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ABSTRACT 

SnSe thin films were fabricated the first time by chemical molecular beam deposition (CMBD) in 
atmospheric pressure hydrogen flow using polycrystalline tin selenium (SnSe) precursors. The morphological 
and electrical properties of the films were studied as a function of the precursor’s composition and the 
substrate temperature. Experimental data indicate that in the resulting thin films Se enrichment takes place at 
low substrate temperatures, despite the different compositions of the SnSe precursor during the synthesis. In 
this case, the grain sizes of the films vary in the range of 8-20 μm, depending on the substrate temperature. In 
addition, X-ray diffraction analysis of the samples shows that the films have an orthorhombic crystalline 
structure. The electrical conductivity of films measured by van der Pauw method varies between 6 and 90 (Ω × 
cm)-1. The optical measurements on selected SnSe thin films illustrate that the sample has an optical bandgap 
of 1.21 eV and the absorption coefficient of ~105 cm-1. 
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INTRODUCTION 
 
Currently, the leading materials in the world photovoltaic (PV) market are silicon (Si) with an 

efficiency of 25%, Cu(In,Ga)Se2 (CIGSe) - 22.6% [1, 2] and CdTe -22.1% [3, 4]. 
Despite the wide use of these compounds, there are significant limitations in their use in the 

global production of PV modules. For example, the main disadvantage of Si-based solar cells is that Si 
does not have the optimal bandgap (1.1 eV) and has a low absorption coefficient (~ 102 cm-1), which 
increases the material cost, since it is required to use the material with a minimum thickness of 100-
200 µm [5]. At the same time, further large-scale applications for thin-film solar cells based on CIGSe 
and CdTe materials are complicated because of the limited In, Ga, Te in the earth's crust, as well as the 
toxicity issues of Cd [6]. 
Proceeding from this, many research centers and laboratories have aimed to replace these expensive 
materials of In and Ga with Zn and Sn elements in CIGSe as the main optical properties of these 
materials are suggested to be unaffected. The main advantages of these elements are their low cost 
(prevalence in nature) and non-toxicity. To date, the efficiency of solar cells based on Cu2ZnSnSxSe4-x 
(CZTSe) is 12.6%. So far, this data was obtained in IBM's research center and is the maximum for the 
last 20 years [7].  As CZTSSe belongs to a quaternary system, the precise control of composition and 
structural transitions is difficult due to more number of elements [8]. Moreover, too many elements in 



this absorber may also increase the production cost of the solar cells. Therefore, in view of mass 
production at lower cost, the use of both CIGSe and CZTSe will be limited in the near future.  

Tin-based binary semiconductors, such as SnS and SnSe are expected to play a crucial role in 
replacing the above technologies in the near future owing to their relatively earth-abundance, non-toxic 
nature, and easy controllability of stoichiometry. 

These materials exhibit favorable properties, such as high chemical stability, suitable band gap 
(1.0 eV -1.5 eV), and high absorption coefficient (~105 cm-1) with p-type conductivity [11-14]. In 
addition, they show a maximum theoretical efficiency of 33% [15]. Therefore, these materials have 
great potential to replace the toxic (CdTe) and scarce elements based (CIGS) absorbers in photovoltaic 
devices. On the other hand, the solar cells fabricated from these materials (SnS and SnSe) currently 
exhibited lower efficiencies (≤ 1% by non-vacuum methods and <5% by vacuum methods) than CIGS 
and CZTS solar cells. The lower efficiency has been attributed to a lack of precise control over the 
pure phase formation and fine-tuning of the band gap by the adopted technology. In thermal growth 
methods, owing to high volatility of sulfur, it is very difficult to maintain the 1:1 ratio of Sn:S [16]. 
The sulfur deficiency can lead to the tin migration to grain boundaries, surfaces, interfaces, interstitial 
sites, or sulfur anti-sites [16]. In addition, the problem of a good heterojunction partner has not been 
fully rectified. All aforementioned issues can strongly influence the recombination losses at the device 
level [16]. 

To obtain SnSe thin films, various growth methods such as thermal evaporation [11], chemical 
vapor deposition [12, 13] electrodeposition [14], spray pyrolisis [15], magnetron sputtering [16] and 
others are used. The physical characteristics of the films, i.e. the optical bandgap, the direction and 
degree of preferential growth orientation, the phase of elemental composition, strongly depend on the 
growth conditions. In most cases, additional heat treatment (post-annealing) is required to obtain the 
resulting films with the optimal characteristics for their effective usage in thin-film solar cells. 

The purpose of this work is to obtain SnSe thin films by technologically simple CMBD method, 
i.e. does not require subsequent annealing [17-19] and to study their physical properties as a function 
of growth conditions. 

 
EXPERIMENTAL 
 
Polycrystalline SnSe precursors with the following proportions were used as source materials: 

1) Sn-50 wt.% and Se-50 wt.%; 2) Sn-50.7 wt.% and Se 49.3 wt.%; 3) Sn-40 wt.% and Se-60 wt.%. 
The SnSe precursors were obtained as follows: the Sn and Se elements were placed in quartz ampoules 
in which a vacuum was created. Subsequently, quartz ampoules were loaded into a furnace and heated 
at 880 oC for 72 hours in order to synthesize SnSe compounds. Finally, quartz ampoules were cooled 
to room temperature (RT). In order to check whether SnSe compounds were formed, X-ray diffraction 
(XRD) measurements were performed. XRD analysis shows that SnSe compounds were formed which 
have an orthorhombic crystal structure. 

The preparation of a polycrystalline SnSe thin film was carried out according to the procedure 
described in [20]. The evaporator was loaded with SnSe precursor and it was put into the growth 
chamber and purged with hydrogen in order to remove atmospheric pollutants from it. Subsequently, 
the outer furnace of the chamber was turned on. The heating level is determined by the set deposition 
temperatures. When the substrate is has reached the required temperature, the individual heater (A4B6) 
is turned on in order to adjust the evaporator temperature to the required temperature. The temperature 
of evaporation was established to be in the range of (850 ÷ 950) °C, and the temperature of the 
substrate was varied between 450oC-550oC. The flow rate of the carrier gas was ~ 20 cm3 / min. The 
duration of the deposition process depends on the required film thickness and ranges between (30 ÷ 
60) min. All SnSe thin films have been grown on borosilicate glasses. 

The crystal structure and the phase of the material compositions were studied by  XRD using a 
"Panalytical Empyrean" diffractometer (CuKα radiation, λ = 1.5418 Å) with a wide-angle 



measurements of 2θ in the range of (20 ÷ 80) ° and a step of 0.01 °. The experimental data were 
analyzed using the Joint Committee on Powder Diffraction Standard (JCPDS). Morphological studies 
were carried out using a scanning electron microscope (SEM-EVO MA 10), and film compositions 
were determined using an energy-dispersive X-ray spectroscopy (EDX, Oxford Instrument - Aztec 
Energy Advanced X-act SDD). 

Optical parameters of selected SnSe thin film were determined from the transmission spectra 
obtained in a wide spectral range between (400 ÷ 2500) nm using the HR 4000 Ocean Optic 
spectrometer with a resolution of 2 nm. 

For electrical measurements, ohmic contacts were realized by vacuum deposition of metals on as-
deposited films. Silver was used as an ohmic contact. The type of conductivity of the samples was 
determined by thermoelectric effect. The thickness of the films (1-3 μm) was determined using 
microinterferometer MII-4, and the method of precision micro-weighting (on FA 120 4C scales with 
an accuracy of 0.1 mg).  

 
RESULTS AND DISCUSSION 
 
According to EDX data, the obtained films do not have any impurity elements within the 

sensitivity of the method (cf. Figure 1). The deposited films from the Sn enriched SnSe precursor have 
a an almost similar, stoichiometric composition at substrate temperatures of 450°C and 500°C. On the 
other hand, the film grown at 550°C has Sn enriched composition. This can be explained by the fact 
that when the substrate temperature increases, Se re-evaporates from the substrate, which results in 
enrichment of the Sn in the films [21]. All films deposited from the SnSe precursors enriched with Se 
and stoichiometric composition, yielded Se enriched composition in the films at different temperatures 
(cf. Table 1). All SnSe films studied in this work have a smooth surface without cracks and pores on 
the surface of the substrate. Thermoelectric studies depict that all SnSe films exhibit a p-type 
conductivity.  

Figure 2 shows the XRD patterns of SnSe films deposited from three different SnSe precursors, 
i.e. Sn enriched, Se enriched and with stoichiometric composition, for three different substrate 
temperatures. According to XRD analysis, all thin films showed single-phase, the orthorhombic 
structure of SnSe and there are no other crystalline phases of Sn, Se, Sn2Se3, SnSe2, SnO2, etc. As 
depicted, the main peaks are corresponding to the (400) and (111) preferential orientation of SnSe. A 
similar result was also noted in several works devoted to SnSe films obtained by thermal evaporation 
and chemical vapor deposition [11, 12]. The authors ascribe the presence of both (400) and (111) 
preferential orientations to the growth conditions, e.g. substrate temperature, the distance between the 
substrate and the target. In this work, (111) plane was observed only for SnSe thin films deposited 
from Sn enriched SnSe precursor at 550°C (cf. Figure 2a). Analyzing the XRD data of all samples with 
a database (JCPDS: 01-089-0233) showed that all films have an orthorhombic structure. In addition to 
these strong (400) and (111) peaks, (200), (201), (111), (410), (411), (600), (101), (011), (400), (020), 
(511), and (800) small peaks are also present, although their intensity was extremely small compared 
to the intensities of the (400) and (111) peaks. 

The lattice parameters of the crystal for all samples were calculated using the following formula: 1 
/ d2 = h2 / a2 + k2 / b2 + l2 / c2, where d is the distance between the planes, h, k, l are Miller indices and 
a, b, c are lattice constants. The lattice constants for thin films deposited at different substrate 
temperatures from Sn and Se enriched and stoichiometric SnSe precursors have the following values: a 
= 11.52Å, b = 4.16Å, c = 4.43 Å and a = 11.48Å, b = 4.17 Å, c = 4.39Å, respectively. These values are 
in good agreement with the JCPDS database, as well as the data presented in the literature for SnSe 
thin films grown by various methods [14, 22]. Detailed structural parameters of all films are presented 
in Table 3. 

Figure 3 illustrates SEM images for all samples grown at different substrate temperatures from Sn 
and Se enriched as well as stoichiometric SnSe precursors. Although the microcrystals for all SnSe 



films are uniformly distributed over the film surface, the microstructure (shape and grain size) of the 
samples depends on both the substrate temperature and the precursor composition. With increasing the 
substrate temperature, the shape of the grains changes, whereas the grain sizes do not change 
significantly for the films deposited from Sn enriched SnSe precursor (cf. Figure 3a), and vice versa 
for the samples obtained from Se enriched and stoichiometric SnSe precursors. Furthermore, the grain 
shapes of all the samples have a flattened appearance for all substrate temperatures, except for films 
obtained from Sn enriched SnSe compound  at a substrate temperature of 550 °C, which has the form 
of a parallelepiped. The samples obtained from Sn enriched precursor have similar grain sizes of 8-10 
(8 ÷ 10) μm and have a polycrystalline structure for all substrate temperatures. However, the grain 
sizes of the films deposited from Se enriched and stoichiometric SnSe precursors increased, i.e. 8-20 (8 
÷ 20) μm, at the substrate temperature of 550 °C and the structure become more densely packed. 
Moreover, disappearance of vertically deposited grains on the surface of all SnSe films was observed 
with increasing the substrate temperature. The same results were also reported in [12]. 

The electrical parameters of the SnSe films, e.g conductivity σ, activation energy Eac and the 
type of conductivity, are given in Table 2. As shown, all SnSe thin films exhibit p-type conductivity. 
The electrical conductivity of SnSe films deposited from Sn enriched SnSe precursor decreases with 
increasing the substrate temperature. This is explained by the increase of Sn content in the film 
deposited at high substrate temperature. Unlike, the electrical conductivity of those samples obtained 
from Se enriched and stoichiometric SnSe precursors increases with increasing the substrate 
temperature. This improvement is associated with an increase in the grain size and a decrease in the 
grain boundary density of the films grown at higher substrate temperatures [23]. 

Figure 4 shows Tauc plot, i.e. (αhν)2 vs (hν), for selected SnSe thin films with different 
composition grown at 400 °C and 450 °C. As shown, the optical bandgap of SnSe thin films has been 
determined to be in the range of (1.1 ÷ 1.2) eV in the Tauc plot using linear extrapolation of the 
leading edge. Since the plot of (αhν)2 vs (hν) is almost linear, the direct nature of the optical transition 
in SnSe is confirmed. These obtained values are in good agreement with the reported data of those 
SnSe films prepared by various growth methods [11, 22]. 

 
Conclusion 
 
We have investigated the morphological, structural, optical and electrical properties of SnSe films for 

different substrate temperatures and composition. 
It has been found that: 1) at low substrate temperatures, SnSe thin films are Se enriched, i.e. independent of 

the initial precursor composition; 2) with increasing the substrate temperature, foreign particles disappear from 
the film surfaces and the films have more closely packed polycrystalline structure; 3) the films have an 
orthorhombic structure and are characterized by preferential (400) and (111) plane orientations; 4) the electrical 
conductivity of the SnSe films deposited from Sn enriched precursor decreases with increasing the substrate 
temperature, whereas it increases in SnSe films obtained from the Se enriched and stoichiometric SnSe 
precursors. Further, optical measurements showed that all the samples SnSe thin films have a direct band gap 
of (1.1 ÷ 1.2) eV. 

 

 
SnSe1.02 T=450°C 

 
SnSe1.01 T=500°C 

 
Sn1.14Se T=550°C 



Figure 1. Results of energy dispersive X-ray spectroscopy analysis for SnSe thin films deposited from Sn enriched 
precursor at indicated substrate temperatures. 

 
Table 1. Results of energy dispersive X-ray spectroscopy analysis for SnSe thin films deposited from Se enriched and 

stoichiometric SnSe precursors. Ts is the substrate temperature 
Ts(°С) SnSe thin films deposited from 

stoichiometric SnSe precursor 
SnSe thin films deposited from Se enriched 

SnSe precursor 
Composition of the 

film 
Sn% Se% Composition of the 

film 
Sn% Se% 

450 Sn0.91Se 57.8 42.2 Sn0.89Se 57.3 42.7 
500 Sn0.91Se 57.8 42.2 Sn0.96Se 59.2 40.8 
550 Sn0.92Se 58.2 41.8 Sn0.95Se 58.7 41.3 

 

 
a) 

 
b) 

 
c) 

Figure 2. Wide-angle X-ray spectra of SnSe films obtained from a) Sn enriched, b) stoichiometric and c) Se enriched SnSe 
precursors at three different substrate temperatures.  

 
Table 2. Electrical parameters of SnSe films. Ts -substrate temperature, σ-electrical conductivity, Eаc-activation 
energy 
 

Ts (°С) SnSe thin films deposited from Sn enriched 
SnSe precursor 

 

SnSe thin films deposited from 
stoichiometric SnSe precursor  SnSe thin films deposited from Se enriched 

SnSe precursor  
Composit
ion of the 

film 
σ 

(Ohm∙cm
)-1 

Eаc 
(eV) 

Type 
of 

cunduc
tivity 

Composit
ion of the 

film 
σ 

(Ohm∙cm
)-1 

Eаc 
(eV) 

Type 
of 

cunduc
tivity 

Composit
ion of the 

film 
σ 

(Ohm∙cm
)-1 

Eаc 
(eV) 

Type of 
cunduc
tivity 

450 Sn0.98Se 90 0.0023 p Sn0.91Se 6,5 0.0023 p Sn0.89Se 5,5 0.0022 p 
500 Sn1.01Se 70 0.0024 p Sn0.91Se 24 0.0025 p Sn0.96Se 20 0.0024 p 
550 Sn1.14Se 15 0.0406 p Sn0.92Se 27 0.0026 p Sn0.95Se 24 0.0028 p 

 
 

Table 3. Structural parameters of SnSe films. (hkl)- Miller indices, d-the distance between the planes.  
Ts (°С) SnSe thin films deposited from Sn enriched 

SnSe precursor 
 

SnSe thin films deposited from stoichiometric 
SnSe precursor  SnSe thin films deposited from Se enriched 

SnSe precursor  
 

Composition 
of the film 

2θ 
(o) 

(h k l) d (Å) Composition 
of the film 

2θ 
(o) 

(h k l) d (Å) Composition 
of the film 

2θ 
(o) 

(h k l) d (Å)  

450 Sn0.98Se 25.3 (2 0 1) 3.72 Sn0.91Se 15.44 (2 0 0) 5.74 Sn0.89Se 
 

15.40 (2 0 0) 5.74  
30.41 (1 1 1) 2.93 30.47 (1 1 1) 2.93 31.07 (4 0 0) 2.87  
31.02 (4 0 0) 2.88 31.11 (4 0 0) 2.87 64.7 (8 0 0) 1.44  
37.95 (0 2 0) 1.92 47.42 (6 0 0) 1.92     
43.25 (6 1 0) 1.44 64.82 (8 0 0) 1.44     
64.64 (8 0 0) 1.23        

500 Sn1.01Se 15.38 (2 0 0) 5.76 Sn0.91Se 15.45 (2 0 0) 5.73 Sn0.96Se 15.40 (2 0 0) 5.75  



30.43 (1 1 1) 2.93 30.46 (1 1 1) 2.93  31.07 (4 0 0) 2.87  
31.03 (4 0 0) 2.88 31.10 (4 0 0) 2.87 64.7 (8 0 0) 1.43  
47.31 (6 0 0) 1.92 47.39 (6 0 0) 1.92     
64.68 (8 0 0) 1.44 64.78 (8 0 0) 1.44     

550 Sn1.14Se 21.42 (1 0 1) 4.15 Sn0.92Se 15.44 (2 0 0) 5.73 Sn0.95Se 15.40 (2 0 0) 5.74  
25.3 (2 0 1) 3.52 30.48 (1 1 1) 2.93 31.08 (4 0 0) 2.87  

29.41 (0 1 1) 3.03 31.11 (4 0 0) 2.87 64.78 (8 0 0) 1.44  
30.44 (1 1 1) 2.93 47.40 (6 0 0) 1.92     
31.06 (4 0 0) 2.88 64.79 (8 0 0) 1.44     
37.76 (4 1 0) 2.38        
43.38 (0 2 0) 2.08        
49.67 (5 1 1) 1.83        
64.75 (8 0 0) 1.44        

 

 
Sn0.98Se T = 450°C 

 

 
Sn1.01Se T = 500°C 

 

 
Sn1.14Se T = 550°C 

a) 

 
Sn0.91Se T = 450°C 

 
Sn0.91Se T = 500°C 

 
Sn0.92Se T = 550°C 

b) 

 
Sn0.89Se T = 450°C 

 
Sn0.96Se T = 500°C 

 
Sn0.95Se T = 550°C 

c) 
Figure 3. SEM images of SnSe thin films deposited from a) Sn enriched, b) stoichiometric and c) Se enriched SnSe 

precursors at indicated substrate temperatures. 
  



 
a) 

   
c) 

  
b) 

Figure 4. Absorption coefficient versus photon energy for SnSe thin films deposited from a) Sn enriched, b) 
stoichiometric and c)  Se enriched SnSe precursors at two different substrate temperatures of 400 oC and 4500C. 
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