝑗′
𝑘 (𝑡−1)

𝑖𝑓 𝑎𝑛𝑡 𝑘 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ𝑖′𝑗′ 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 − 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7) 

where 𝑑𝑖′𝑗′
𝑘 (𝑡 − 1) is the distance covered by ant 𝑘 to move from 𝑖 to 𝑗. With this approach, the 

increase in the pheromone intensity on 𝑝𝑎𝑡ℎ𝑖′𝑗′ is inversely proportional to the distance between 𝑖′ and 

𝑗′, so that shorter arcs are preferred.  

Once the algorithm has completed 𝐿𝑜𝑜𝑝𝑠𝑇𝑂𝑇   iterations, it provides the shortest path of the picker and 

the corresponding length as outputs. As a final step, the algorithm makes use of the FW predecessors’ 

matrix to translate the final “best path” into the corresponding tour in the warehouse graph. 

The full pseudo-code of the FW-ACO algorithm is proposed in the Appendix. 

4 Performance evaluation 

The FW-ACO algorithm described above was coded exploiting Python, a widely used general-

purpose, high-level programming language (Kuhlman, 2013) and run on a 16 GB RAM, Intel Xeon 

CPU desktop computer, equipped with the Microsoft Windows 7 operating system. 

To evaluate the performance of the FW-ACO algorithm, we carried out two set of analyses. The first 

one aims to assess the performance of the algorithm as a function of the typical parameters of the ACO 

metaheuristic. To this end, we consider a fixed warehouse layout and vary the settings of the FW-ACO 

algorithm. The analysis is expected to help identify the most effective setting for the proposed 

algorithm, i.e. the setting that allows the best performance to be achieved in terms of the shortest path 
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for pickers. A formal design of experiment (DOE) analysis is carried out to substantiate the choice of 

the most effective setting. The second set of analyses aims to compare the performance of the 

proposed algorithm with other routing policies, including exact and heuristic algorithms, to assess 

whether, and to what extent, the FW-ACO algorithm outperforms them. 

4.1 First set of analyses: identification of the shortest path 

4.1.1 Parameter setting 

The warehouse layout considered in this set of analyses is fixed and consists of 2 blocks, with 4 aisles 

per block and 20 storage locations per aisle side; 𝑘𝑥=4 [m] and 𝑘𝑦=2 [m] are set for this warehouse.  

The performance of the FW-ACO algorithm is evaluated as a function of: 

(1) the numerical values assigned to the main parameters of the ACO metaheuristic, i.e. 𝜌, 𝜏, 𝛼, 𝛽; 

(2) the number of iterations 𝐿𝑜𝑜𝑝𝑠𝑇𝑂𝑇 allowed for the algorithm to reach convergence;  

(3) the number of items 𝑛 in the picking list. 

With respect to the ACO parameters, the values examined were adapted from Colorni et al. (1991), 

with the aim of representing sufficiently different operating conditions of the algorithm. More 

specifically: 

 𝜌 was set at its central value (0.5) and at a value very close to the upper limit (0.9), reflecting two 

situations where the evaporation of the pheromone trail is moderately slow or extremely slow, 

respectively; 

  was set at 1 or 2, while 𝛽 was set at 2 and 5. The combination of those settings allows the 

performance of the FW-ACO algorithm to be investigated when working with  = 𝛽 or  < 𝛽; 

 𝜏 was set at 0.1 or 0.5, reflecting the case of low or high initial quantity of pheromone on the trail. 

With respect to the remaining parameters, these were set as follows: 

 𝐿𝑜𝑜𝑝𝑠𝑇𝑂𝑇 was set at 1,000, 10,000 and 20,000. Varying the number of iterations is useful to 

assess whether the performance of the FW-ACO algorithm is affected by the number of iterations 

allowed to reach convergence;  

 𝑛 was set at 10, 20 and 50, corresponding to as many picking locations to be visited in the 

warehouse. The picking locations depend only on the length of the picking list, while they are kept 

unchanged for a given 𝑛. Keeping the picking locations unchanged allows a comparison of the 

solutions provided by the algorithm to be made with the same predecessor and distance matrices 

resulting from the FW algorithm, which means that the ACO algorithm operates starting from the 

same set of distances. 
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As far as the remaining ACO parameters (i.e. 𝑄 and 𝑚) are concerned, they were set as follows. After 

some preliminary tests, 𝑄 was set at 2 and was kept unchanged during the analysis, which is in line 

with several previous studies about the ACO algorithm (e.g. Shtovba, 2005; Zhu & Curry, 2009). With 

respect to 𝑚, a relationship exists between this parameter and 𝐿𝑜𝑜𝑝𝑠𝑇𝑂𝑇 (Fidanova & Marinov, 2013). 

If we fix the number of iterations and double the number of ants in an ACO problem, the execution 

time is doubled, and, if we fix the number of ants and double the number of iterations, the execution 

time is also doubled. Therefore, it is advisable to fix one of the parameters; we chose to fix 𝑚 and vary 

𝐿𝑜𝑜𝑝𝑠𝑇𝑂𝑇. Finding the exact number of ants required to solve a problem in evolutionary algorithms is 

typically approached as an empirical problem, as the solution depends on the specific situation 

(Fidanova et al., 2014). We tried to identify the best number of ants using the following procedure. We 

set 𝑚=1, 2, 5, 7 and 10 ants and solved the smallest instance of the problem (i.e. 𝑛=10 items in the 

picking list) and the largest one (i.e. 𝑛=50 items in the picking list), with 𝐿𝑜𝑜𝑝𝑠𝑇𝑂𝑇=20,000. We 

recorded the time required to run the algorithm and the “best found” solution as a function of 𝑚. We 

found that the computational time decreased significantly when increasing 𝑚 up to 5, while with a 

higher 𝑚 the decrease, although present, was less appreciable. No differences were found in the 

solution returned with 𝑚=5, 7 or 10. In line with the fact that limiting the number of ants is useful 

when solving large problems, as the algorithm will require less memory to be run (Fidanova & 

Marinov, 2013), 𝑚=5 was selected as the most suitable number of ants. 

By combining the settings described above, we obtained 2𝑥2𝑥2𝑥2𝑥3𝑥3 = 144 scenarios where the 

performance of the FW-ACO algorithm was evaluated. For each scenario, 𝑛𝑠𝑖𝑚=100 runs of the 

algorithm were carried out. 

4.1.2 Results 

Two performance parameters were used to evaluate the results provided by the FW-ACO algorithm in 

the various scenarios, i.e.: 

(1) The percentage of simulation runs 𝐺 where the algorithm converged to the “best found” 

solution. The “best found” solution does not necessarily reflect the “global optimal” solution 

of the problem analysed (i.e. the global shortest path of the picker for a given 𝑛). In fact the 

number of solutions for the problem in question increases very rapidly with 𝑛. Verifying all 

the possible solutions of the TSP exhaustively to identify the global optimal one is not feasible 

from a practical perspective. Therefore, by “best found” solution we mean the shortest path 

identified in the resolution of the same problem by using different settings of the ACO 

parameters. As an example, Table 2 reports 𝐺=40% for 𝑛=10, obtained setting 𝜌=0.5, 𝛼=1, 

𝛽=2 and 𝐿𝑜𝑜𝑝𝑠𝑇𝑂𝑇=1,000. This result indicates that with this setting, in 40% of the attempts, 

the FW-ACO algorithm converges to the best solution obtained for the picking problem with 

𝑛=10, by varying the remaining ACO parameters (i.e. 𝜌, 𝛼, 𝛽, 𝜏 and 𝐿𝑜𝑜𝑝𝑠𝑇𝑂𝑇); 
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(2) the average error rate 𝐸 of the algorithm, i.e. the percentage difference between the “best 

found” solution and the solution returned by the FW-ACO algorithm, in the event it did not 

converge to the “best found” solution. 𝐸 is a dimensionless performance parameter computed 

according to eq.8: 

𝐸 =  
∑

|𝑥𝑠−𝑥𝑚𝑖𝑛|

𝑥𝑚𝑖𝑛

𝑛𝑠𝑖𝑚
𝑠=1

𝑛𝑠𝑖𝑚

 (8) 

If a set of runs generates a small 𝐸, the results returned by that FW-ACO setting are, on 

average, very close to “best found” solution of the problem and could be considered as 

acceptable. Accordingly, the FW-ACO settings that achieved these results can also be 

considered acceptable.  

The detailed outcomes of the performance assessment for the FW-ACO algorithm, in terms of 𝐺 and 

𝐸, are shown in Table 2. The key considerations from these outcomes are summarised below. 

1. Ability to generate the “best found” solution. Overall, the FW-ACO algorithm is able to reach 

the “best found” solution across the 100 simulation runs (𝐺=100%) in 35 out of the 144 

scenarios examined (24.31%). Most of the time, 𝐺=100% is obtained with small-scale 

problems, i.e. 𝑛=10 (25 scenarios out of the 48 simulated, 52.08%) and sometimes 𝑛=20 (10 

scenarios out of the 48 simulated, 20.83%); conversely, 𝐺=100% is never achieved with 𝑛=50. 

This is an obvious consequence of the increase in problem complexity as a function of 𝑛. 

Nonetheless, a specific setting of the ACO parameters seems to be particularly effective in 

identifying satisfactory solutions, regardless of problem complexity. To be more precise, from 

Table 2 it can be appreciated that when setting 𝜌 = 0.9, 𝛼 = 1 and 𝛽 = 5 (∀𝜏), the solutions 

identified by the FW-ACO algorithm correspond to the “best found” one (𝐺=100%), with both 

𝑛=10 and 𝑛=20. With respect to the scenarios with 𝑛=50, the solutions obtained with the 

setting detailed above, although not always corresponding to the “best found” solution, exhibit 

a very low 𝐸 (from 0.66% to 1.00%), meaning that these solutions are very close to the 

shortest path ever identified. This suggests that the algorithm is effective in identifying 

acceptable solutions for the problem investigated, even with a high 𝑛. 

2. Effect of the ACO parameters on the algorithm performance. From Table 2 it is easy to see 

that the performance of the FW-ACO algorithm tends to get worse when setting 𝛼 = 𝛽 = 2. 

With this setting, the algorithm converges to the “best found” solution (𝐺=100%) only in one 

scenario (𝜏 = 0.1, with 𝐿𝑜𝑜𝑝𝑠𝑇𝑂𝑇=20,000 and 𝑛=10), while it rarely converges to the “best 

found” solution with 𝑛=50, showing, at the same time, a fairly high 𝐸. Increasing 𝐿𝑜𝑜𝑝𝑠𝑇𝑂𝑇 

also tends to improve the results provided by the FW-ACO algorithm: in general, the 

outcomes obtained are more satisfactory with 𝐿𝑜𝑜𝑝𝑠𝑇𝑂𝑇=20,000. This is specifically the case 
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for scenarios with 𝑛=50. This outcome was expected: indeed, by allowing more iterations, the 

algorithm benefits from more attempts to explore the solution space and identify better 

solutions. 

     𝒏=10 𝒏=20 𝒏=50 

𝝆 𝜶 𝜷 𝝉 𝑳𝒐𝒐𝒑𝒔𝑻𝑶𝑻 𝑮 𝑬 𝑮 𝑬 𝑮 𝑬 

0.5 1 2 0.1 1000 60% 1.80% 0% 9.82% 0% 28.59% 

     10000 80% 0.47% 0% 9.35% 0% 22.37% 

      20000 60% 0.63% 10% 6.59% 0% 25.15% 

    0.5 1000 40% 1.72% 10% 5.53% 0% 23.11% 

     10000 100% 0.00% 0% 7.47% 0% 20.08% 

       20000 90% 0.31% 40% 2.35% 0% 15.39% 

   5 0.1 1000 80% 0.16% 70% 0.76% 0% 1.45% 

     10000 100% 0.00% 90% 0.35% 0% 1.54% 

      20000 100% 0.00% 90% 0.12% 30% 1.49% 

    0.5 1000 80% 0.16% 100% 0.00% 0% 1.16% 

     10000 100% 0.00% 100% 0.00% 10% 1.04% 

        20000 100% 0.00% 80% 0.41% 20% 0.66% 

  2 2 0.1 1000 20% 5.70% 0% 19.76% 0% 56.02% 

     10000 50% 2.97% 0% 16.29% 0% 57.39% 

      20000 100% 3.83% 80% 19.94% 20% 52.49% 

    0.5 1000 40% 2.81% 0% 13.24% 0% 38.80% 

     10000 70% 1.25% 0% 14.12% 0% 35.77% 

       20000 70% 1.09% 0% 11.47% 0% 34.13% 

   5 0.1 1000 10% 3.28% 0% 7.71% 0% 6.47% 

     10000 70% 0.86% 50% 3.88% 0% 4.22% 

      20000 90% 0.08% 10% 4.65% 0% 4.05% 

    0.5 1000 20% 1.17% 60% 2.12% 0% 3.15% 

     10000 90% 0.08% 50% 3.06% 0% 2.28% 

        20000 100% 0.00% 60% 1.24% 10% 1.83% 

0.9 1 2 0.1 1000 85% 0.13% 10% 5.64% 0% 8.96% 

     10000 100% 0.00% 41% 1.18% 0% 2.73% 

      20000 100% 0.00% 41% 0.78% 0% 2.01% 

    0.5 1000 50% 0.65% 0% 14.31% 0% 36.10% 

     10000 100% 0.00% 35% 4.61% 0% 19.12% 

       20000 100% 0.00% 41% 3.09% 10% 9.06% 

   5 0.1 1000 100% 0.00% 100% 0.00% 16% 1.00% 

     10000 100% 0.00% 100% 0.00% 16% 0.66% 

      20000 100% 0.00% 100% 0.00% 17% 0.69% 

    0.5 1000 100% 0.00% 100% 0.00% 8% 0.97% 

     10000 100% 0.00% 100% 0.00% 8% 0.76% 

        20000 100% 0.00% 100% 0.00% 8% 0.69% 

  2 2 0.1 1000 60% 1.04% 8% 8.73% 0% 17.25% 

     10000 91% 0.07% 25% 3.92% 0% 10.03% 

      20000 100% 0.00% 10% 3.19% 0% 11.89% 

    0.5 1000 100% 0.00% 25% 6.08% 0% 9.20% 

     10000 100% 0.00% 50% 1.96% 0% 2.77% 

       20000 100% 0.00% 60% 0.49% 16% 1.56% 

   5 0.1 1000 50% 0.39% 60% 0.98% 0% 2.01% 

     10000 100% 0.00% 85% 0.34% 10% 1.31% 

      20000 100% 0.00% 85% 0.49% 16% 1.00% 

    0.5 1000 91% 0.07% 85% 0.59% 0% 1.04% 

     10000 100% 0.00% 100% 0.00% 0% 0.83% 

        20000 100% 0.00% 100% 0.00% 41% 0.48% 
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Table 2: experimental results for the first set of analyses - identification of the shortest path. 

4.1.3 DOE analysis 

A formal DOE analysis (Montgomery & Runger, 2003) was carried out on the outcomes in Table 2 to 

highlight whether the performance of the FW-ACO algorithm is significantly affected by the ACO 

settings, as well as to substantiate the choice of the setting to be used in the second set of analyses. Six 

factors, i.e. 𝜌, 𝛼, 𝛽, 𝜏, 𝑛, 𝐿𝑜𝑜𝑝𝑠𝑇𝑂𝑇, were considered in a 26 full factorial design2. To this end, we 

limited the analysis to two values of 𝐿𝑜𝑜𝑝𝑠𝑇𝑂𝑇 (i.e. 1,000 and 20,000) and of 𝑛 (i.e. 10 and 50). It is 

worth mentioning that 𝑛 was included in the analysis for completeness, although it is not actually a 

parameter of the ACO algorithm but rather of the problem examined. Three outcomes were 

considered, namely: the distance returned by the algorithm; 𝐺; and 𝐸. Table 3 shows the results of the 

DOE analysis on these outcomes. Because of the high number of factors, the sparsity of effects 

principle applies, meaning that main effects and low-order interactions are expected to have the 

highest effect on the results observed (Box, Hunter, & Hunter, 2005). Accordingly, we limit the 

presentation of the outcomes (in terms of effect, mean square of the treatment and corresponding 

significance value) to the single-factor effects. Significant (at p<0.05) values are highlighted in italics 

in Table 3. 

Outcome #1: distance factor A: 𝝆 factor B: 𝜶  factor C: 𝜷 factor D: 𝝉 factor E: 

𝑳𝒐𝒐𝒑𝒔𝑻𝑶𝑻 

factor F: 𝒏 

effect  -15.64 6.83 -25.55 3.83 -5.79 140.65 

mean square of the treatment  1.57E+05 2.98E+04 4.18E+05 9.39E+03 2.15E+04 1.27E+07 

sig. 0.000 0.000 0.000 0.000 0.000 0.000 

       

Outcome #2: 𝑮 factor A: 𝝆 factor B: 𝜶 factor C: 𝜷 factor D: 𝝉 factor E: 

𝑳𝒐𝒐𝒑𝒔𝑻𝑶𝑻 

factor F: 𝒏 

effect  5.00 -4.00 4.60 0.40 3.60 -17.20 

mean square of the treatment  0.39 0.25 0.33 0.00 0.20 4.62 

sig. 0.090 0.173 0.118 0.890 0.219 0.000 

       

Outcome #3: 𝑬 factor A: 𝝆 factor B: 𝜶 factor C: 𝜷 factor D: 𝝉 factor E: 

𝑳𝒐𝒐𝒑𝒔𝑻𝑶𝑻 

factor F: 𝒏 

effect  -0.39 0.03 -1.18 0.01 -0.50 1.13 

mean square of the treatment  0.00 0.00 0.02 0.00 0.00 0.02 

sig. 0.095 0.903 0.000 0.962 0.031 0.000 

Table 3: DOE results for the first set of analyses. 

Table 3 shows that all the factors investigated exhibit a significant effect on the total distance returned 

by the algorithm. More precisely, 𝛼 and 𝐿𝑜𝑜𝑝𝑠𝑇𝑂𝑇 show a positive effect on that outcome, while 

𝜌, 𝛽, 𝜏 and 𝑛 have a negative effect. Hence, the most effective setting of those parameters, taking into 

account the fact that the total distance should be minimized, is as follows: 𝜌=0.9; 𝛼=1; 𝛽=5; 𝜏=0.1; 

𝐿𝑜𝑜𝑝𝑠𝑇𝑂𝑇=20,000. For instance, 𝜌 has a negative effect on the distance, meaning that increasing 𝜌 

                                                      
2 To be more precise, we also carried out a 5-factor DOE, excluding 𝐿𝑜𝑜𝑝𝑠𝑇𝑂𝑇, as its impact on the algorithm 

performance would be obvious (the higher the number of iterations allowed, the better the ability of the 

algorithm to identify the “best found” solution). It is worth mentioning that the outcomes obtained with the 5-

factor DOE correspond perfectly with those of the 6-factor DOE. 
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would reduce the resulting distance returned by the algorithm. Note that two values of this parameter 

were tested, i.e. 𝜌 = 0.5 and 𝜌 = 0.9. As the distance should be minimized, the highest value of 𝜌 is to 

be preferred, i.e. 𝜌 = 0.9. Similar considerations can easily be extended to the remaining parameters. 

It is easy to note that the most effective setting is very similar to that identified as returning the best 

performance of the FW-ACO algorithm in the previous subsection.  

In addition, the results in Table 3 indicate that none of the ACO parameters has a significant effect on 

𝐺 and thus on the ability of the FW-ACO algorithm to converge to the “best found” solution. This is 

an interesting outcome, as it suggests that the FW-ACO algorithm is robust in this respect. The only 

significant effect is given by 𝑛, which, as already mentioned, is a problem constraint rather than a 

parameter of the algorithm. It should also be noted that 𝐺 should be maximized, which justifies the 

fact that the effects observed against this outcome are opposite to those observed against outcomes #1 

and #3. Finally, only two ACO parameters (i.e. 𝛽 and 𝐿𝑜𝑜𝑝𝑠𝑇𝑂𝑇) affect the average error rate 𝐸 of the 

algorithm to a significant extent. Both parameters have a positive effect on 𝐸, which is to be 

minimized, thus confirming the choice of the highest values of those parameters.  

4.2 Second set of analyses: comparison with other routing strategies 

4.2.1 Routing algorithms 

In the second set of analyses, we compare the FW-ACO algorithm with six algorithms used to route 

pickers in manual warehouses. A description of these algorithms is proposed below. 

(1) The S-shape routing policy is a simple heuristic strategy, which is based on the assumption 

that any aisle containing at least one picking location to be visited should be traversed along 

its entire length, unless it is the last aisle visited. Aisles where nothing has to be picked are 

skipped (Roodbergen & de Koster, 2001a). As we have already discussed, the S-shape routing 

strategy is not optimal, meaning that it does not return the shortest path; this is also the case 

for the largest gap strategy described below. Nonetheless, these algorithms are used as a 

benchmark because they are both popular in the industry and easy to understood and use by 

order pickers (Petersen, 1999); 

(2) In the largest gap policy, the “gap” represents the distance between any two adjacent picking 

locations in an aisle, between the first pick and the front aisle, or between the last pick and the 

back aisle. The rationale of this policy is to avoid covering the “largest gap”. Accordingly, if 

the largest gap is between two adjacent picking locations, the picker performs a return route 

from both ends of the aisle. Otherwise, a return route from either the front or back aisle is used 

(Roodbergen & de Koster, 2001a); 
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(3) The exact algorithm by Ratliff & Rosenthal (1983) is used as a benchmark for the results of 

the proposed algorithm in 1-block warehouse configurations, for which it is able to provide 

the exact solution; 

(4) The routing algorithm by Roodbergen & de Koster (2001b), which returns the shortest path in 

warehouses with a middle aisle, is used as a benchmark for 2-block warehouse configurations; 

(5) The “Combined+” algorithm (Roodbergen & de Koster, 2001a) is a metaheuristic algorithm 

that has proven effective in finding good solutions for routing order pickers in warehouses 

with multiple cross-aisles. It is used as a benchmark for all warehouse configurations 

examined; 

(6) The MMAS (Stützle & Hoos, 2000) is an adaptation of the ACO algorithm, which differs 

from traditional ACO in three main points, namely the pheromone update rule, the range of 

values of the pheromone and the initialization of the pheromone on the graph. It is used as a 

benchmark for all warehouse configurations analysed. The MMAS was chosen because it is 

derived from the ACO algorithm, which is also the case for the FW-ACO algorithm proposed 

in this paper. Hence, comparing the related outcomes is useful to judge whether the adaptation 

introduced by the FW-ACO algorithm is more effective than that of the MMAS. Moreover, 

the MMAS has been compared with other versions of the ant algorithms and demonstrated to 

outperform them (Shtovba, 2005).  

Algorithms 3-6 were all coded using Python, exploiting the warehouse representation by graph 

described in section 3.3, while algorithms 1-2 were solved manually for each scenario examined. 

4.2.2 Design factors 

In this set of analyses, we consider the following design factors: 

(1) Warehouse layout: three different layouts, denoted as A, B and C, were considered for a 

rectangular warehouse. These layouts differ in: 

o the position of the depot, which is located in the bottom left corner of the warehouse in 

configuration A and at the bottom centre of the warehouse in configurations B and C;  

o the orientation of aisles, which are longitudinal in configuration A and B and transversal 

in configuration C. 

The rationale for the analysis of these layouts is to assess whether changes in warehouse 

structure could modify or affect the performance of the FW-ACO algorithm; 

(2) number of blocks: this was varied from 1 to 4 (step 1); 

(3) number of aisles: this was set at 4 or 10; 

(4) number of items in the picking list: 𝑛 was varied from 10 to 30 (step 10). 
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The warehouse configurations all have 𝑘𝑥=4 [m] and 𝑘𝑦=2 [m] and a number of storage locations per 

aisle side set at 11. Although these settings do not reflect any specific scenario, they are nonetheless 

representative of a real warehouse. Moreover, varying the warehouse settings allow to assess whether 

the algorithm performance depends on warehouse characteristics and size, and thus on problem 

complexity. For instance, moving from 4 to 10 aisles per block increases the total number of aisles in 

the warehouse by approx. 120%. Similarly, increasing the number of blocks in the warehouse from 1 

to 4 allows the performance of the proposed routing algorithm to be evaluated as a function of the 

overall number of storage locations, and thus the number of nodes 𝑁 of the warehouse graph, which 

increases from less than one hundred to more than five hundred nodes. 

Combining these settings with the different warehouse configurations, we obtain 3𝑥4𝑥2𝑥3 = 72 

scenarios. To facilitate the comparison between the outcomes provided by the FW-ACO algorithm and 

those of the six algorithms used as a benchmark, all the algorithms work on the same set of 𝑛 items for 

a given warehouse layout. 

4.2.3 Parameter setting 

We use the ACO settings that emerged as most effective from the first set of analyses, i.e. 𝜌=0.9; 

𝛼=1; 𝛽=5; 𝜏=0.1; 𝐿𝑜𝑜𝑝𝑠𝑇𝑂𝑇=20,000. 𝑄 and 𝑚 were kept unchanged compared to the first set of 

analyses. For each warehouse layout, 𝑛𝑠𝑖𝑚=30 runs of the algorithm were carried out. 

With respect to the MMAS algorithm, its main parameters were set as suggested by Stützle & Hoos 

(2000), i.e.: 𝛼=1; 𝛽=5; 𝜌=0.98; 𝑝𝑏𝑒𝑠𝑡=0.05; 𝑚=5. The computation of the maximum (𝜏𝑚𝑎𝑥) and 

minimum (𝜏𝑚𝑖𝑛) value of the pheromone trail was made as follows: 

𝜏𝑚𝑎𝑥 =
1

1−ρ
 

1

𝑓(𝑠𝑜𝑝𝑡)
  (9) 

𝜏𝑚𝑖𝑛 =
𝜏𝑚𝑎𝑥(1−𝑝𝑑𝑒𝑐)

(𝑎𝑣𝑔−1)𝑝𝑑𝑒𝑐
 (10) 

In the above formulae: 

 𝑓(𝑠𝑜𝑝𝑡) denotes the best solution found so far by the MMAS, meaning that any time a new 

best path is found, 𝜏𝑚𝑎𝑥 is updated accordingly;  

 𝑝𝑑𝑒𝑐  (= √𝑝𝑏𝑒𝑠𝑡
𝑛 ) denotes the probability of choosing a defined solution component. 𝑛 is the 

number of picking locations and 𝑎𝑣𝑔 =
𝑛

2
. 

With respect to the initialization (𝑡 = 0) of the pheromone trail, the following formula was used: 

𝜏0 =  
1

1−ρ
 

1

𝑓(𝑠̅)
 (11) 
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where 𝑓(�̅�) was obtained initially as the average length of 10,000 paths generated randomly for each 

of the 72 scenarios described before. This choice allows 𝜏0 to be set at a value consistent with the 

problem complexity.  

4.2.4 Results – travel distance 

For each scenario, Table 4 shows the travel distance of pickers [m], identified by the seven algorithms 

tested. Data in italics highlight the best results obtained for each scenario, as well as the algorithm(s) 

that returned the most effective solution for that scenario. The main considerations that can be 

formulated from the results in Table 4 are summarised below. 

1. FW-ACO vs. S-shape and largest gap. The FW-ACO algorithm always outperforms the S-

shape and largest gap routing strategies in the identification of the shortest path. Indeed, 

neither of these heuristic policies is able to identify a solution better than that returned by the 

proposed algorithm for a given warehouse configuration. Only in one scenario (i.e. warehouse 

type A, 𝑛=30, 10 aisles, 3 blocks), the largest gap policy returns the same result as the FW-

ACO, which is also the same as the Combined+ algorithm. 

2. FW-ACO vs. exact algorithms (i.e. Ratliff & Rosenthal, 1983 and Roodbergen & de Koster 

2001b). The FW-ACO returns the optimal length of the picking tour in 32 out of the 36 

scenarios for which the exact result is available (88.89% of optimal results), showing better 

performance compared to the Combined+ (24 out of the 36 scenarios, 66.67% of optimal 

results) and MMAS (28 out of 36 scenarios, 77.78% of optimal results). In particular, the FW-

ACO almost always returns the optimal route in warehouse layouts with 4 aisles (94.4% of 

optimal results), while in warehouse layouts with 10 aisles it is able to identify the optimal 

solution in 83.3% of the scenarios examined. 

3. Comparison of metaheuristic algorithms for 1-block and 2-block warehouses. From Table 4 it 

can be seen that under simple warehouse layouts, i.e. 1-block or 2-block warehouses, the 

Combined+, MMAS and FW-ACO algorithms all frequently converge to the same path, which 

is also the shortest, as can be deduced from a comparison with the exact solution. This is, for 

instance, the case for warehouse types A and B, with 𝑛=20, 4 aisles and 1 block. In fact, in 1-

block warehouses with 4 aisles, we have 𝑁=52 (𝑁𝑠=8 and 𝑁𝑝=44). If the picking list includes, 

for instance 𝑛=20 items, the picker should visit on average 5 picking locations in each aisle. 

Since the number of storage locations per aisle side is fixed (and set at 11), the nodes to be 

visited are likely to be very close to each other, resulting in limited room for optimization. 

Hence, it is reasonable to expect that the path returned by the different algorithms would be 

almost the same. Generalising this consideration, we could argue that if the warehouse has a 

simple structure (i.e. up to 2 blocks), the difference in the path returned by the Combined+, 

MMAS and FW-ACO is not so appreciable. More precisely, on average the FW-ACO 
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provides routes that are approximately 0.44% and 2.65% shorter than those generated by the 

MMAS and Combined+ algorithms in warehouse layouts up to 2 blocks. 

4. Comparison of metaheuristic algorithms for 3-block and 4-block warehouses. When looking 

at more complex warehouse configurations (e.g. 10 aisles, 3 blocks or 10 aisles, 4 blocks), an 

initial consideration is that there are no scenarios where the FW-ACO, MMAS and 

Combined+ algorithms all return the same travel distance. Conversely, we generally found 

that the FW-ACO is able to identify paths that are significantly shorter than those returned by 

both the MMAS and the Combined+ heuristic. Looking at this latter algorithm, only in some 

limited cases (e.g. warehouse types A, B and C, with 𝑛=30, 10 aisles and 3 blocks) the result 

returned is the same as the FW-ACO. In addition, in 55.56% of the scenarios considered the 

FW-ACO returns a path shorter than that returned by the MMAS. Even if taking the best 

solution returned either by the MMAS or the Combined+ algorithm, it is easy to see that the 

FW-ACO algorithm still returns better results in terms of path length in 16.67% of the 

scenarios examined, which all refer to either 𝑛=20 or 𝑛=30. This shows that the performance 

of the proposed algorithm is particularly appreciable when the number of items in the picking 

list is high. Overall, on average the routes generated by the FW-ACO are approximately 

2.09% and 8.43% shorter than those returned by the MMAS and Combined+ algorithms in 

warehouse layouts with 3 or 4 blocks.  

5. FW-ACO vs. MMAS. Because the FW-ACO and the MMAS are both derived from the ACO 

algorithm, it is useful to provide a detailed comparison of their performance. Table 4 shows 

that the MMAS has the same performance of the proposed FW-ACO in 62.5% of the 

warehouse configurations examined overall. Conversely, in the remaining 27 scenarios, the 

FW-ACO is able to return a shorter path compared to the MMAS. The two algorithms always 

return the same path when considering picking lists with 𝑛=10 items, no matter which 

warehouse configuration there is. Although the optimal solution is only available for 1-block 

and 2-block warehouses, the fact that both algorithms always converge to the same result 

could lead to the conclusion that this is also the optimal routing. Conversely, as 𝑛 increases 

(i.e. 𝑛=20 and 𝑛=30), the FW-ACO generally outperforms the MMAS, which is only able to 

return the same distance as the FW-ACO in 21 out of the 48 scenarios (43.7%). To be more 

precise, with 𝑛=20 the FW-ACO outperforms the MMAS by approximately 1.07% on 

average, while with 𝑛=30 the percentage difference between the two algorithms reaches 

2.72%. Overall, by combining this result with that of the previous points 3 and 4, we can 

conclude that as problem complexity increases, the FW-ACO algorithm is generally more 

effective at minimising the travel distance of the picker than the MMAS and Combined+ 

algorithms. 
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4.2.5 Results – computational performance 

We now compare the computational performance of the Combined+, MMAS and FW-ACO 

algorithms. With respect to the MMAS and FW-ACO, a preliminary comparison can be made using 

the outcomes proposed in Table 4, which also reports the computational time required to run these 

algorithms in all warehouse configurations investigated. From these outcomes, it can be argued that in 

general the FW-ACO algorithm is more efficient than the MMAS from a computational perspective, 

as it ensures an average saving of 6.30% in the computational time, with a peak of 8.06% saving 

where 𝑛=30. It is worth noting that these results refer to the ACO stage of the algorithm, whose 

computational time depends on problem complexity (𝑛) and the number of iterations allowed 

(𝐿𝑜𝑜𝑝𝑠𝑇𝑂𝑇). Indeed, the ACO stage of the algorithm should be run any time a new picking mission is 

started, while the FW stage does not depend on 𝑛 and needs to be carried out only once for a given 

warehouse layout3. 

As far as the Combined+ algorithm is concerned, its computational performance cannot be directly 

compared to that of the FW-ACO (and this is why it was not reported in Table 4), because the 

Combined+ does not make use of iterations but instead of a computational procedure, and thus 

generates only one route. To carry out a meaningful comparison, for some selected warehouse 

configurations we have recorded the total time required by the FW-ACO to achieve the “best found” 

solution. The scenarios examined reflect the most complex and the simplest warehouse configurations 

(4 blocks, 10 aisles and 1 block, 4 aisles respectively), with 𝑛=10, 20 and 30. The related results, 

averaged on the warehouse layouts (A, B and C) and on the simulation runs (𝑛𝑠𝑖𝑚=30), are proposed 

in Table 5 and compared to the computational time required to run the Combined+ algorithm on the 

same warehouse configuration, once again averaged on the warehouse layout. The same evaluation 

was made for the MMAS, with results again reported in Table 5. From these outcomes it is easy to see 

that both the FW-ACO and the MMAS are quite quick at converging to the “best found” solution (1.41 

s vs. 2.14 s on average), but that nonetheless the FW-ACO is generally more effective, ensuring a 

34.02% saving in the computational time compared to the MMAS. It can also be seen that for both 

algorithms the time required to reach the “best found” solution increases with 𝑛 and warehouse 

complexity. The computational time of the Combined+ algorithm seems to be less dependent on 𝑛, 

while it slightly increases with warehouse complexity. Overall, when 𝑛 increases, the Combined+ is 

usually faster than the FW-ACO algorithm, although the solution returned is as good as that of the 

FW-ACO algorithm in less than half the configurations tested in Table 5 (see Table 4).  

 

                                                      
3 For the sake of completeness, we report some results relating to the FW stage of the algorithm. This stage 

required on average 35.95 s (maximum 39.35 s, minimum 36.69 s, standard deviation 2.019 s) in the most 

complex warehouse configuration (i.e. 4 blocks, 10 aisles), and on average 0.080 s (maximum 0.100 s, minimum 

0.068 s, standard deviation 0.049 s) in the simplest one (i.e. 1 block, 4 aisles).  
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Scenario Benchmark algorithms  Proposed algorithm 

Warehouse 
layout 

𝒏 Number of 
aisles 

Number of 
blocks 

S-shape Largest gap Ratliff & 
Rosenthal 

(1983) 

Roodbergen 
& de Koster 

(2001b) 

Combined+ MMAS Computational 
time - MMAS 

FW-
ACO 

Computational 
time – FW-ACO 

A 10 4 1 164 152 148 - 152 148 9.623 148 9.487 

   2 224 196 - 176 202 176 9.035 176 9.171 

   3 304 268 - - 288 236 10.024 236 9.244 

   4 340 276 - - 276 260 10.762 260 8.218 

  10 1 312 216 204 - 224 204 13.108 204 13.442 

   2 340 316 - 260 260 260 10.945 260 11.002 

   3 444 368 - - 358 296 12.607 296 9.724 

   4 468 464 - - 440 316 9.730 316 9.021 

 20 4 1 164 172 152 - 152 152 24.253 152 18.821 

   2 316 284 - 248 284 256 23.269 256 19.201 

   3 392 356 - - 330 320 26.444 316 20.460 

   4 516 388 - - 352 360 26.998 352 25.109 

  10 1 332 328 292  292 292 27.183 292 26.163 

   2 544 436 - 400 420 408 23.805 404 21.411 

   3 572 432 - - 424 412 21.087 404 19.879 

   4 648 644 - - 550 504 23.257 492 24.609 

 30 4 1 172 192 164 - 164 164 37.968 164 35.886 

   2 308 300 - 264 290 264 31.399 264 31.740 

   3 472 424 - - 398 388 32.640 388 27.660 

   4 592 516 - - 468 496 37.021 468 28.793 

  10 1 356 376 316 - 326 316 34.769 316 28.564 

   2 592 524 - 476 484 496 33.471 484 29.612 

   3 768 540 - - 540 580 34.312 540 27.032 

   4 888 800 - - 654 660 33.914 640 36.572 

B 10 4 1 164 152 148 - 164 148 10.631 148 12.043 

   2 220 204 - 176 176 176 14.168 176 11.285 

   3 316 270 - - 288 236 10.532 236 9.819 

   4 292 320 - - 276 260 9.326 260 11.916 

  10 1 312 216 196 - 254 196 9.128 196 9.576 

   2 344 320 - 260 260 264 11.237 260 9.530 

   3 456 426 - - 368 292 10.322 292 9.320 

   4 472 460 - - 412 324 13.132 324 12.773 

 20 4 1 164 160 152 - 152 152 27.720 152 23.612 

   2 316 292 - 256 256 256 22.513 256 22.339 

   3 408 350 - - 314 308 21.213 308 21.437 
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   4 516 452 - - 356 360 23.377 356 21.037 

  10 1 332 328 292 - 296 292 22.332 292 20.583 

   2 544 468 - 392 396 400 24.689 396 24.359 

   3 552 512 - - 420 408 24.941 404 22.822 

   4 660 648 - - 546 492 23.054 492 19.612 

 30 4 1 172 192 158 - 158 158 37.968 158 28.247 

   2 308 296 - 264 264 264 31.399 264 36.115 

   3 476 424 - - 394 384 32.640 384 37.944 

   4 592 572 - - 464 492 37.021 460 32.547 

  10 1 356 376 316 - 316 316 34.769 316 29.719 

   2 612 556 - 484 484 500 33.471 484 40.685 

   3 720 668 - - 560 576 34.312 560 31.230 

   4 916 876 - - 654 668 33.914 640 32.308 

C 10 4 1 164 152 130 - 130 130 10.593 130 13.172 

   2 224 204 - 176 176 176 10.137 176 9.902 

   3 320 268 - - 288 260 10.566 260 10.277 

   4 344 276 - - 252 244 12.024 244 10.804 

  10 1 312 216 192 - 192 192 10.160 192 11.700 

   2 324 324 - 260 260 260 9.352 260 9.448 

   3 444 368 - - 360 296 10.834 296 9.190 

   4 468 464 - - 404 316 11.027 316 11.576 

 20 4 1 164 172 146 - 146 146 24.957 146 21.882 

   2 304 292 - 256 256 256 26.134 256 26.318 

   3 392 356 - - 312 316 22.666 298 21.984 

   4 544 388 - - 356 364 20.251 356 24.191 

  10 1 332 328 272 - 272 272 22.446 272 20.108 

   2 504 444 - 390 390 390 21.523 390 20.989 

   3 528 438 - - 416 406 25.802 398 25.386 

   4 648 644 - - 528 508 22.507 492 25.079 

 30 4 1 172 192 158 - 158 162 36.773 158 31.571 

   2 296 316 - 260 260 260 33.104 260 32.610 

   3 436 424 - - 382 386 40.522 370 33.442 

   4 632 516 - - 452 484 33.648 452 34.793 

  10 1 356 376 312 - 312 316 35.435 312 27.114 

   2 584 540 - 484 484 504 36.553 484 34.894 

   3 724 624 - - 584 600 39.606 584 37.811 

   4 924 800 - - 642 672 37.099 630 30.994 

Table 4: experimental results (shortest path in [m] and computational time in [s]) for the second set of analyses - comparison with other routing strategies. Note: italics = best found 

solution.
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 Warehouse configuration FW-ACO MMAS Combined+ 

𝑛 Number 
of aisles 

Number of 
blocks 

Computational time to 
reach the “best found” 

solution [s] 

Computational time to 
reach the “best found” 

solution [s] 

Computational time to 
reach the solution [s] 

10 4 1 0.0052 0.0109 0.125 

10 10 4 0.0932 0.1246 0.445 

20 4 1 0.0395 0.0729 0.130 

20 10 4 2.0774 4.8990 1.515 

30 4 1 0.3431 0.4581 0.140 

30 10 4 5.9503 7.3303 1.005 

Table 5: experimental results for the second set of analyses – details of the computational time for FW-ACO, MMAS 

and Combined+ in some selected warehouse configurations. 

5 A case study 

We now illustrate the application of the FW-ACO algorithm in the case of Number1 Logistics Group, 

a major Italian company operating as a logistics service provider for the grocery, fast-moving 

consumer goods, pharmaceutical and Ho.Re.Ca. fields. Number1 owns a network of 7 distribution 

centres, 37 transit points and 21 warehouses, all located in Italy, and in 2015 it handled approximately 

323 million boxes, with 60 million of them prepared by means of picking activities. Overall, this led to 

more than 11 million picking locations being visited. 

We consider Number1’s warehouse located in Parma and examine the portion of the warehouse 

dedicated to baby food. This is a 2-block warehouse, with 12 aisles per block and 66 storage locations 

per aisle side. The warehouse consists of racks, with 6 levels in height; picking activities are carried 

out at ground level. A manual, picker-to-part logic is adopted. The average number of pickers in this 

part of the warehouse is 10-12; however, pickers can increase to 15-18 during peak periods. Overall, 

this part of the warehouse includes 2𝑥12𝑥66 = 1584 storage locations. The input/output depot is 

located at the bottom of the first (left) aisle. Further warehouse parameters are 𝑘𝑥 = 5.4 𝑚 and 𝑘𝑦 =

0.93 𝑚. The stock consists of approximately 700 different items grouped into 3 categories, labelled as 

𝐶1, 𝐶2 and 𝐶3. Product categories reflect the weight of the items, which is higher for 𝐶1 and lower for 

𝐶3. Therefore, the picker should pick, in order of priority, the item from 𝐶1, to ensure that they will not 

damage the remaining items picked, then items from 𝐶2, and lastly items from 𝐶3. The number of 

storage locations for the item categories is 310, 298 and 976 respectively for 𝐶1, 𝐶2 and 𝐶3. The 

current routing policy adopted in the warehouse is S-shape. The picker starts from the bottom left 

corner of the warehouse and picks items from 𝐶1; he then moves to the next aisles to pick items from 

𝐶2 and 𝐶3, and lastly returns to the depot.  

To show the implementation of the FW-ACO in this context, we consider a picking list with 𝑛=30 

items, which reflects the average length of the picking lists for baby food handled by the company in 

2015. Items are located as shown in Figure 4. Out of the 30 items, 6 are from 𝐶1, 7 from 𝐶2 and 

remaining ones from 𝐶3. The S-shape routing policy, coupled with a proper allocation of the item 
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categories, provides an effective route (depicted in Figure 4-a) that respects the order of priority of the 

items to be picked and is easy to understand by pickers. However, the policy is less effective with 

respect to the total distance covered, which accounts for approximately 900 m. The FW-ACO 

algorithm was run on the same picking problem, with the settings described in section 4.1.3. However, 

compared to the analyses described previously, in this particular case study the picking tour is 

constrained by the different priorities given to the item categories during picking4. This means that the 

FW-ACO should identify the shortest path and at the same time meet the constraint of picking items 

from 𝐶1 first and items from 𝐶3 last. This point was taken into account by introducing a slight 

correction in the ACO stage of the algorithm. In particular, ACO was forced to work on one group of 

items at a time: items from 𝐶2 can only be selected if all items from 𝐶1 have been picked; otherwise, 

the probability of visiting the location of items from 𝐶2 is set at zero. The same approach is used for 

items from 𝐶3, whose probability of being picked becomes higher than zero only if all items from 𝐶1 

and 𝐶2 have been picked. The same correction was implemented in the MMAS algorithm. In Table 6 

we compare the results returned by the two algorithms, in terms of “best found” path and 

computational time on a sample of 𝑛𝑠𝑖𝑚=10 runs5. The “best found” paths for MMAS and FW-ACO 

are depicted in Figure 4-b and 4-c. From Table 6 it is easy to see that, although the computational time 

required to run 20,000 iterations of the MMAS and FW-ACO algorithms is not significantly different, 

the FW-ACO needs 58.86% less time to reach the “best found” solution compared to the MMAS. As 

far as the travel distance is concerned, both the FW-ACO and the MMAS are able to identify routes 

that respect the order of priority of the items to be picked and that, at the same time, are significantly 

shorter compared to the S-shape path. The FW-ACO algorithm, in particular, returns a total distance of 

approximately 608.04 m, with a 32.44% reduction compared to the original one. Also, the “best 

found” route of the FW-ACO ensures a saving of approximately 3.26% in path length, compared to 

the MMAS. 

 Travel distance [m] Total computational 

time [s] 

Computational time [s] to reach 

the “best found” solution 

S-shape 900 - - 

FW-ACO 608.04 30.26 5.32 

MMAS 628.50 33.48 12.87 

Table 6: performance of the MMAS and FW-ACO algorithms in the case study.  

                                                      
4 Because of the presence of constraints on the order in which items should be picked, neither the Combined+, 

largest gap nor the optimal algorithm can be applied (in their original form) to this specific case study. Indeed, 

all these algorithms would return a picking tour that fails to comply with the order of priority of the items 

picked; therefore, we cannot compare the performance of the FW-ACO with these routing algorithms in the 

targeted context. 
5 Again, the results in Table 6 refer to the ACO stage of the FW-ACO algorithm. As far as the FW stage is 

concerned, it required on average 18.38 s (maximum 21.91 s, minimum 17.49 s, standard deviation 0.91 s). 
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(a)  (b)  (c) 

Figure 4: current routing (a) and routes returned by the FW-ACO (b) and MMAS (c) in the case study. 

 

depot depot depot
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The percentage saving in the travel distance generated by the FW-ACO compared to the S-shape route 

is expected to decrease slightly with the increase in 𝑛. Indeed, as the route is constrained, with more 

items to be picked the path returned by the FW-ACO is likely to be more similar to that generated by 

the S-shape policy; conversely, savings in the travel distance could be higher for a lower 𝑛. To 

quantify this point, the analysis was extended to the overall number of picking lists of baby food 

handled by Number1’s warehouse in 2015, i.e. approximately 45,000 picking lists, on which we tested 

both the FW-ACO and the MMAS algorithms. We found that overall, the FW-ACO algorithm is able 

to reduce the travel distance of pickers by almost 22.05% compared to the current policy used by the 

company; conversely, the saving generated by the MMAS was less appreciable (14.15%). 

Reducing the travel distance has obvious consequences for the time required for picking operations. 

More specifically, in the portion of warehouse analysed, we estimated that the total saving in the 

picking distance that can be achieved when adopting the FW-ACO algorithm could reach 19,845 

m/day (referring to the picking activities carried out in 2015). Hypothesising an average speed of 1.2 

m/s, which is a typical walking speed for a picker (Bottani et al., 2012), and 220 working days per 

year, such a saving results in approximately 1,010.7 hours/year, which would reduce the cost of 

picking activities by more than 18,000 €/year. 

6 Conclusions 

This paper has proposed a new routing algorithm for the minimization of the travel distance of pickers 

in manual warehouses. The algorithm, called FW-ACO, combines the ACO metaheuristic and the FW 

algorithm. This latter algorithm was chosen for integration with ACO because of its ability to find the 

shortest path between any pair of nodes even in a complex graph, as is frequently the case in complex 

warehouse structures. The FW-ACO is a two-stage algorithm: in the first stage, the warehouse layout 

is schematically represented as a graph and the FW algorithm is used to identify the shortest path 

connecting each pair of nodes in the graph. The ACO algorithm is used in the second stage to identify 

the shortest route of the picker. 

The performance of the FW-ACO algorithm was tested by means of two sets of analyses. The first 

analysis aimed to assess whether the performance of the FW-ACO algorithm can be affected by the 

settings of the typical ACO parameters (𝜌, 𝜏, 𝛼, 𝛽, 𝐿𝑜𝑜𝑝𝑠𝑇𝑂𝑇), as well as by the problem complexity 

(𝑛). From this set of analyses, it can be concluded that, in general, the FW-ACO algorithm is 

particularly effective in finding the shortest path of pickers in the case of small-scale problems (𝑛=10 

or 𝑛=20 items). Nonetheless, with appropriate settings, the algorithm also becomes effective for more 

complex problems (𝑛=50). A full-factorial DOE analysis confirmed the suitability of the following 

algorithm settings: 𝜌=0.9; 𝛼=1; 𝛽=5; 𝜏=0.1; 𝐿𝑜𝑜𝑝𝑠
𝑇𝑂𝑇

=20,000.  
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The second set of analyses compared the performance of the FW-ACO algorithm, in the most effective 

setting, with six routing algorithms, including both exact and heuristic procedures. Different 

warehouse layouts, in terms of number of blocks, number of aisles and location of the input/output 

depot, as well as different levels of problem complexity (𝑛), were considered in the analysis. The 

results enable us to conclude that the FW-ACO always outperforms both the S-shape and largest gap 

routing strategies in the identification of the shortest path, under all the warehouse configurations 

examined. The FW-ACO also returns the optimal length of the picking tour in 32 out of the 36 

scenarios for which the exact result is available (88.89% of optimal results), resulting in a better 

performance than the MMAS and Combined+ algorithms. Most importantly, the performance of the 

FW-ACO algorithm is particularly appreciable for complex warehouse configurations, where the 

shortest path generated is significantly better than that returned by the remaining routing algorithms. 

In these configurations, even if taking the best solution returned by either the MMAS or the 

Combined+ algorithm, the FW-ACO algorithm still returns better results in terms of path length in 

16.67% of the scenarios, which all refer to either 𝑛=20 or 𝑛=30, showing good performance even in 

case of high 𝑛. This suggests that the proposed algorithm goes beyond a simple combination of 

existing heuristics. In fact, our proposed algorithm is also a combination, but of an existing heuristic 

plus an operational research algorithm (i.e. the Floyd Warshall one), and this is probably the reason 

why its performance is better than that of the existing heuristics. Therefore, from the point of view of 

travel distance, we can conclude that the FW-ACO algorithm adds quality compared to some well-

known heuristic routing strategies. 

A further relevant point evaluated in this set of analyses is the computational time required by the FW-

ACO algorithm. As picker routing is an operational decision, which has to be taken almost in real-

time, a routing algorithm should provide good routes in a short time. Because of its two-stage 

structure, the FW-ACO algorithm is particularly effective in this regard. Indeed, the FW stage of the 

algorithm, which needs to be carried out only once for a given warehouse layout, required 

approximately 36 s to be run on the most complex warehouse configuration examined (i.e. 4 blocks, 

10 aisles). The ACO stage, which instead needs to be run any time a new picking mission is started, 

required on average 33 s to be run with 𝑛=30 and 𝐿𝑜𝑜𝑝𝑠𝑇𝑂𝑇=20,000 in the most complex warehouse 

configuration. In the same configuration, the FW-ACO required on average 5.95 s to converge to the 

“best found” solution. Such a computational time is fully compatible with the warehouse manager’s 

need to adopt an algorithm in real time.  

As a final step, the FW-ACO algorithm was applied to the warehouse of a main Italian logistics 

company to show its practical usefulness and quantify the savings resulting from its implementation in 

a real case. The application context was interesting because of the presence of constraints in picking 

operations. Specifically, the items handled in the targeted warehouse are grouped into three categories 

(𝐶1, 𝐶2 and 𝐶3), with items from 𝐶1 that need to be picked first because of their higher weight, and 
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items from 𝐶3 that need to be picked last. Some small adaptations were made to the FW-ACO to 

ensure that the algorithm would find a picking route consistent with these constraints. The application 

of the proposed algorithm on a picking list with 𝑛=30 items showed that the FW-ACO is effective in 

finding a route that respects the order of priority of the items to be picked and, at the same time, 

enables the original routing to be reduced by more than 32%. The algorithm also performed better than 

the MMAS, which was also applied to the case study, both in terms of path lengths (-3.26% route 

length) and computational performance (-58.88% computational time required to reach the “best 

found” solution). Overall, the use of the FW-ACO instead of the original routing policy (i.e. S-shape) 

results in a significant reduction (more than 22%) in the total picking distance covered in 2015 by the 

company in question. 

The above summary leads to the conclusion that the proposed algorithm shows promising results, 

which are expected to encourage its practical adoption. More specifically, warehouse managers are 

only expected to run the FW stage of the algorithm on their warehouse configuration once; they could 

then effectively exploit the ACO stage of the algorithm to identify the shortest path of pickers before 

they start a new picking mission. Obviously, pickers are generally not expected to understand the logic 

of metaheuristic algorithms, and therefore when adopting the proposed algorithm, the sequencing of 

the items should be given to the picker. For instance, the shortest path can be communicated to the 

picker almost in real time via voice picking or mobile terminals. Furthermore, the algorithm is suitable 

for application in any warehouse layout, and turned out to be particularly useful in configurations for 

which exact algorithms are not available; in these configurations, the algorithm provided very good 

outcomes in a limited computational time. The case study also showed that the FW-ACO algorithm 

could be adapted to contexts where constraints exist on picking operations (e.g. a warehouse that 

handles breakable items); these scenarios are rarely considered in scientific literature when dealing 

with the minimization of picking distances. As a final point, from a scientific perspective the 

application of the ACO algorithm to the picking problem has been explored in a very limited number 

of studies. Similarly, the integration of the ACO algorithm with the FW one has not been proposed by 

researchers to our knowledge. For these reasons, as well as the promising results obtained by the 

proposed algorithm, we believe that this paper represents an interesting addition to the scientific 

literature. Future studies could investigate the adaptation of the FW-ACO algorithm to different 

picking contexts (e.g. batch picking or zone picking), the use of the algorithm in combination with a 

specific storage allocation policy (e.g. COI-based allocation), or the extension of the algorithm to the 

case of more pickers, with congestion considerations. More recent nature-inspired algorithms could 

also be applied to the picking problem and the related performance could be compared to the FW-

ACO algorithm to gain further insights. A further interesting future research direction is to embody the 

FW-ACO algorithm in an ad hoc software tool, to automate the algorithm steps and make it directly 

usable by warehouse managers. 



36 

 

References 

1. Bäck, T. (1996). Evolutionary algorithms in theory and practice. USA: Oxford University Press. 

2. Bellman, R. (1958). On a routing problem. Quarterly of Applied Mathematics, 16, 87-90. 

3. Bottani, E., Cecconi, M., Vignali, G., & Montanari, R. (2012). Optimisation of storage allocation in order 

picking operations through a genetic algorithm. International Journal of Logistics: Research and Applications, 

15(2), 127-146. 

4. Bottani, E., Montanari, R., Rinaldi, M., & Vignali, G. (2015). Intelligent Algorithms for Warehouse 

Management. In C. Kahraman, & S. Çevik Onar, Intelligent Techniques in Engineering Management: Theory 

and Applications, p.645-667. Switzerland: Springer International Publishing. 

5. Box, G., Hunter, J., & Hunter, W. (2005). Statistics for Experimenters: Design, Innovation, and Discovery. 

Hoboken (USA): Wiley-Interscience. 

6. Brezina, I., & Čičková, Z. (2011). Solving the travelling salesman problem using the ant colony 

optimization. Management Information Systems, 6(4), 10-14. 

7. Caron, F., Marchet, G., & Perego, A. (1998). Routing policies and COI-based storage policies in picker-to-

part systems. International Journal of Production Research, 36(3), 713-732. 

8. Caron, F., Marchet, G., & Perego, A. (2000). Optimal layout in low-level picker-to-part systems. 

International Journal of Production Research, 38(1), 101-111. 

9. Çelk, M., & Süral, H. (2014). Order Picking under Random and Turnover-based Storage Policies in 

Fishbone Aisle Warehouses. IIE Transactions 46 (3), 283–300. 

10. Chen, F., Wang, H., Qi, C., & Xie, Y. (2013). An ant colony optimization routing algorithm for two order 

pickers with congestion consideration. Computers & Industrial Engineering, 66(1), 77-85. 

11. Chen, F., Wang, H., Xie, Y., & Qi, C. (2016). An ACO-based online routing method for multiple order 

pickers with congestion consideration in warehouse. Journal of Intelligent Manufacturing, 27(2), 389-408. 

DOI:10.1007/s10845-014-0871-1 

12. Colorni, A., Dorigo, M., & Maniezzo, V. (1991). Distributed optimization by ant colonies. Proceedings of 

ECAL91—European Conference on Artificial Life, (p. 134–142). Paris (France). Retrieved March 3, 2015, from 

http://faculty.washington.edu/paymana/swarm/colorni92-ecal.pdf 

13. Cormen, T., Leiserson, C., & Rivest, R. (2009). Introduction to Algorithms. USA: Massachusetts Institute 

of Technology. 

14. Coyle, J., Bardi, E., & Langley, C. (1996). The management of business logistics. Minneapolis: West 

Publishing Company. 

15. De Jong, J., & Wiering, M. (2001). Multiple ant colony systems for the busstop allocation problem. 

University of Utrecht, Department of Philology, Utrecht (Holland). Retrieved July 2, 2015 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.9587 

16. de Koster, R., & Van der Poort, E. (1998). Routing orderpickers in a warehouse: a comparison between 

optimal and heuristic solutions. IIE Transactions, 30, 469- 480. 

17. de Koster, R., Le-Duc, T., & Roodbergen, J. (2007). Design and control of warehouse order picking: a 

literature review. European Journal of Operational Research, 182(2), 481-501. 

18. de Koster, R., Le-Duc, T., & Zaerpour, N. (2012). Determining the number of zones in a pick-and-sort 

order picking system. International Journal of Production Research, 50(3), 757-771. 



37 

 

19. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). The ant system: optimization by a colony of cooperating 

agents. IEEE Transactions on Systems, Man and Cybernetics - Part B, 26(1), 1-13. 

20. Eggers, J., Feillet, D., Kehl, S., Wagner, M., & Yannou, B. (2003). Optimization of the keyboard 

arrangement problem using an ant colony algorithm. European Journal of Operational Research, 148, 672-686. 

21. Fidanova, S., & Marinov, P. (2013). Number of ants versus number of iterations on Ant Colony 

Optimization algorithm for wireless sensor layout. Institute of Information and Communication Technologies, 

Bulgarian Academy of Science. Retrieved March 20, 2016, from http://www.iict.bas.bg/acomin/events/8-10-

October-

2013/Number%20of%20Ants%20Versus%20Number%20of%20Iterations%20on%20Ant%20Colony%20Optim

ization%20Algorithm%20for%20Wireless%20Sensor%20Layout.pdf 

22. Fidanova, S., Marinov, P., Paprzycki, M. (2014). Influence of the number of ants on multi-objective Ant 

Colony Optimization algorithm for wireless sensor network layout. Large-Scale Scientific Computing, 8353 

LNCS, pp.232-239 

23. Floyd, R. (1962). Algorithm 97: Shortest Path. Communications of the ACM, 5(6), 345. 

DOI:10.1145/367766.368168 

24. Frazelle, E. (2002). World-class Warehousing and Material Handling. New York: McGraw Hill. 

25. Gademann, N., & Van de Velde, S. (2005). Order batching to minimize total travel time in a parallel-aisle 

warehouse. IIE Transactions, 37, 63-75. 

26. Gu, J., Goetschalckx, M., & McGinnis, L. (2007). Research on warehouse operation: A comprehensive 

review. European Journal of Operational Research, 177, 1-21. 

27. Hall, R. (1993). Distance approximations for routing manual pickers in a warehouse. IIE Transactions, 

25(4), 76-87. 

28. Henn, S. (2012). Algorithms for on-line order batching in an order picking warehouse. Computers & 

Operations Research, 39, 2549-2563. 

29. Henn, S., Koch, S., & Wascher, G. (2011). Order batching in order picking warehouses: a survey of 

solution approaches. Retrieved March 18, 2016, from 

http://www.fww.ovgu.de/fww_media/femm/femm_2011/2011_01.pdf 

30. Henn, S., & Schmid, V. (2013). Metaheuristics for order batching and sequencing in manual order picking 

systems. Computers & Industrial Engineering, 22, 338-351. 

31. Hong, S., Johnson, A.L., Peters, B.A., (2012). Batch picking in narrow-aisle order picking systems with 

consideration for picker blocking. European Journal of Operational Research, 221, 557-570 

32. Jalali, S., & Noroozi, M. (2009). Determination of the optimal escape routes of underground mine networks 

in emergency cases. Safety Science, 47, 1077-1082. 

33. Jane, C.-C., & Laih, Y.-W. (2005). A clustering algorithm for item assignment in a synchronized zone 

order picking system. European Journal of Operational Research, 166, 489-496. 

34. Jarvis, J., & McDowell, E. (1991). Optimal product layout in an order picking warehouse. IIE Transactions, 

23(1), 93-102. 

35. Kim, B.-I., & Jeon, S. (2009). A comparison of algorithms for origin–destination matrix generation on real 

road networks and an approximation approach. Computers & Industrial Engineering, 56, 70-76. 

http://www.fww.ovgu.de/fww_media/femm/femm_2011/2011_01.pdf


38 

 

36. Kuhlman, D. (2013). A Python Book: Beginning Python, Advanced Python, and Python Exercises. 

Retrieved July 2, 2016, from http://www.davekuhlman.org/python_book_01.pdf 

37. Kulak, O., Sahin, Y., & Taner, M. (2012). Joint order batching and picker routing in single and multiple-

cross-aisle warehouses using cluster-based tabu search algorithms. Flexible Services and Manufacturing Journal, 

24(1), 52-80. 

38. Le-Duc, T., & de Koster, R. (2007). Travel time estimation and order batching in a 2-block warehouse. 

European Journal of Operational Research, 176(1), 374-388. 

39. Lu, W., McFarlane, D., Giannikas, V., Zhang, Q. (2016). An algorithm for dynamic order-picking in 

warehouse operations. European Journal of Operational Research, 248 (1), 107-122. 

40. Lucic, P. (2002). Modeling transportation problems using concepts of swarm intelligence and soft 

computing. Polytechnic Institute and State University, Civil Engineering Department, Virginia (USA). Retrieved 

June 5, 2015, from http://scholar.lib.vt.edu/theses/available/etd-03092002-

231724/unrestricted/Panta_Lucic_ED.pdf 

41. Manzini, R., Bindi, F., Ferrari, E., & Pareschi, A. (2012). Correlated storage assignment and iso-time 

mapping adopting tri-later stackers. A case study from tile industry. In R. Manzini, Warehousing in the Global 

Supply Chain - Advanced Models, Tools and Applications for Storage Systems (p. 373-396). London: Springer-

Verlag. 

42. Mariano, C., & Morales, E. (1999). MOAQ: An Ant-Q Algorithm for Multiple Objective Optimization 

Problems. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), 1, p. 894-901. 

San-Francisco (USA). 

43. Matusiak, M., de Koster, R., Kroon, L., & Saarinen, J. (2014). A fast simulated annealing method for 

batching precedence-constrained customer orders in a warehouse. European Journal of Operational Research, 

236, 968–977. 

44. Montgomery, D., & Runger, G. (2003). Applied statistics and probability for engineers. New York (USA): 

John Wiley & Sons, Inc. 

45. Mowrey, C.H., Parikh, P.J. (2014). Mixed-width aisle configurations for order picking in distribution 

centers. European Journal of Operational Research, 232(1), 87–97 

46. Pan, J.C.-H., & Wu, M.-H. (2012). Throughput analysis for order picking system with multiple pickers and 

aisle congestion considerations. Computers & Operations Research, 39(7), 1661-1672 

47. Parikh, P., & Meller, R. (2010). A travel-time model for a person-onboard order picking system. European 

Journal of Operational Research, 200, 385-394. 

48. Petersen, C. (1997). An evaluation of order picking routeing policies. International Journal of Operations & 

Production Management, 17(11), 1098-1111. 

49. Petersen, C. (1999). The impact of routing and storage policies on warehouse efficiency. International 

Journal of Operations & Production Management, 19 (10), 1053-1064. 

50. Petersen, C. (2002). Considerations in order picking zone configuration. International Journal of Operations 

& Production Management, 22(7), 793-805. 

51. Petersen, C., & Aase, G. (2004). A comparison of picking, storage, and routing policies in manual order 

picking. International Journal of Production Economics, 92(1), 11-19. 



39 

 

52. Petersen, C., & Schmenner, R. (1999). An evaluation of routing and volume-based storage policies in an 

order picking operation. Decision Science, 30(2), 481-501. 

53. Rao, S.S., & Adil, G.K., (2013). Optimal class boundaries, number of aisles, and pick list size for low-level 

order picking systems. IIE Transactions, 45, 1309–1321. 

54. Ratliff, H., & Rosenthal, A. (1983). Order-picking in a rectangular warehouse: a solvable case of the 

traveling salesman problem. Operations Research, 31(3), 507-521. 

55. Roodbergen, K., & de Koster, R. (1998). Routing orderpickers in a warehouse with multiple cross aisles. In 

R. Graves, L. McGinnis, D. Medeiros, R. Ward, & M. Wilhelm, Progress in Material Handling Research: 1998 

(p. 451-467). Charlotte: Material Handling Institute. 

56. Roodbergen, K., & de Koster, R. (2001a). Routing methods for warehouses with multiple cross aisles. 

International Journal of Production Research, 39(9), 1865-1883. 

57. Roodbergen, K., & de Koster, R. (2001b). Routing order pickers in a warehouse with a middle aisle. 

European Journal of Operational Research, 133(1), 32-43. 

58. Roodbergen, K., & Vis, I. (2006). A model for warehouse layout. IIE Transactions, 38(10), 799-811. 

59. Roodbergen, K.J., Sharp, G.P. & Vis, I.F.A. (2008). Designing the layout structure of manual order picking 

areas in warehouses. IIE Transactions, 40, 1032–1045. 

60. Rouwenhorst, B., Reuter, B., Stockrahm, V., van Houtum, G., Mantel, R., & Zijm, W. (2000). Warehouse 

design and control: Framework and literature review. European Journal of Operational Research, 122, 515-533. 

61. Scholz, A., Henn, S., Stuhlmann, M., Wäscher, G. (2016). A new mathematical programming formulation 

for the Single-Picker Routing Problem. European Journal of Operational Research, 253, 68-84 

62. Shtovba, S. (2005). Ant Algorithms: Theory and Applications. Programming and Computer Software, 

31(4), 167-178. 

63. Stützle, T., & Hoos, H. (2000). MAX–MIN ant system. Future Generation Computer Systems, 16, 889–

914. 

64. Theys, C., Bräysy, O., Dullaert, W., & Raa, B. (2010). Using a TSP heuristic for routing order pickers in 

warehouses. European Journal of Operational Research, 200(3), 755-763. 

65. Tompkins, J., White, J., Bozer, Y., Frazelle, E., Tanchoco, J., & Trevin, J. (1996). Facilities Planning. New 

York: Wiley. 

66. Van Nieuwenhuyse, I., & de Koster, R. (2009). Evaluating order throughput time in 2-block warehouses 

with time window batching. International Journal of Production Economics, 121(2), 654-664. 

67. Vaughan, T., & Petersen, C. (1999). The effect of warehouse cross aisles on order picking efficiency. 

International Journal of Production Research, 37, 881-897. 

68. Warshall, S. (1962). A theorem on Boolean matrices. Journal of the ACM, 9(1), 11-12. 

DOI:10.1145/321105.321107 

69. Webster, S., Ruben, R., & Yang, K.-K. (2012). Impact of storage assignment decisions on a bucket brigade 

order picking line. Production and Operations Management, 21(2), 276-290. 

70. Xing, B., Gao, W.-J., Nelwamondo, F., Battle, K., & Marwala, T. (2010). Ant colony optimization for 

automated storage and retrieval system. Proceedings of the IEEE Congress on Evolutionary Computation (CEC), 

1, p.1-7. Barcelona (Spain). 



40 

 

71. Zhang, G., & Lai, K. (2006). Combining path relinking and genetic algorithms for the multiple-level 

warehouse layout problem. European Journal of Operational Research, 169(2), 413-425. 

72. Zhu, W., & Curry, J. (2009). Parallel ant colony for nonlinear function optimization with graphics hardware 

acceleration. Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, p.1803-

1808. San Antonio (USA): IEEE. 

Appendix: FW-ACO pseudo-code 

 {* Step 1 - GEOMETRY INITIALIZATION *} 

1 Set Blocks # number of blocks  

2 Set aisles # number of picking aisles  

3 Set Picking/Isle Side Ratio # number of storage locations per aisle side 

4 Set kx # Distance between two adjacent picking positions 

along the x-axis 

5 Set ky # Distance between two adjacent picking positions 

along the y-axis 

 {* Step 2 - GEOMETRY COMPUTATION *} 

6 Calculate Adjacency_Matrix 

7 Calculate Adjacency_Graph 

 {* Step 3 - FLOYD - WARSHALL COMPUTATION *} 

8 Calculate Floyd-Warshall_Distances_Matrix, based on Adjacency_Graph 

9 Calculate Floyd-Warshall_Predecessors_Matrix, based on Adjacency_Graph 

 {* Step 4 - ACO PARAMETER INITIALIZATION *} 

10 Set  # Trail pheromone importance parameter 

11 Set  # Visibility importance parameter 

12 Set  # Evaporation coefficient 

13 Set Q # Pheromone update constant 

14 Set LoopsTOT  # Maximum number of iterations allowed 

15 Set Start # Start node 

16 Set n # List of elements in the picking list 

 {* Step 5 - MATRIX AND VARIABLE INITIALIZATION *} 

17 Randomize 

18 Calculate ACO_Distances_Matrix, based on Floyd-Warshall_Distances_Matrix 

19 CalculatePheromone_matrix i,j =  ∀(i,j) 
20 Set Best_Path = Random(Path) 

21 Set Best_Length = Length(Best_Path) 

22 Set t = 0 

23 Set n’ = Numbers_of_picking_points 

 {* Step 6 – ACO EXECUTION *} 

24 While t < LoopsTOT 

25  Set New_Path 

26  For i’ = 0 To n’ Do: 

27   For City Not In New_Path: 

28   Calculate  probability based on Pheromone_matrix and 

 ACO_Distances_Matrix 

29   Choose city based on probabilities 

30   Add city to New_Path 

31  Next i’ 

32  Calculate New_Path_Length based on ACO_Distances_Matrix 

33  If New_Path_Length < Best_Length Then: 

34   Set Best_Path := New_Path 

35   Set Best_Length := New_Path_Length 

36   Update Pheromone_Matrix 

37  t = t + 1 

38 Translate Path into Tour based on Floyd-Warshall_Predecessors_Matrix 

 


