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Abstract  10 

For centuries, ancient grains fed populations, but due to their low yield, they were abandoned and 11 

replaced by high-yielding species. However, currently, there is a renewed interest in ancient wheat and 12 

pseudocereal grains from consumers, farmers, and manufacturers. Ancient wheat such as einkorn, 13 

emmer, spelt, and Kamut®, are being reintegrated because of their low fertilizer input, high adaptability 14 

and important genetic diversity. New trends in pseudocereal products are also emerging, and they are 15 

mostly appreciated for their nutritional outcomes, particularly by the gluten-free market. Toward 16 

healthier lifestyle, ancient grains-based foodstuffs are a growing business and their industrialization is 17 

taking two pathways, either as a raw ingredient or a functional ingredient. This paper deals with these 18 

grain characteristics by focusing on the compositional profile and the technological potential.  19 

Key words: Ancient Grains, Foodstuffs, Ancient Wheat, Pseudocereals, Gluten-Free, Quality. 20 
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1. Glossary 24 

Despite the many genetic and archeological data on the origins of agriculture, from gathering to 25 

cultivation to domestication to breeding, surprisingly there is no universal definition for modern or/and 26 

ancient grains. The case of wheat is complex because it includes several species with different degrees 27 

of ploidy, of which some evolved concurrently in different geographical areas. Herein, an attempt to 28 

define some debatable terms is performed, considering the degree of human intervention, the degree of 29 

breeding and the level of genetic evolution. The classifications, as well as the definition assigned to each 30 

category, are research-based, and scientifically sound (Table 1). It takes also into account several factors 31 

such as the history of breeding, the origin of selection, the crossing, and the pedigree. 32 

In the last years, conserving the natural agrobiodiversity is challenging, and the risk of bottleneck 33 

situation in breeding keeps raising. Therefore, going back to ancient species might avoid or prevent this 34 

shifting. Furthermore, awareness was raised towards human health and nutrition. As a result, the 35 

consumers were interested in natural, unconventional and nutritional foods, which led to the 36 

development of new health-beneficial foods based on grain blends. The attention towards ancient species 37 

has also been renewed by the mounting demand for traditional products, the request for species suitable 38 

to be grown in marginal areas and the need to preserve genetic diversity. In this regard, this review aims 39 

to provide new insights into these grains’ nutritional and technological characteristics as well as the 40 

current trends in their based foodstuffs, which might be  extremely valuable for consumers, producers, 41 

processors and farmers.  42 

2. An overview of ancient grains 43 

2.1. Fundamental classes and subclasses of ancient grains 44 

Ancient grains might be subdivided in several categories and subcategories (Figure 1A). Botanically, 45 

grains belong to monocotyledon “monocots” (one seed leaf) and dicotyledon “dicots” (two seed leaves) 46 

which are the two major subclasses of flowering plants “angiosperms”.  Three main categories are: 47 

cereals, minor cereals, and pseudocereals. Cereals are made up of rice, wheat, and maize. Minor cereals 48 
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are mainly rye (Secale cereale L.), foxtail millet (Setaria italica L.), oat (Avena sativa L.), sorghum 49 

(Sorghum bicolor L.), barley (Hordeum vulgare L.), common millet (Panicum miliaceum L.) and teff 50 

(Eragrostis tef (Zucc.) Trotter) (Diao 2017). Cereals and minor cereals belong to Poaceae which is one 51 

of the most important families of the order Poales belonging to monocotyledon subclass (Figure 1B). 52 

For centuries, Poacea, formerly Gramineae, provided the most important share of human nutrition. 53 

Poaceae, also called grasses, contain over 600 genera and more than 10,000 species that dominate many 54 

ecological and agricultural systems (The International Brachypodium Initiative 2010). It was established 55 

also that the grasses family diverged into different subfamilies and tribes, with the sub-families being 56 

Pooideae (wheat, barley, and oats), Ehrhartoideae (rice), Panicoideae (maize, sorghum), and 57 

Chloridoideae (teff) (Charles and others 2009). Tribes are mainly Triticeae (wheat, rye, and barley), 58 

Aveneae (oat), Paniceae (millet), Andropogonee (sorghum and maize) and Eragrosteae (teff). On the 59 

other hand, pseudocereals are defined as non-grasses, dicots grains that diverge into several families 60 

such as Polygonaceae, Amaranthaceae, and Lamiaceae (Figure 1C). Amaranth (Amaranthus caudatus 61 

L.; A. cruentus; A. hypochondriacus), quinoa (Chenopodium quinoa Willd.), and buckwheat 62 

(Fagopyrum esculentum Moench.) are the best known pseudocereals (Fletcher 2016), while chia (Salvia 63 

hispanica L.) has been gaining interest recently due to its functional and nutritional properties. 64 

Ancient grains might also be subdivided into gluten-containing and gluten-free grains (Figure 1A).  65 

Gluten containing grains are mainly ancient wheat, including einkorn, emmer, spelt, and Kamut® (Table 66 

2), while the most popular gluten-free ancient grains are the pseudocereals buckwheat, quinoa, amaranth 67 

and chia (Table 3).  68 

2.2. The way forward: Reasons behind the shifting away from ancient grains 69 

The main reason behind the shifting away from ancient grains was their low yield. Plant improvement 70 

programs aimed at increasing grain yield to feed the growing populations (Okuno and others 2014) and, 71 

as a result, ancient grains were abandoned and replaced by high-yielding modern grains which 72 

contributed to the decrease of genetic diversity. Nowadays about 95% of the cultivated wheat worldwide 73 
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is Triticum aestivum, while most of the remaining 5% is T. turgidum susbp. durum (Brouns and others 74 

2013).  75 

Ancient wheat grew excessively tall, thereby becoming susceptible to lodging with consequent 76 

significant yield loss (Okuno and others 2014). During evolution under domestication, spikelets have 77 

undergone significant changes to keep the plant standing until harvest (Zhou and others 2015) to prevent 78 

yield losses through seed shattering, to minimize seed dormancy, and to increase both seed size and 79 

number (Peleg and others 2011; Sakuma and others 2011).  80 

Later on, the green revolution, throughout the 1950s -1960s, led to the development of high-yielding, 81 

disease-resistant wheat varieties with dwarfing genes (Lopes and others 2015). The new varieties were 82 

selected through breeding protocols based on modern agronomic practices with high agricultural inputs 83 

(Royo and others 2007; Longin and Würschum 2016). 84 

2.3. Back to basics: reasons behind the reintroduction of ancient grains  85 

The increasing demand for traditional products, the request for high adaptability, and the need to 86 

preserve genetic diversity are among the reasons behind the renewed attention towards ancient species 87 

(Troccoli and Codianni 2005). The evolution of plant breeding resulted in genetic erosion and thereby 88 

the loss of genetic diversity. Therefore, there is a serious need to go beyond the uniform model of today 89 

agriculture and reintroduce germplasm characterized by high heterogeneity. Species diversity 90 

contributes to the increase of crop productivity and stability (Hooper and others 2012; Khoury and others 91 

2014). Indeed, ancient wheat is suitable for organic farming because of their adaptability to low 92 

agronomic input; and where other wheat types would fail, they show high resistance to powdery mildew 93 

and brown rust, and disadvantageous growing conditions (such as wet, cold soils, high altitudes, and 94 

poor soils) (Konvalina and others 2010; Escarnot and others 2012). Pseudocereals are also known for 95 

their high adaptability, low needs in terms of water, fertilizer, and energy as compared to traditional 96 

cereals (Kang and others 2017; Santra and Schoenlechner 2017). As a result, the 2015 international 97 
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report from Health Focus International stated that the international awareness of ancient grains was up 98 

from 26% in 2012 to 28% in 2014, with 35% of the respondents expressing an interest in ancient grains. 99 

Currently, ancient grains are gaining popularity as they often offer a better nutritional composition 100 

(Carnevali and others 2014). Ancient wheat have been rediscovered by consumers, bakers, millers, and 101 

farmers because they are good sources of proteins, lipids, fructans, trace elements, and several 102 

antioxidant compounds (Hidalgo and others 2014; Hidalgo and Brandolini 2014; Longin and others 103 

2015). Pseudocereals have also a good protein quality content in terms of amino acid composition (Wang 104 

and Zhu 2015; Ngugi and others 2017). Thus, pseudocereals are integrated in gluten-free product 105 

formulations to improve their nutritional quality and, consequently, to avoid some complications such 106 

as nutrient deficiencies, bone disease, and lymphoma sensitivity (Alvarez-Jubete and others 2009a, b).  107 

3. Composition of ancient grains versus modern grains 108 

Wheat and cereals are largely consumed worldwide, supplying humans with energy and bioactive 109 

components (Lachman and others 2012). However, it should be kept it mind that the nutritional 110 

composition of cereal crops is closely associated with cultivation area, climatic conditions, agronomic 111 

practices, and genetic diversity (Miranda and others 2012; Hidalgo and Brandolini 2017).  112 

3.1. Ancient wheat 113 

The approximate chemical compositions of ancient wheat (einkorn, emmer, spelt, and Kamut), durum 114 

wheat and common wheat are displayed in Table 4. Table 4 also includes data relative to branded whole 115 

wheat flour products form the Food Composition Databases of the United States Department of 116 

Agriculture (USDA). The choice of branded products rather than research paper data was to give a 117 

concrete overview of what is available on the market. Modern wheat (durum and common) are also 118 

reported to underline their differences or/and similarities as compared to ancient wheat.  119 

The main components of ancient wheat are carbohydrates, protein and fibers, similarly to modern wheat. 120 

Carbohydrate contents in durum and common wheat are slightly higher than in ancient wheat; indeed, 121 
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it was found that spelt (68%) provides the lowest carbohydrate contents together with einkorn (67%). 122 

Spelt contains the lowest fiber content (5.9%), while it was reported that it is a good source of fiber 123 

(11.4 %) by Ranhotra and others (1995), which implies large sample variability. Furthermore, einkorn 124 

flour has a lower content of total dietary fiber (6.7%), than common wheat (12.7%).  125 

Important variability was observed between durum, common, and ancient wheat in terms of protein 126 

content. According to the intensive work of Hidalgo and Brandolini (2014), einkorn protein content is 127 

generally higher to that of common wheat as well as emmer and spelt. Kamut® has high protein, as 128 

reported by Sumczynski and others (2015), and it presents some prolamin alleles which are closely 129 

correlated to good pasta quality (Rodríguez-Quijano and others 2010). 130 

Overall, the lipid content is a minor component in wheat ranging between 1.7 (einkorn) and 2.9% (spelt). 131 

Remarkably, ancient wheat, except for einkorn, has higher lipid contents than that of common wheat, 132 

which was consistent with the findings of Hidalgo and others (2009). Moreover. It was reported that 133 

einkorn has higher monounsaturated fatty acids, lower polyunsaturated fatty acids and lower saturated 134 

fatty acids than durum wheat, suggesting its beneficial effect on human health (Hidalgo and Brandolini 135 

2014).  136 

As for mineral content, Kamut® has comparable calcium, iron, magnesium, potassium, sodium, and zin 137 

contents to common wheat and durum wheat. Kamut® also showed higher levels for 8 out of 9 minerals 138 

compared to common wheat (Abdel-Aal and others 1998). Magnesium and zin contents of einkorn 139 

(200mg/100g and 15 mg/100g, respectively) also are higher than those of common wheat (90mg/100g 140 

and 3.5mg/100g, respectively) and durum wheat (144mg/100g and 4.2mg/100g, respectively), in 141 

concordance with previous studies (Suchowilska and others 2009; Erba and others 2011). 142 

Regarding the vitamin content, Table 4 showed that Kamut® has higher vitamin A than common wheat 143 

and durum wheat. Despite the importance of micronutrients, wheat labels usually lack this indication, 144 

and more information in this regard are found in literature. Tocols and carotenoids were exclusively 145 

discussed in scientific works. Indeed, einkorn was found to have high tocol and carotenoid contents that 146 
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may make einkorn an interesting ingredient to be used in the development of new or special foods with 147 

high nutritional quality (Hidalgo and others 2016). Einkorn tocols content was higher (42.7-70.2μg/g, 148 

average =57) compared to durum wheat (40.1-62.7μg/g, average=48.1) (Lampi and others 2008). In 149 

another study, it was reported that tocols in ancient wheat, einkorn (61.80–115.85 μg /g), emmer (62.7-150 

67.9μg/g), and spelt (62.7-67.5μg/g) were slightly higher than in durum (38.8-57.27μg/g) and common 151 

(53.2-74.9μg/g) wheat (Hidalgo and others 2006). As for carotenoids, important variability was shown; 152 

in common wheat, they are less abundant (1.4-3.05 mg/kg) than in durum wheat (1.9-5 mg/kg) and 153 

Kamut® (4.4 mg/kg), while carotenoids in einkorn were the highest and varied between 5.3 and 13.6 154 

mg/kg (Hidalgo and others 2006). The authors also highlighted the relevant impact of cultivation area 155 

and genotype on the content of both tocols and carotenoids (Hidalgo and others 2006).  156 

Overall, although only few available scientific data are found dealing with comparative studies in terms 157 

of ancient wheat and modern wheat, compositional differences were observed between ancient wheat 158 

and modern wheat, as well as among the different ancient grains. 159 

3.2. Pseudocereals  160 

Table 5 presents the approximate chemical composition of pseudocereals and of the 2 major gluten-free 161 

cereals used worldwide (maize and rice). As in Table 4, Table 5 summarized data relative to branded 162 

whole flour products from the Food Composition Databases of the United States Department of 163 

Agriculture (USDA). Rice and maize together with pseudocereals were also included to provide a full 164 

comparative image of macro- and micronutrients.  165 

Energy provided by chia is higher than by maize and rice flours, but it is mostly due to its higher lipid 166 

content. According to the data reported in Table 5, maize and rice recorded the highest carbohydrate 167 

contents (85.19 and 76.5 g/100g, respectively), while amaranth and buckwheat are better sources of 168 

fiber (8.9 and 10 g/100, respectively). Quinoa had the lowest fiber content (7g/100g), but it remains 169 

highly dependent of the type of variety. Indeed, quinoa’s fiber content was reported to range from 7.7% 170 

to 13.8% (Li and Zhu 2017) and 8.8-14.1% (Nowak and Charrondière 2016), while chia was found to 171 

be the richest in fiber 34.4%, and rather consistent (Ixtaina and others 2008) (30-33g/100g). 172 
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Pseudocereal protein contents (13.25-16.5 g/100g) were significantly higher than those of rice (7.23 173 

g/100g) and maize (7.4g/100g). Furthermore, the quality of the proteins of pseudocereals is correlated 174 

with their nutritional added-value compared to rice and maize. Quinoa proteins, containing essential 175 

amino acids lysine, threonine, and methionine are balanced a micronutrient composition (Wang and 176 

Zhu, 2015). Amaranth has also satisfactory lysine and tryptophan contents according to FAO/WHO 177 

standards, which make it a valuable fortification ingredient for meals with limited contents like maize 178 

or sorghum (Ngugi and others 2017). Chia seeds provide a high-quality protein (about 16.5%) with good 179 

amino acids balance, especially methionine and cysteine (Ayerza 2013). 180 

As for lipid fraction, chia showed the highest value (30.7 g/100g and it is among the richest natural 181 

source of the essential fatty acid α-linolenic (Menga and others 2017). Amaranth and quinoa showed 182 

quite similar lipid contents (6.7 ad 6.1 g/100g, respectively), which were higher than those of rice and 183 

maize (3.7 and 2.78 g/100g). The oils obtained from amaranth contain linoleic and α-linolenic fatty 184 

acids. Quinoa was reported to be particularly rich in linoleate and linolenate (Chillo and others 2009), 185 

while chia seeds are rich in those essential fatty acids (omega 3 and omega 6) (Mohd Ali and others 186 

2012; Costantini and others 2014).  187 

Regarding micronutrients, chia had interesting minerals composition in particular about twice of the 188 

values of Ca and P as compared to rice and maize. Buckwheat, amaranth, and quinoa grains are 189 

considered good sources of minerals such as Zn, Cu, Mn, K, Na, Ca, and Mg (Chillo and others 2009; 190 

Singh and Singh, 2011). Chia was remarkably rich in vitamin A (16.2 µg/100g). Quinoa (2.44 µg/100g) 191 

showed high content in vitamin E as compared to rice (0.6 µg/100g). Buckwheat seeds also are rich in 192 

thiamine (vitamin B1), riboflavin (vitamin B2) and pyridoxine (vitamin B6) (Dziadek and others 2016; 193 

Guo and others 2017), and they also are abundant in several natural antioxidants, such as tocopherols, 194 

rutin, quercetin, flavonoids, and phenolic acids. 195 

Taking in account all the above-mentioned, the good composition of pseudocereals is not only suitable 196 

to individuals with medical needs, but also to consumers seeking “healthy” foodstuffs (Pellegrini and 197 

Agostoni, 2015; Balestra and others 2015). 198 
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4. Ancient grains-based foodstuffs: nutritional added value and 199 

technological characteristics 200 

Because ancient grains have a rich and balanced micronutrient composition, they might be suitable raw 201 

ingredients to enhance technological quality or/and health benefits (Arzani 2011; Randall and others 202 

2012; Chandi and others 2015). From an economic point of view, ancient grains are low-inputs crops 203 

with lower needs in fertilizers and they might be a suitable corp in lower-income countries. Quinoa, for 204 

example, is known for its tolerance to soil salinity indicating its suitability to harsh conditions (Wu and 205 

others 2016).  206 

Thus, ancient crops rediscovering to be a part of the daily human diet might be reinforced by a further 207 

understanding of their technological properties and applications.  208 

4.1. Trends in ancient wheat-based foodstuffs 209 

The increasing popularity of ancient wheat as environmentally friendly cereal crops is stimulating 210 

research into their utilization in both traditional and new foods (Messia and others 2012). Hulled wheat 211 

species (einkorn, emmer, and spelt) are often used as whole grains for salads or soups, while they are 212 

used differently for processing, with einkorn and emmer mainly used for pasta products and spelt mainly 213 

used for bakery products (Benincasa and others 2015).  214 

Bread-making  215 

Einkorn flour is generally reported as not suitable for bread-making because of its sticky dough and poor 216 

rheological properties, but the existence of accessions with high bread-making quality has been 217 

confirmed (Hidalgo and Brandolini 2011; Brandolini and Hidalgo 2011). It was reported that the 218 

screening of a wide collection of einkorns (>1000 accessions) allowed the identification of 219 

approximately 16% of the total accessions with sodium dodecyl sulfate (SDS) sedimentation values 220 

corresponding to the threshold value for bread-making potential (Borghi and others 1996). Later, 221 

Brandolini and others (2008) conducted a survey of 65 einkorn samples to study their pasting properties 222 

and concluded that einkorn had higher peak viscosity and final viscosity than modern wheat. The 223 
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differences are probably related to the smaller size and different grading of einkorn starch granules as 224 

well as to the lower amylose percentage of einkorn flour (Brandolini and Hidalgo 2011). Regarding 225 

bread color, einkorn has a color lighter than common wheat and durum wheat suggesting that einkorn 226 

undergoes lower heat damage than modern wheat during baking because low α- and β- amylases limit 227 

the degradation of starch (Brandolini and Hidalgo, 2011). As a result, the reduced generation of reducing 228 

sugars in the dough limited the Maillard reactions during food processing. Low lipoxygenase activities 229 

in einkorn dough also limits the degradation of carotenoids (Hidalgo and Brandolini 2014). 230 

Kamut® bread showed good sensory properties and loaf volumes, highly resembling bread obtained 231 

from modern wheat (Pasqualone and others 2011). Indeed, it was found that it is more suitable than 232 

durum wheat for the fermentation processes at acidic conditions because an increase in the bread volume 233 

and the metabolic heat production by yeast were observed (Balestra and others 2015). 234 

A comparative study with spelt varieties showed acceptable sensory scores with significant differences 235 

among the varieties (Korczyk Szabó and Lacko Bartošová 2013), leading to conclude that spelt might 236 

be a suitable raw material for bread making, but it remains closely related to the choice of spelt variety 237 

(Korczyk Szabó and Lacko Bartošová 2015). Compared to common bread, spelt genotypes had high 238 

crumb elasticity, but low crumb cell homogeneity, which are probably due to its special dough 239 

rheological attributes (Callejo and others 2015). Nutritionally, these breads had less total starch, more 240 

resistant starch, and less rapidly digested proteins in comparison to bread made with modern wheat 241 

flours (Bonafaccia and others 2000). Spelt and emmer sourdoughs had slightly higher pH values than 242 

wheat sourdough but titratable acidity, concentration of free amino acids, and phytase activity were 243 

higher than in common wheat sourdough (Coda and others 2010). Specific volume and crumb of spelt 244 

breads showed higher resemblance to those of wheat breads than emmer. Sensory analysis also revealed 245 

that spelt and emmer can be made into acceptable bread products (Coda and others 2010).  246 

Pasta making   247 

Little information was found in the scientific literature on 100% ancient wheat-based pasta due to its 248 

low pasting properties (Brandolini and others 2008). Indeed, 100% einkorn pasta showed less compact 249 
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structure than durum wheat, resulting in high cooking losses and low ability in binding water (Pasini 250 

and others 2015). However, pasta made by a mix of 50/50 semolina/einkorn showed a high aggregation 251 

of gluten (La Gatta and others 2017). Higher carotenoid levels also were found during kneading because 252 

of the low enzyme activities in einkorn (Hidalgo and others 2010). Marconi and others (2002) assessed 253 

gluten properties of 3 spelt genotypes (Rouquin, Redoute, and HGQ Rouquin (Rouquin improved for 254 

gluten quality)) using SDS sedimentation, gluten index values, and alveograph and farinograph 255 

parameters. Compared to durum wheat pasta, spelt pasta dried at high temperature had darker color 256 

which might be attributed to higher furosine, probably correlated with higher reducing sugars or 257 

damaged starch contents in the semolina (Marconi and others 1999; 2002). Although ancient crops are 258 

commonly reported to have a low technological quality of proteins (gluten strength) (Brandolini and 259 

others 2008), spelt (HGQ Rouquin) allowed the production of pasta with satisfactory cooking quality 260 

(Marconi and others 2002). As a matter of fact, 100% emmer pasta had improved organoleptic value 261 

and lower glycemic index than durum pasta (Fares and others 2008). Moreover, pasta cooking did not 262 

damage the polysaccharide composition (soluble and insoluble), but it induced a drastic loss in terms of 263 

tocopherol and carotenoid contents (Fares and others 2008).  264 

Baked goods, snacks, breakfast cereals  265 

Einkorn flour was reported for its excellent aptitude to produce many foodstuffs and it is currently 266 

trending as a material for manufacturing new special foods with high nutritional quality such as crackers 267 

and snacks (Hidalgo and Brandolini 2010; Brandolini and Hidalgo 2011; Hidalgo and others 2016, 268 

Hidalgo and Brandolini 2017). For instance, compared to einkorn, puffed modern kernels seem more 269 

appealing (Hidalgo and others 2016). However, from a nutritional point of view, puffed einkorn kernels 270 

had good composition, in terms of proteins and bioactive compounds (Hidalgo and others 2016). 271 

Compared to commercial products, flakes and muesli made by Kamut® and spelt had acceptable sensory 272 

features (appearance, consistency and flavor), and they showed the highest total phenolic, flavonoid, 273 

and crude fiber contents (Sumczynski and others 2015). Furthermore, tortillas partially substituted by 274 

whole Kamut® flour (60%) showed high resemblance with that standard (Carini and others 2010). Spelt 275 

flour addition (5, 10 and 15%) to corn grits decreased the expansion ratio and fracturability, whereas 276 
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bulk density and hardness of extrudates increased (Jozinović and others 2016). Moreover, color changed, 277 

the peaks of viscosity (hot and cold) decreased, and less retrogradation was observed. 278 

Beverage making 279 

A few studies have focused on ancient wheat-based alcoholic and/or nonalcoholic beverages. Einkorn 280 

wort exhibits standard properties, and the resulting beers showed excellent foam stability and distinct 281 

pleasing carbonation taste. As a result, it is suggested as a potentially new raw material to produce 282 

organic beer (Fogarasi and others 2015). Einkorn malts had high radical cation scavenging activities, as 283 

measured by DPPH and ABTS methods, but the phenolic content was lower when using wheat (Fogarasi 284 

and others 2015). As well, emmer malt is characterized by a very high extract yield and good 285 

saccharification time, and good foam stability, but weak final attenuation, low polyphenol content, and 286 

darker color than the barley malt beers (Esslinger 2009; Mayer and others 2011). Barley malt enriched 287 

by emmer showed different sensory profiles as well as different compositions in terms of concentrations 288 

of organic acids, carbohydrates, amino acids, dietary fibers, vitamins, and antioxidant and phytase 289 

activities (Coda and others 2011). Spelt malt had an appropriate extract yield and apparent attenuation 290 

limit in comparison with barley and wheat malt (Muñoz-Insa and others 2013). However, low spelt 291 

soluble nitrogen caused a low Kolbach index; high viscosity caused lautering and filtration problems. As 292 

a result, this cereal can be used in “normal” barley malt houses under commonly used malting 293 

conditions, but it remains interesting to optimize beer production from mixes of ancient wheat malt and 294 

barley malt. Furthermore, hulled malts exhibit lower soluble protein contents with higher free amino 295 

nitrogen and total free amino acid values than dehulled malts (Marconi and others 2013). More studies 296 

are required to determine the influence of the glume or husk on malt and technological aspects.  297 

Blends of rice and emmer flours (ratio 94:6) also allowed the production of a good yogurt-like beverage 298 

in terms of textural, sensory, and nutritional properties (Coda and others 2012).  299 

4.2. New advances in pseudocereals-based foodstuff formulations  300 
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The development of new products based on pseudocereals is, currently, more of necessity rather than a 301 

choice. The attention towards these ancient grains have been renewed by the increasing demand for 302 

natural and health-beneficial foods. They are also naturally gluten-free seed perfectly suitable as a 303 

reinforcement of the gluten-free market which is nowadays mainly based on maize and rice.  304 

4.2.1. Pseudocereals-based foodstuff 305 

Gluten-free foodstuff-making is a challenge for technologists and nutritionists due the absence of gluten, 306 

which provides the viscoelastic properties of dough (De la Barc and others 2010). Nutritionally, 307 

pseudocereals represent a healthy alternative to compensate for the deficiencies of a gluten-free diet 308 

(Saturni and others 2010), because most of the gluten-free products currently available in the market are 309 

made basically from refined flour or starches which are characterized by low contents of high-quality 310 

protein, fiber, calcium, and iron (Cabrera-Chávez and others 2012; Molina-Rosell and others 2015). 311 

Bread-making   312 

The fortification of breads using buckwheat (50%) or quinoa (50%) flours increased the volume and 313 

softened the crumb (Alvarez-Jubete and others 2009b, 2010). Buckwheat addition (from 10 to 30%) also 314 

decreased starch retrogradation which enhanced the anti-staling properties (Torbica and others 2010). 315 

Furthermore, 100% buckwheat bread had low specific volume due to its dense structure (Hager and 316 

others 2012). The enrichment of bread by amaranth (40%) enhanced the physical, and rheological 317 

gluten-free dough as well as bread final attributes compared to corn starch-based formulations (Mariotti 318 

and others 2009). Pseudocereals addition also improved bread nutritional profiles, fitting perfectly with 319 

the expert nutritional recommendations for a gluten-free diet and gluten-free foods (Alvarez-Jubete and 320 

others 2009b, 2010; Sakac and others 2011; Wronkowska and others 2010; Koppalu and others, 2016).  321 

Amaranth and quinoa starches are used also for gluten-free food-making because they are characterized 322 

by a low tendency to retrogradation (Abugoch 2009; Singh and Singh, 2011). They showed also higher 323 

gelatinization temperature and peak viscosity but lower swelling capacities compared to those of fine 324 

flour and middling fractions (Kumar and others 2016; Sakhare and others 2017). More attention, 325 
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however, should be paid to amaranth technological processing because it requires innovative approaches 326 

due to its small seed size (Santra and Schoenlechner 2017). 327 

The combination of sourdough lactic acid bacteria and pseudocereals was successfully employed in the 328 

formulation of new pseudocereals-based products (Dallagnol and others 2012; Gobbetti and others 329 

2014). During sourdough fermentation, several reactions, such as acidification and proteolysis, greatly 330 

contribute to the increase in bread extensibility, softness, and volume (Nionelli and Rizzello, 2012). For 331 

instance, quinoa addition (3.75%) improved shelf-life of bread (Coda and others 2010; Dallagnol and 332 

others 2012). Likewise, 100% bread made from buckwheat sourdough improved bread quality, thereby 333 

reducing the need of additives (Moroni and others 2009, 2010, 2011). Sourdoughs obtained with teff (5, 334 

10 and 20%) and buckwheat (15%) also enhanced bread aroma and increased fruity, cereal, and toasty 335 

notes as well as increased the perceived elasticity (Campo and others 2016). On the other hand, 336 

fermentation stimulated protein hydrolysis, which increased the concentrations of free amino acids 337 

(Dallagnol and others 2012), offering bioactive peptides and amino acids unavailable in gluten-free 338 

products.  339 

Recently, steeping and germination were suggested to be able to reduce the levels of antinutrients, 340 

thereby enhancing the bioavailability of minerals in amaranth grains, resulting in a nutrient-dense 341 

complementary food (Ngugi and others 2017).  342 

Pasta-making  343 

Commonly, corn and rice flours are used as main ingredients for gluten-free pasta production (Cabrera-344 

Chávez and others 2012), while recently there is increasing interest in new formulations based on gluten- 345 

free blended flours (cereals and pseudocereals) to improve the nutritional aspect as well as the 346 

technological features. For instance, pasta made from corn flour and low quinoa content (0.16%) had 347 

acceptable physical properties compared to common wheat pasta (Caperuto and others 2000). About 348 

25% of amaranth enrichment gave good pasta-making results due to the good interaction between rice 349 

starch and amaranth proteins. Moreover, Fiorda and others (2013) suggested that gluten-free pasta 350 

fortified by 30% amaranth flour had higher quality and sensory scores to those made with regular and 351 
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whole wheat flour pasta. Besides improved technological quality, these blends had higher protein and 352 

fiber contents than gluten-free pasta. Noodles produced from amaranth flour (20%) had low firmness 353 

and high cooking losses (Schoenlechner and others 2011). However, its nutritional composition, in terms 354 

of mineral and fiber contents, and protein digestibility were improved when a novel and adequate 355 

extrusion-cooking process was used (Cabrera-Chávez and others 2012). Pasta fortified by chia (5 and 356 

10%) showed that chia seeds and mucilage might be a good natural thickening agent (Menga and others 357 

2017). Furthermore, this addition increased total phenolic acids and dietary fiber as compared to the 358 

pasta made from rice (Menga and others 2017). 359 

Baked good, snacks, and breakfast cereals  360 

New trends and formulations of pseudocereal foodstuffs are spreading to produce health-beneficial and 361 

tasty products, particularly baked good, snacks, and breakfast cereals. For example, quinoa was largely 362 

used as an ingredient for baked goods (Rizzello and others 2015). Muffins fortified with 25% quinoa 363 

flour are soft and have good overall consumer acceptability. However, 100% quinoa flour muffin had 364 

low overall consumer acceptability due to the bitter taste of quinoa flour (Bhaduri 2013). An increase in 365 

quinoa supplementation (30%) also increased the hardness of cookies, which was attributed to the high 366 

content of fiber and protein (Brito and others 2015). The specific volume also was reduced resulting in 367 

less bulky cookies, and also the final color was darker (Brito and others 2015).  368 

On the other hand, Burgos and Armada (2015) demonstrated amaranth suitability to precooked products 369 

due its high expansion and yellow index. Chia flour was incorporated at different levels in cakes (25%, 370 

50%, and 75%) (Borneo and others 2010) and corn tortillas (5%, 10%, 15%, and 20%) (Rendón-371 

Villalobos and others 2012), and gluten-free bread (from 4% to 15%) (Moreira and others 2013; 372 

Steffolani and others 2014; Da Mota Huerta and others 2016). Chia flour played the role of hydrocolloid, 373 

indeed, because it significantly increased the water-holding capacity of the dough (Da Mota Huerta and 374 

others 2016; Olivos-Lugo and others 2010; Steffolani and others 2014).  375 

Beverage-making  376 
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A fermented quinoa-based beverage was recently formulated using 2 varieties (Pasankalla and Rosada 377 

de Huancayo) (Ludena Urquizo and others 2017). The obtained drinks had viable and stable microbiota 378 

during storage (28 days) and the fermentation was mostly homolactic (Ludena Urquizo and others 2017). 379 

Pasankalla-derived drinks had higher protein contents, lower saponin concentration, and lower loss of 380 

viscosity during the fermentation process compared to Rosada de Huancayo drinks (Ludena Urquizo 381 

and others 2017). Buckwheat showed lower malt extracts, longer saccharification times, higher total 382 

protein and fermentable amino nitrogen content, and higher values of the iodine test and color as 383 

compared to barley malts (Deželak and others 2014). However, fermentability values, wort pH, soluble 384 

protein content, and volatile compounds were comparable and, consequently, the organoleptic 385 

perception of the buckwheat beverage was good (Deželak and others 2014).  386 

The aqueous extract of pseudocereal flours was incorporated in fermented lactose-free dairy products. 387 

High incorporation of quinoa extracts (70 and 100%) increased the viscosity due to the high protein 388 

content (Bianchi and others 2015), while low addition (30%) was more appreciated by the tasters, as 389 

well as the obtained drink presented better nutritional features (protein, fat, ash, and total solid levels) 390 

(Bianchi and others 2015). Regarding lactose-containing products, El-Deeb and others (2014) suggested 391 

that 75 or 100% quinoa addition allowed the production of fermented milk beverages without altering 392 

bacterial growth. After 10 days, these beverages had the highest scores in terms of body, texture, color, 393 

and appearance. Moreover, the nutritional value was enhanced such as iron and some amino acids 394 

(phenylalanine, methionine, histidine and leucine).  395 

Meat industry  396 

The addition of chia was studied to develop lipid meat products (Herrero and others 2017). Because of 397 

uncertainties in relation with the potential allergenicity, the daily intake of chia seeds should not exceed 398 

48 g/day, according to the 2000 US Dietary Guidelines), and 15 g/day according to the European 399 

commission. Chia-incorporated meat products showed relevant results. For example, frankfurters 400 

formulated with 1% chia flour reported significant improvements in water-binding properties (Pintado 401 

and others 2015). Furthermore, scanning electron microscopy showed that chia addition improved 402 
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emulsification and juiciness and, consequently, the overall acceptance was comparable to products with 403 

added fat (Ding and others 2017). The high content of fiber in chia is correlated with higher water-404 

holding, absorption, and emulsifying activity and stability (Alfredo and others 2009). Chia oil addition 405 

to meat batter also resulted in products with good stability and homogeneous structure (Cofrades and 406 

others 2014). Furthermore, this fortification enhanced the nutritional aspect by increasing linolenic acid 407 

and reducing processing and purges (Pintado and others 2016; De Souza and others 2015). Thus, meat 408 

products containing chia might be suitable for special nutritional label (Pintado and others 2016). 409 

4.2.2. Pseudocereal incorporation in gluten-containing foodstuff 410 

Fortification of staple foods is an effective strategy to deliver and increase the intake of micronutrients 411 

in the diet and can reduce micronutrient deficiencies (Yusufali and others 2012). As amply mentioned 412 

above, pseudocereals have a good chemical composition in terms of bioactive components (Padalino 413 

and others 2016).  414 

Common wheat bread fortification could enable the development of a range of new baking products 415 

with enhanced nutritional value (Stikic and others 2012). Indeed, bread supplemented with quinoa flour 416 

had high acceptance with high nutritional value depending on the substitution level (Calderelli and 417 

others 2010; Iglesias-Puig and others 2015).  Indeed, bread made from blends containing 5% or 10% of 418 

quinoa whole flour showed good bread-making properties, while blends with 15% of quinoa flour were 419 

not acceptable (Enriquez and others 2003). Rodriguez-Sandoval and others (2012) also showed that 420 

partial substitution with quinoa whole flour (10 and 20 %) resulted in breads with decreased specific 421 

volume. However, with up to 20% addition of purified quinoa, the rheological characteristics of dough 422 

and sensory characteristics were improved (Stikic and others 2012). A 50% substitution induced weak 423 

final quality (Alvarez-Jubete and others 2010). Indeed, bread crumb hardness increased (Iglesias-Puig 424 

and others 2015), about 6 times higher than sourdough bread with 100% substitution (Wolter and others 425 

2014), as well as density and chewiness (Wang and others 2014). Specific volume and yellowness also 426 

were reduced (Wang and others 2014). The addition of chia (5, 10, and 15%) improved gas retention in 427 

dough and cut the time required to reach maximum dough development (Verdú and others 2015). The 428 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571229/#CR8
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obtained bread had a reduced water activity and contained the same amount of moisture compared with 429 

the control (Verdú and others 2015). Indeed, the high content of fiber in chia might be the main cause 430 

of the high water-holding capacity, as  it forms an active hydrocolloid which interacts better with gluten 431 

proteins (Verdú and others 2015). Therefore, the inclusion of chia increased the overall acceptability by 432 

consumers (Iglesias-Puig and Haros 2013).  433 

Recently, Rizzello and others (2016) carried out a study to investigate wheat bread enrichment by quinoa 434 

flour sourdough. They concluded important improvements in chemical composition, namely free amino 435 

acids, soluble fibers, total phenols, phytase, and in antioxidant activities (Rizzello and others 2016). The 436 

sensory features of wheat bread made using 20%  of quinoa sourdough were also improved with regards 437 

to the use of quinoa flour (Rizzello and others 2016). However, in buckwheat and wheat sourdough 438 

breads, acidification increased crumb porosity compared to control breads (Wolter and others 2013). 439 

Blends made by 30% of buckwheat and common wheat flours were more effective in enhancing 440 

antioxidant activity in comparison with amaranth and quinoa (Chlopicka and others 2012). Moreover, it 441 

might improve bread quality attributes such as taste, color, and odor (Chlopicka and others 2012). 442 

Fortified bread with 2.5% buckwheat showed acceptable crust and crumb color and taste, and also odor, 443 

elasticity and the appropriate bread volume (Gawlik-Dziki and others 2009). Likewise, the addition of 444 

chia increased the content of fiber, total antioxidant activity, and ω-3 fatty acid in the final products 445 

(Coelho and de las Mercedes Salas-Mellado 2015; Constantini and others 2014). Chia flour significantly 446 

increased water absorption and reduced the extensibility of dough (Steffolani and others 2014). It was 447 

reported also that chia had thickening potential (Vázquez-Ovando and 2009) and it might replace as 448 

much as 25% of oil or eggs in cakes, while yielding a more nutritious product with acceptable sensory 449 

characteristics (Borneo and others (2010) 450 

Regarding the pasta industry, pseudocereals and durum wheat blends are still a challenge since the 451 

addition of alternative ingredients markedly affects technological and sensory properties (Rizzello and 452 

others 2017). Recently, Lorusso and others (2017) revealed that the substitution of 20% of semolina 453 

with quinoa flour improved the nutritional aspect of pasta, including free amino acids, total phenols, and 454 
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the antioxidant activity of pasta; while the resulting pasta tenacity increased. Despite the great nutritional 455 

input, more work is required on the balance between substitution level and quality requirement.  456 

5. Landraces and old wheat varieties 457 

Landraces and old wheat varieties were the most cultivated until the late 19th century (Belderok 458 

2000). Therefore, modern varieties were developed to create more productive plants with modified 459 

chemical composition and others quality attributes. Comparative studies on old and modern varieties 460 

have focused mainly on the physiological basis of yield (Giunta and others 2007). On the other hand, to 461 

discriminate between wheat varieties, qualitative and quantitative gliadin and glutenin compositions 462 

are the traits commonly adopted (Vita and others 2016). However, few studies were dedicated to 463 

screen the compositional and technological aspects of landraces and old genotypes.  464 

For instance, Dinelli and others (2013) studied 2 Italian durum wheat genotypes: Senatore Cappelli 465 

(1915, selection from the exotic Tunisian landrace “Jneh Khottifa”) and Urria 12 (1900) cultivated under 466 

a low-input agricultural system. Senatore Cappelli showed the lowest starch content (50.5%), while it 467 

had the highest protein content (16.38 %) as well as gluten content (12%) as compared to modern 468 

genotypes. Likewise, protein concentration showed a decreasing trend over time of cultivar releasing, 469 

dropping from about 18% in the old cultivars to about 16.5% in the modern durum wheat cultivars (De 470 

Vita and others 2007), which was consistent with the findings of Fois and others (2011). The low protein 471 

content in modern cultivars was not due to a reduced nitrogen uptake, but to the dilution effect caused 472 

by the heavier grains of modern durum cultivars (Motzo and others 2004). Regarding fiber and lipid 473 

contents, few differences were found between both groups (Dinelli and others 2013). Carotenoid and 474 

total polyphenol contents showed a non-significant trend from old to modern common wheat varieties 475 

(Dinelli and others 2013). However, phenolic profiles of landraces and old genotypes showed a number 476 

of total compounds and isomer forms much higher than those in the modern cultivars, particularly the 477 

landrace Gentil Rosso, whih had a much higher amount of total, free, and bound polyphenols (Dinelli 478 

and others 2009, 2012). As for minerals, landraces and old cultivars had higher concentrations as 479 

compared to more modern material (Hussain and others 2010, 2012), because genetic breeding did not 480 
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focus on the improvement of mineral content (Hussain and others 2012). Overall, Di Silvestro and others 481 

(2012) found that old common wheat varieties had better nutrient contents when cultivated under low-482 

input conditions compared to the modern ones, which are strictly dependent on high levels of 483 

fertilization. Therefore, beside breeding history, the biosynthesis and accumulation of micronutrients 484 

are closely influenced by genotype, environmental conditions (Migliorini and others 2016), and farming 485 

systems (Rizzello and others 2015).  486 

From a technological point of view, De Vita and others (2007) studied the rheological properties of 487 

some Italian landraces, including Timilia (released in 1900, indigenous landrace population from Sicily), 488 

Russello S.G.7 (1910, selection from landrace “Russie”), Senatore Cappelli and Aziziah (1925, selection 489 

from landraces). Old genotypes (Timilia, Russello S.G.7 and Senatore Cappelli) were characterized by 490 

the lowest baking strength (alveographic W value), and dough-gluten properties (P and L alveographic 491 

values) (De Vita and others 2007). Modern cultivars showed about twice and thrice the dough W values 492 

of the landraces, and about a 50% and 100% greater P, respectively (Sanchez-Garcia and others 2015). 493 

However, no significant differences were observed between 7 old (Sieve, Verna, Gentil Rosso, Andriolo, 494 

Gambo di ferro, Frassineto, and Abbondanza), 2 mixtures, and 4 modern (Bolero, Blasco, Arabia, and 495 

Bologna) varieties, in termS of P/L (Migliorini and others 2016). Gluten Index (GI) was higher for 496 

modern cultivars than for landraces and old durum wheat varieties (Motzo and others 2004, Fois and 497 

others 2011). Breeding induced a notable increase in GI, which was reflected by an improvement of 498 

grain protein quality (Motzo and others 2004). Nevertheless, protein content, rather than gluten 499 

quality, has a dominant role in determining pasta cooking quality of high-temperature-dried pasta 500 

(Dexter and others 1977; D’Egidio and other 1990), explaining why some durum wheat old varieties 501 

such as Senatore Cappelli and others give good pasta texture (Fois and others 2011).  Regarding bread-502 

making, breads from landraces were scored as acceptable by consumers (Migliorini and others 2016). 503 

Although modern bread wheat varieties showed great variability in bread-making quality attributes 504 

(Sanchez-Garcia and others 2015), the landrace Andriolo showed interesting sensory aspects (Migliorini 505 

and others 2016). In term of aroma profile, landraces and older cultivars of bread wheat had a soft aroma, 506 

while modern varieties had a much stronger aroma (Starr and others 2013).  507 
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Discussing the quality attributes of big wheat collections is expensive and time-consuming, and the 508 

available comparative studies on wheat quality traits are usually restricted to small sets. Moreover, many 509 

modern varieties were selected to fulfill specific technological transformations, as for example the 510 

Italian durum wheat cultivar Svevo and, consequently, processing landraces and old varieties using the 511 

same technologies might explain the difference in the end-product quality. Thus, drawing sound 512 

conclusions about the poor technological quality of landraces lacks strong evidences and pleads to much 513 

argumentation. Besides breeding new adapted lines for the low-input sector, landraces and old genotypes 514 

are naturally suitable to produce organic food and support environmentally friendly practices (Di 515 

Silvestro and others 2012). 516 

6. Concluding remarks and future outlook  517 

The rediscovery of ancient grains provides new alternatives to farmers, consumers, and the food 518 

industry, such as seen in terms of gluten-free (non-wheat ancient grains) and gluten-containing 519 

foodstuffs.  520 

From a breeding point of view, shifting away from ancient species and the gradual shift towards a model 521 

of agriculture based on uniformity, steered by the search for higher yields, has increased the risk of 522 

genetic erosion (Dwivedi and others 2016). Diversity loss, here as in all the cultivated species, is indeed 523 

critical and dangerous, also because ancient species might help us to face threats to food security 524 

(Ceccarelli and Grando 2000; Dwivedi and others 2016). Indeed, ancient species, landraces, and old 525 

genotypes, even though much less productive than the modern ones, are perfectly suitable for marginal 526 

areas and low-input and high-stress conditions (Ceccarelli and Grando 1996) and, consequently, they 527 

could represent a solution for local communities where the commonly grown varieties are not cultivable 528 

(Migliorini and others 2016). From a nutritional point of view, reintroducing pseudocereals in the daily 529 

diet as a fortifying agent with functional added-value features, might offer to consumers a richer variety 530 

of beneficial compounds without altering the technological quality. Ancient wheat-based foodstuffs are 531 

now an increasing trend in the food market, substituting durum or/and common wheat flour for creating 532 

new lines of products. Their technological defects, as discussed, are not always associated with inner 533 
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characteristics of seeds, because traditionally made products have often good-quality features. Indeed,  534 

modern processing methods or/and industrial machinery, even if perfect for modern varieties, was not 535 

be suitable for older grains. Therefore, more work is needed in order to optimize technological 536 

processing and formulations to fit their compositional and morphological characteristics.  537 

Thus, ancient grains might constitute an alternative, which can co-exist in the current market with the 538 

undoubtedly needed modern high-productive varieties. Certainly, methods and technologies to obtain 539 

novel products with high technological quality and  health-beneficial and affordable price are needed. 540 

Also, blends of pseudocereals and ancient wheat might be considered for creating new health-beneficial 541 

food products.   542 
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Figure caption 981 

Figure 1: Major classes and subclasses of ancient grains. A: Classification of ancient grains; B: 982 

Taxonomy of the most cultivated cereals; C: Taxonomy of the most known pseudocereals. This figure 983 

explains the classes and subclasses of ancient grains in terms of ancient wheat and pseudocereals.  984 
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Table caption 1009 

Table 1: Glossary. This table gives the definitions of the key terms used for wheat and pseudocereals. 1010 

Table 2:  Gluten-containing grains. This table focuses on the main ancient wheat characteristics.  1011 

Table 3: Gluten-free grains. This table shows the main characteristics of pseudocereals. 1012 

Table 4: Approximate chemical composition of ancient wheat, durum wheat, and common wheat. This 1013 

table contains data reported about the chemical composition of ancient wheat in terms of macro- and 1014 

micronutrients in comparison with durum and common wheat. 1015 

Table 5: Approximate chemical composition of pseudocereals compared to maize and rice. This table 1016 

contains data reporting on the chemical composition of pseudocereals in terms of macro- and 1017 

micronutrients in comparison with maize and rice.  1018 
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Figure 1: Major classes and subclasses of ancient grains. A: Classification of ancient grains; B: Taxonomy of the most 1022 

cultivated cereals; C: Taxonomy of the most known pseudocereals. 1023 

 1024 

 1025 

 1026 

 1027 

 1028 

 1029 

 1030 

 1031 

 1032 

 1033 

 1034 

 1035 

 1036 

 1037 

 1038 

 1039 

 1040 

 1041 

 1042 

 1043 

 1044 

 1045 



41 
 

Table 1: Glossary. 1046 

Key terms Definition 

Wild species or 

wild ancestors 

are the species naturally grown in the Old World, before any cultivation and 

domestication*. Triticum urartu (AA) and Triticum boeoticum (wild einkorn, AA), 

Triticum turgidum ssp. dicoccoides (wild emmer, AABB) are the wild progenitors 

of modern wheat. 

Domesticated* 

wheat 

is obtained by the selection of novel spontaneous mutations or recessive alleles in 

cultivated populations or among the wild populations (Hebelstrup 2017). 

Ancient grains are represented by populations of primitive grains, which were not subject to any 

modern breeding or selection, and which retained characters of wild ancestors, such 

as large individual variability, ear height, brittle rachis, and low harvest index 

(Giambanelli and others 2013).  

Ancient wheat refers to emmer, einkorn, Khorasan wheat (Oriental wheat) and spelt.  

Pseudocereals are mainly amaranth, quinoa, buckwheat, and chia.  

Landraces and 

old varieties 

are developed by natural and human selection, genetically heterogeneous, locally 

adapted, and they too were cultivated until the middle of the 20th century (Nazco and 

others 2012; Lopes and others 2015; Mohammadi and others 2015; Soriano and 

others 2016).  

Modern varieties are the result of the continued modern breeding progress, aiming to select 

homogeneous lines with stable and improved characters, mainly RHt dwarfing gene 

to avoid lodging. Currently, thanks to international breeding programs, these 

varieties are cultivated worldwide ensuring higher productivity than landraces. 

*Note: The shift from wild to domesticated involved an evolutionary process of morphological, physiological, and 1047 
genetic events, referred to as ‘domestication syndrome’ (Hammer 1984). The two most important events of the 1048 
domestication syndrome are:  a non- brittle rachis mutation that resulted in non-shattering domesticated wheat 1049 
and a non-hulled mutation which resulted in free-threshing domesticated wheat, where the husk covering the seed 1050 
comes off during threshing. Domestication involved other traits, such as increase in both seed size and number, 1051 
loss of germination inhibition, lower grain protein and mineral concentrations, and increased grain carbohydrate 1052 
content (Zohary and Hopf 2000; Fuller 2007; Gegas and others 2010; Sakuma and others 2011; Peleg and others 1053 
2011). Triticum aestivum L. and Triticum turgidum subsp.  durum, which are free-threshing wheat, represent the 1054 
final step of Triticum domestication (Salamini and others 2002). 1055 
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Table 2:  Gluten-containing grains.  1067 

Common name  Binomial name  Origin/History References  

Einkorn wheat  

 

Triticum 

monococcum L., 

subsp. monococcum 

(2n = 2x = 14, AA), 

Domesticated diploid wheat from ssp. 

aegilopoides through the acquisition of a 

non-brittle rachis. 

(Hidalgo and 

Brandolini 2017; 

Faris and others 

2014). 

Emmer wheat, 

also known as 

farro in Italy 

Triticum turgidum 

dicoccum (2n = 4x 

=28, genome 

AABB) 

The domesticated form of wild emmer, 

which derived from T. urartu, (2n = 2x = 14, 

AA), donor of the genome A, and another 

unknown species of the Sitopsis section, 

donor of the B genome, for which the closest 

known relative is goat grass (Aegilops 

speltoides, 2n = 2x = 14, SS).  

(Salse and others 

2008; Chatzav and 

others 2009; 

Ozkan and others 

2010; Peng and 

others 2011).  

Spelt wheat  Triticum aestivum 

subsp. spelta 

(2n = 6x= 42; 

genome AABBDD) 

It is suggested to be the ancestral form of T. 

aestivum; however, it is also hypothesized to 

be probably derived from a secondary 

hybridization between emmer wheat and a 

hexaploid wheat (T. aestivum L. 

ssp. compactum Host em). 

(Dovrak and others 

2011; Guzmán and 

others 2012) 

Khorasan wheat 

or Kamut® 

Triticum turgidum 

subsp. turanicum 

(2n = 4x= 28, 

genome AABB) 

This wheat originated in the Khorasan 

region and was always known in the 

Mediterranean basin, where many 

populations exist. Its origin is probably as far 

in time as durum wheat. Kamut® is the 

registered trademark for Khorasan wheat 

produced under the controlled value chain of 

Kamut International. 

(Michalcová and 

others 2014) 
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Table 3: Gluten-free grains.  1079 

Common 

name  

Main species  Origin/History References 

 

Buckwheat 

The two major species are common buckwheat 

(sweet) (Fagopyrum esculentum Moench) and 

tartary buckwheat (Fagopyrum tataricum 

Gaertn.)  

One of the traditional 

crops cultivated in 

Asia and Central and 

Eastern Europe.  

(Moreno and others 

2014; Kang and 

others 2017) 

Quinoa The two commercial varieties are Amarilla de 

Marangani and Blanca de Junın 

Among the most 

popular crops for the 

people of rural South 

America. 

(Vega-Gálvez and 

others 2010; Graf 

and others 2015) 

Amaranth 60 plant species, Amaranthus cruentus, A. 

hypochondriacus, and A. Caudatus are the main 

cultivated amaranth species for grain, whereas A. 

cruentus, A. blitum, A. dubius, and A. tricolor are 

used as leafy vegetables 

It was once a staple 

food of the Aztecs. 

(Singh and Singh, 

2011). 

Chia Three main species: Salvia columbariae 

Benth., Salvia polytachya Cavan., and Salvia 

hispanica L.. 

It was found growing 

wild in Mexico. 
(Verdú and others 

2015). 
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Table 4: Approximate chemical composition of ancient wheat, durum wheat and common wheat.  1083 

  Einkorn Emmer Spelt Kamut® Durum wheat Common wheat 

Energy 

(kcal/100g)  

333 362 324 337 339 340 

Carbohydrate 

(g/100g) 

67 72 68 71 71 75 

Protein 

(g/100g) 

13.3 12.8 14.7 14.5 13.7 10.7 

Fiber (g/100g) 6.7 10.6 5.9 11.1 11.6 12.7 

Lipid (g/100g) 1.7 2.1 2.9 2.1 2.5 2 

Minerals  
      

Calcium 

(mg/100g) 

Nr Nr 17.6 22 34 34 

Iron 

(mg/100g) 

3.6 1.5 3.1 3.8 3.2 5.4 

Magnesium 

(mg/100g) 

200 128 Nr 130 144 90 

Phosphorus 

(mg/100g) 

Nr Nr Nr 364 508 402 

Potassium 

(mg/100g) 

Nr Nr Nr 403 431 435 

Sodium 

(mg/100g) 

Nr Nr Nr 5 2 2 

Zinc 

(mg/100g) 

15 4.8 Nr 3.7 4.2 3.5 

Vitamins 

(µg/100g) 

            

Vitamin A Nr Nr Nr 0.3 0 0 

Vitamin B6 0.4 Nr Nr 0.26 0.42 0.38 

Vitamin C Nr Nr Nr 0 0 0 

Vitamin E Nr Nr Nr 0.61 0 1.01 

Nr: Not reported  1084 

United States Department of Agriculture. USDA Food Composition Database. Available from: 1085 
http://ndb.nal.usda.gov/. 1086 
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 1092 

Table 5: Approximate chemical composition of pseudocereals compared to maize and rice.  1093 

  Pseudocereals Maize Rice  

  Buckwheat  Quinoa Amaranth Chia 

Energy (kcal/100g)  343 368 378 486 370 363 

Carbohydrate 

(g/100g) 

71.5 64.2 66.7 18.4 85.19 76.5 

Protein (g/100g) 13.25 14.1 15.5 16.5 7.4 7.23 

Fiber (g/100g) 10 7 8.9 34.4 7.4 4.6 

Lipid (g/100g) 3.4 6.1 6.7 30.7 3.7 2.78 

Minerals (g/100g) 
 

Calcium (mg/100g) 18 47 133 631 Nr 11 

Iron (mg/100g) 2.8 4.57 8 7.72 2.67 1.98 

Magnesium (mg/100g) 231 197 Nr 335 259 112 

Phosphorus (mg/100g) 347 457 Nr 860 Nr 337 

Potassium (mg/100g) 460 563 Nr 407 Nr 289 

Sodium (mg/100g) 1 5 22 16 Nr 8 

Zinc (mg/100g) 2.4 3.1 Nr 4.58 Nr 2.45 

Vitamins (µg/100g) 
 

          

Vitamin A  Nr 4.2 Nr 16.2 Nr Nr 

Vitamin B6 0.21 0.487 Nr Nr Nr 0.736 

Vitamin C Nr Nr 5.3 1.6 Nr Nr 

Vitamin E Nr 2.44 Nr 0.5 Nr 0.6 

Nr. Not reported 1094 

United States Department of Agriculture. USDA Food Composition Database. Available from: 1095 
http://ndb.nal.usda.gov/. 1096 
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