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11 ABSTRACT: The increasing use of engineered nanomaterials
12 (ENMs) raises questions regarding their environmental impact.
13 Improving the level of understanding of the genetic and molecular
14 basis of the response to ENM exposure in biota is necessary to
15 accurately assess the true risk to sensitive receptors. The aim of this
16 Review is to compare the plant response to several metal-based
17 ENMs widely used, such as quantum dots, metal oxides, and silver
18 nanoparticles (NPs), integrating available “omics” data (tran-
19 scriptomics, miRNAs, and proteomics). Although there is evidence
20 that ENMs can release their metal components into the
21 environment, the mechanistic basis of both ENM toxicity and
22 tolerance is often distinct from that of metal ions and bulk materials.
23 We show that the mechanisms of plant defense against ENM stress
24 include the modification of root architecture, involvement of
25 specific phytohormone signaling pathways, and activation of antioxidant mechanisms. A critical meta-analysis allowed us to
26 identify relevant genes, miRNAs, and proteins involved in the response to ENMs and will further allow a mechanistic
27 understanding of plant−ENM interactions.

28 ■ INTRODUCTION

29 Engineered nanomaterials (ENMs), a class of materials with
30 dimensions between 1 and 100 nm, are characterized by unique
31 physicochemical properties that differ from their respective bulk
32 materials.1 The differences are a consequence of both their
33 large surface area to mass ratio but also reflect the nature of the
34 surface coating used, solubility, shape and morphology, and
35 tendency toward self-aggregation.2 In recent years, there has
36 been a considerable increase in metal-based ENM production
37 and marketing.3 The global production of ENMs is forecast to
38 be higher than 0.5 Mt by 2020;4,5 meanwhile, concerns are
39 being voiced over the environmental consequences of this level
40 of production and release. There is an urgent need to gain
41 better understanding of ENM properties and to assess their
42 potential risks for human health and environment.6−8 The
43 interaction of ENMs with plants is particularly important, given
44 that plants are the primary trophic level in several ecosystems
45 and represent the base of the food chain for many animals,
46 including humans.3,4

47 Plant response to ENM exposure is variable, depending
48 significantly on factors, such as particle size and characteristics,

t1 49 dose, duration of exposure, plant species, and environmental

50 t1conditions9 (Table 1). Metal-based ENMs can be taken up by
51the plant roots either apoplastically or symplastically through
52the leaf cuticle, stomatal pores, or cuticle-free flowers.3 The
53tendency of ENMs to cross the root barrier and translocate
54through the vascular system into various tissues is strongly
55affected by their physicochemical characteristics as well as by
56the plant species and rate of transpiration.4,10−28 Cell wall
57composition, the presence of mucilage and other exudates, root
58symbiont activity, and the availability of soil organic matter all
59impact the mobility, bioavailability, and reactivity of
60ENMs.13,29−33

61Negative effects of exposure to metal-based ENMs on
62germination, root and shoot growth, and on the number of
63leaves formed have been observed in Arabidopsis thaliana (L.)
64Heynh as we l l a s in a number o f c rop spe -
65cies.10,17,21,26,27,30,34−45 Although examples have been provided
66for the release of metal cations from ENMs, in general, free ions
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67 contribute only partially to the toxicity of many metal-based
68 ENMs.24,27,35,46 Several mechanisms have been proposed to
69 explain the phytotoxicity of these materials.3 Uptake of ENMs
70 into the root may lead to the blocking of root pores, effectively
71 inhibiting the apoplastic flow of water and micronu-
72 trients.

24,47,48 The induction of reactive oxygen species
73 (ROS) is a commonly observed consequence of the exposure
74 to metal-based ENMs and significantly contributes to the
75 observed toxicity.39,49−53 ROS induce lipid peroxidation, alter
76 plant cell membranes and wall structures,54 and directly damage
77 proteins and DNA.3 Many ENMs cause genotoxic effects,
78 including chromosomal aberrations, mitotic division impair-
79 ment, and cellular disintegration.21,39,49,50,55

80 Notably, there are reports in the literature showing that
81 ENM exposure can also positively influence plant growth and
82 development.22,56−61 For example, in tomatoes (Solanum
83 lycopersicum L.), CeO2 nanoparticles (NPs) slightly improve
84 plant biomass, although the data suggest that the second

85generation of seedlings show some physiological deficits as
86compared to those of control plants.22,62

87Although a number of reviews on plant−ENM interactions
88have been published,3,44,45,53,63−69 the specific purpose of this
89work is to provide a comprehensive evaluation and integration
90of omics data describing the complex molecular networks in
91ENM response. High-throughput data considered in this
92Review (Table 1) include the transcriptomic response of A.
93thaliana to Ag,70,71 TiO2,

61,70,72,73 CeO2,
61,73 ZnO,72,74 and

94CuO75 NPs or cadmium sulfide (CdS) QDs46 (Table S1).
95miRNA profiling data are obtained from tobacco (Nicotiana
96tabacum L.) plants exposed to TiO2

76 and aluminum oxide
97(Al2O3)

77 NPs (Table 1), while the proteomic data sets involve
98the response to Ag NP exposure in rocket salad (Eruca vesicaria
99L. Cav.),78 rice (Oryza sativa L.)79 or wheat (Triticum aestivum
100L.),80 and the response to CeO2 NPs in kidney beans
101(Phaseolus vulgaris L.)81 (Table S2). A systems biology
102approach integrating data from large-scale measurements can
103lead to a more mechanistic understanding of the plant

Table 1. List of Omics Studies Considered in This Review

paper plant
plant
organ

age of plants
at treatment

ENM incubation time
for omics analysis dose ENMs

particle
size (nm)

ENM
treatment
effect

additional
informationa

transcriptomic data
Garciá-Sańchez
et al., 2015

A. thaliana
Col-0

whole
plant

3 weeks 2 days 0.2 mg L−1 Ag NPs 10, 20, 40,
and 80

no effect a

Kaveh et al.,
2013

A. thaliana
Col-0

whole
plant

seeds 10 days 5 mg L−1 PVP−
Ag
NPs

20 negative
effect

b

Garciá-Sańchez
et al., 2015

A. thaliana
Col-0

whole
plant

3 weeks 2 days 20 mg L−1 TiO2
NPs

10, 20, and
40

no effect a

Landa et al.,
2012

A. thaliana
Columbia

roots 6 weeks 7 days 100 mg L−1 TiO2
NPs

<150 no effect c

Tumburu et al.,
2015

A. thaliana
Col-0

whole
plant

seeds 12 days 500 mg L−1 TiO2
NPs

33 positive
effect

c

Tumburu et al.,
2017

A. thaliana
Col-0

roots and
shoots

seeds 29 days 500 mg L−1 TiO2
NPs

33 no effect a

Tumburu et al.,
2015

A. thaliana
Col-0

whole
plant

seeds 12 days 500 mg L−1 CeO2
NPs

21 positive
effect

c

Tumburu et al.,
2017

A. thaliana
Col-0

roots and
shoots

seeds 29 days 500 mg L−1 CeO2
NPs

21 positive
effect

a

Landa et al.,
2012

A. thaliana
Columbia

roots 6 weeks 7 days 100 mg L−1 ZnO
NPs

<100 negative
effect

b

Landa et al.,
2015

A. thaliana
Col-0

roots 4 weeks 7 days 4 mg L−1 ZnO
NPs

20 negative
effect

b

Tang et al.,
2016

A. thaliana
Bay-0

roots 15 days 2 h 10 mg L−1 CuO
NPs

30−50 negative
effect

c

Marmiroli et al.,
2014

A. thaliana
Ler-0

whole
plant

2 weeks 21 days 40 or 80 mg L−1 CdS
QDs

5 negative
effect

a

microRNA profiling
Burklew et al.,
2012

N. tabacum whole
plant

seeds 3 weeks 0.1, 0.5, or 1.0% Al2O3
NPs

not
indicated

negative
effect

Frazier et al.,
2014

N. tabacum whole
plant

seeds 3 weeks 0.1 or 1.0% TiO2
NPs

<25 negative
effect

proteomic data
Vannini et al.,
2013

E. vesicaria roots and
shoots

seeds 5 days 10 mg L−1 PVP−
Ag
NPs

10 positive
effect

Mirzajani et al.,
2014

O. sativa whole
plant

10 days 20 days 30 or 60 mg L−1 Ag NPs 18.3 negative
effect

Vannini et al.,
2014

T. aestivum roots and
shoots

seeds 5 days 10 mg L−1 PVP−
Ag
NPs

10 negative
effect

Majumdar et al.,
2015

P. vulgaris seeds seeds 102 days 62.5, 125, 250, or
500 mg/kg

CeO2
NPs

8 no effect

aTranscriptomic data considered in this review are characterized by whole database (a) or modulated gene set (b, −1 < log2 fold change < 1; c, −2 <
log2 fold change < 2).
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104 physiological response to ENM exposure and a more-accurate
105 assessment of risk.82−85

106 ■ METHODOLOGICAL NOTES ON COMPARATIVE IN
107 SILICO ANALYSIS OF OMICS DATA

108 In this Review, we summarize a number of multiomics studies
109 on plant response to ENM stress (Tables 1, S1, and S2). ENM
110 dose and particle size, as well as germination conditions and
111 developmental stages assayed in the experiments, are annotated
112 (Table 1).
113 For microarray data, relative expression ratios (treatment
114 over control) are log2-transformed, and genes showing
115 expression ratios ≥2 or ≤0.5 are classified as up- or down-
116 regulated by ENM treatment. Gene ontology (GO) analysis is
117 conducted using the Plant GeneSet Enrichment Analysis
118 toolkit.52 Biological processes associated with ENM toxicity-
119 modulating genes are identified and evaluated for statistical
120 significance (P value of ≤1 × 10−03). A hierarchical clustering

121analysis (Pearson correlation, average linkage) of differentially
122expressed transcripts is achieved using Cluster v3.0 software,86

123and the clustered data are visualized using Java Treeview.87

124MapMan v3.6.0RC188 is employed to map transcriptomic data
125to metabolic pathways and other biological processes.
126Box plots (Figure S1) and principal component analysis
127(PCA), performed with R software (https://www.r-project.
128org/) are used to show the distribution of gene expression data
129and extract major variables (in the form of components) from
130the large set of variables available in the transcriptomic data set
131(Table S1). The EnrichmentMap plug-in89 is used to visualize
132as a network the results of an analysis performed with the
133DAVID Functional Annotation Tool90 using the Cytoscape
134network visualization software.91

135■ SILVER NANOPARTICLES

136Transcriptomic Response. A pair of studies have
137investigated the transcriptional response of Arabidopsis exposed

Figure 1. Hierarchical clustering of Ag NP-responsive genes in A. thaliana. (a) Genes altered with respect to their transcription level following a 2
day exposure to Ag NPs of 10, 20, 40, or 80 nm diameter (respectively, Ag10, Ag20, Ag40, and Ag80) and bulk material (AgNO3). The heat map in
box 1 (green) displays genes responding to Pi starvation that are down-regulated by all levels of Ag stress. Box 2 (red) shows genes up-regulated by
both Ag NPs and bulk treatments. These include At4g13090 (Xth2, xyloglucan/xyloglucosyl transferase), At4g31970 (Cyp82c2, cytochrome P450),
At1g57943 (Atpup17, purine transporter), At1g14540 (Per4, peroxidase involved in the response to oxidative stress) and At1g14550 (putative
anionic peroxidase). (b) Genes altered with respect to transcription level following exposure to either Ag10, PVP-Ag NPs, bulk material, or Ag+ ions
in the presence of the stabilizing polymer PVP (PVP−AgNO3).

71 The heat map in box 3 (green) displays transcripts down-regulated in all NP-
exposed plants, including At2g40940 (Ethylene Response Sensor 1, Ers1) and At5g61160 (anthocyanin 5-aromatic acyltransferase 1, Aact1). Genes
up-regulated in plants exposed to Ag NPs are shown in box 4 (red), including At1g18140 (laccase 1, Lac1), At5g05390 (laccase 12, Lac12),
At2g40370 (laccase 5, Lac5), and At3g28740 (cytochrome P450, Cyp81d11).
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138 to Ag NPs (nanosilver) using whole-genome expression
139 microarrays (Table S1): Garciá-Sańchez et al.70 reported that
140 a brief exposure to low doses of 10−80 nm nanosilver did not
141 affect the plant growth; Kaveh et al.71 reported moderate
142 toxicity to 10 day old seedlings exposed to 20 nm nanosilver in
143 the presence of the stabilizing polymer polyvinylpyrrolidone
144 (PVP).92 A significant overlap is observed between the sets of
145 genes differentially expressed in response to nanosilver70,71 and

f1 146 bulk material70 or Ag+ ion71 treatments (Figure 1), but the
147 transcriptomic response induced by a brief exposure to the
148 smaller 10 nm Ag NPs differs to a greater extent from the bulk
149 treatment (Figure 1a). Notably, several studies suggested that
150 ENM uptake and toxicity increased with decreasing particle
151 size.14,34,93−95

152 A Gene Ontology (GO) enrichment analysis (Table S3)
153 reveals that gene expression changes induced by a brief
154 exposure to smaller nanosilver (10 nm diameter) are different
155 from those by the PVP−Ag NPs (Figure 1b). Genes encoding
156 for proteins involved in response to ROS (e.g., peroxidases;
157 superoxide dismutases, SODs) and in xylem development were
158 repressed by an early exposure to nanosilver but induced by
159 PVP−Ag NPs (Table S3). Early transcriptional repression of
160 genes encoding for antioxidant enzymes upon exposure to
161 nanosilver can be explained considering the central role that
162 ROS have in ENM stress response.3,53 In fact, ROS are essential
163 components of signal transduction in response to devel-
164 opmental and environmental cues and transcriptional regu-
165 latory networks can be activated upon long-term nanosilver
166 treatment to maintain nontoxic levels of ROS.96

167 A brief exposure to nanosilver (10−80 nm diameter) also
168 down-regulates genes involved in root development (Tables S1
169 and S3). An altered root morphology has been identified as a
170 consequence of exposure to various ENMs;76,79,93,97 nanosilver
171 appears to inhibit primary root growth by acting directly on the
172 root tip meristems76,79,93,94,97 and on root-hair growth.43,70

173 Genes implicated in differentiation of trichoblasts, specialized
174 epidermal cells from which root hair emerge, as well as genes
175 responsive to ethylene and auxin, positive regulators of root
176 hair development,98 are indeed down-regulated by an early
177 exposure to nanosilver (Table S3), indicating that plants can
178 respond quickly to nanosilver by reducing the root hair growth.
179 In fact, a hairless-like root phenotype was noted in A. thaliana
180 plants upon nanosilver treatment.70 Root-hair function is
181 related to absorption of water and nutrients, and a long-term
182 repression of root hair development due to nanosilver exposure
183 could have negative effects on plant growth and yield.64,99 Ag+

184 ions may occupy the ethylene-binding pocket of the ETR1
185 receptor and prevent downstream hormone signaling necessary
186 for the root hair development.98 It is possible that nanosilver or,
187 more likely, the released Ag+ ions can inhibit the ETR1-
188 dependent ethylene signaling pathway.
189 Adaptive changes in root architecture may be mediated by
190 ethylene and auxin in response to low phosphorus (Pi)
191 concentrations, a condition that promotes lateral and hairy root
192 formation but suppresses primary root growth.100 Interestingly,
193 genes induced in the response to Pi starvation are repressed by
194 an early treatment to both nanosilver and the bulk material
195 (Table S3). In addition, genes involved in galactolipid
196 biosynthesis (MGD2, MGD3, and SRG3) are also significantly
197 down-regulated by both forms of Ag (Table S3). Membrane
198 phospholipids, which constitute ∼30% of total phosphorus
199 storage in the plant,101 are hydrolyzed in the response to Pi
200 starvation and replaced by nonphosphorus lipids, such as

201galactolipids, which serve to maintain the functionality and
202structure of plasma membranes.102 Nanosilver exposure can
203likely trigger alterations in several pathways involved in an
204efficient mobilization and acquisition of Pi from the growth
205medium and intracellular stores, impairing membrane phos-
206pholipid composition as well as root development. Con-
207sequently, nanosilver may have negative effects on plant growth
208under Pi-deficient conditions.
209The early transcriptional response to nanosilver (10−80 nm
210diameter) also prompted repression of pathogen-activated
211genes involved in the systemic acquired response (SAR)
212mediated by salicylic acid (SA) as well as genes involved in
213abiotic stress responses. Geisler-Lee et al.41 showed that
214exposure to nanosilver compromises plant ability to limit
215pathogen growth. Nanosilver exposure of infected plants was
216associated with increased bacterial colonization, but supple-
217mentation with SA prior the addition of ENMs prevents
218bacterial growth and also counteracts the inhibition of root hair
219formation caused by ENM stress.70 A repression of SAR genes
220under periods of prolonged ENM exposure may therefore
221negatively affect the plant capacity to tolerate biotic stress.
222Genes strongly up-regulated upon early and long-term
223nanosilver treatments encode for proteins involved in defense
224response (Table S1): defensin-like proteins, plant thionin, β-
225glucosidases, cytochrome P450 proteins, and τ-class glutathione
226S-transferase (GST) members. GST expression is induced by a
227wide variety of stress conditions,103 including ENMs,104,105 and
228the over-expression of GST isoforms after nanosilver exposure
229might be needed for the detoxification of released Ag+ ions by
230binding to thiol groups of glutathione (GSH) mediated by
231these enzymes.104 PVP−Ag NP treatment also induces the
232transcription of a small operon-like cluster of genes, which are
233required for the synthesis and modification of the triterpene
234thalianol (Table S3), a class of secondary metabolites
235frequently implicated in plant defense response.106

236In addition, genes involved in phenylpropanoid synthesis, in
237particular suberin, are significantly up-regulated upon nano-
238silver exposure but not in response to Ag+ ions (Table S3).
239Phenylpropanoids are precursors of diverse secondary metab-
240olites, such as lignins, suberin, and flavonoids, and can play
241important roles in plant development and stress response.107,108

242Suberin is a cell-wall polymer composed predominantly of long-
243chain hydroxylated fatty acids and is deposited apoplastically to
244generate a lipophilic barrier to the uncontrolled flow of water,
245gases, and ions;109 thus, suberin provides a first line of defense
246against abiotic stresses, such as ENM treatment.
247Long-term exposure to PVP−Ag NPs also up-regulates a
248number of genes required for the synthesis of cell-wall
249polysaccharides and lignin (Table S3); these biomolecules
250play a key role in modulating cell-wall structure in response to
251several stressors.110 Lignin deposition, which occurs late in
252xylem cell differentiation, serves to waterproof the cell wall;111

253therefore, a prolonged exposure to nanosilver could lead to a
254decrease in cell wall extensibility and/or turgor. Laccases are
255responsible for the extracellular polymerization of lignin
256precursors,112 and the genes encoding these enzymes are also
257up-regulated by PVP−Ag NP exposure (Table S1).
258Proteomic Response. A total of three studies of plant
259proteomic response to nanosilver exposure have been published
260to date, involving E. vesicaria,78 rice,79 and wheat80 (Tables 1
261and S2). PVP−Ag NP (10 nm diameter) treatment did not
262show any significant effect on E. vesicaria seed germination,
263whereas an increased root growth was noted.78 Proteomic
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264 analysis shows only a limited overlap between the response to
265 PVP−Ag NPs and bulk material (Table S2). Both forms of Ag
266 strongly induce accumulation of proteins related to oxidative
267 stress response (SOD, peroxiredoxin) and the seed-specific
268 proteins belonging to the jacalin lectin family,113 which catalyze
269 the hydrolysis of glucosinolates, a group of S-rich metabo-
270 lites.114 Glucosinolates may be considered a potential storage
271 form of sulfur and an increased hydrolysis of these metabolites
272 has been reported under S deficiency.114 In accordance with
273 these observations, the levels of key enzymes in cysteine and
274 methionine synthesis are enhanced by ENM-induced stress,
275 indicating that the S metabolism can play a crucial role in
276 nanosilver tolerance. Interestingly, thiol ligands, such as
277 cysteine, strongly bind Ag+ ions leading to increased dissolution
278 rate of nanosilver.115

279 Synthesis of seed storage proteins, as cruciferins, is increased
280 by nanosilver treatment. In Arabidopsis, seedling germination
281 requires the breakdown of cruciferins, which are used as an
282 initial source of nitrogen.116 Such a mechanism could be
283 correlated with the positive effects induced by ENM treatment
284 in rocket root growth.
285 Proteomic analysis also showed an increase in the levels of
286 detoxifying enzymes (e.g., glucosidase 23)117 localized in
287 endoplasmic reticulum (ER) in E. vesicaria plants exposed to
288 nanosilver. An altered ER morphology is observed upon
289 nanosilver treatment, and these results indicate that ER might
290 be a crucial cellular target of the plant response to PVP−Ag
291 NPs.78,80 In addition, nanosilver exposure decreases the
292 abundance of two vacuolar-type proton ATPase subunits
293 (Table S2), suggesting a role for the vacuole in ENM
294 detoxification, as reported in other species.38,93

295 Mirzajani et al.79 reported protein expression changes in rice
296 roots exposed to nanosilver (18 nm diameter; Tables 1 and S2).
297 Nanosilver treatment in O. sativa enhances the cellular levels of
298 proteasome subunits and a 60S acidic ribosomal protein,
299 indicating that the accumulation of damaged proteins, followed
300 by their degradation via the ubiquitin pathway, and de novo
301 protein synthesis are processes associated with ENM stress
302 response. As in E. vesicaria,78 the levels of enzymes involved in
303 oxidative stress response (e.g., SOD and ascorbate peroxidase)
304 are increased in rice plants treated with nanosilver. This could
305 be the consequence of an enhanced transcription of these
306 genes, as observed by Ag NP treatment in Arabidopsis (Table
307 S1).43,71 Moreover, nanosilver exposure in rice reduces the
308 abundance of Ca2+-binding messengers calmodulin 1 and 3,
309 known to be involved in signal transduction in response to
310 various biotic and abiotic stressors;118,119 an alteration of the
311 Ca2+-signaling pathway mediated by nanosilver can negatively
312 affect cell metabolism in rice.
313 Proteomic analysis was also conducted in wheat treated with
314 10 mg L−1 PVP-Ag NPs (10 nm diameter), a level sufficient to
315 compromise both root and shoot elongation (Tables 1 and
316 S2).80 PVP-Ag NP treatment enhances the accumulation of
317 three α-amylases in wheat roots, and increased levels of these
318 proteins can be related to the observed reduction of starch
319 grains in treated roots.80

320 In both rocket and wheat,78,80 PVP−Ag NP exposure results
321 in an increase in the levels of malate dehydrogenase (MDH),
322 an enzyme which catalyzes the reversible reaction of
323 oxaloacetate to malate. A higher root exudation of organic
324 acids, such as malate, mediated by MDH is known to be
325 connected with metal stress tolerance.120 Organic acids in root
326 exudates can play a dual role in ENM mobility and

327bioavailability: they could either mobilize ENMs to accelerate
328uptake in plants or complex with ENMs to inhibit their
329translocation.121 Proteins belonging to the 14−3−3 family,
330known to stimulate the activity of the plasma membrane H+-
331ATPase and increase root exudation,122 are also accumulated in
332root cells when exposed to PVP−Ag NPs (Table S2).
333As observed in rocket and rice,78,79 nanosilver exposure also
334affects the concentration of proteins with a role in plant
335defense, such as GSTs, peroxidases, or chitinases.123,124 In
336addition, PVP−Ag NP exposure enhances the levels of
337energetic metabolism enzymes (Table S2), and this likely
338reflects an increased energy demand during nanosilver stress.
339Higher levels of the eukaryotic translation initiation factor 5A2
340(elF5A), the 60S acidic ribosomal protein but also of
341proteolytic enzymes suggest that nanosilver may affect protein
342synthesis and degradation in wheat, as reported in rice.79

343Although differences in the time of exposure, dose, particle size,
344and plant material can make it difficult to obtain a mechanistic
345understanding of plant response to nanosilver, different omics
346data show that nanosilver exposure triggers plant defense
347pathways, involving the antioxidant response or synthesis of
348sulfhydryl-containing ligands.

349■ TITANIUM DIOXIDE NANOPARTICLES
350Transcriptomic Response. Several reports have been
351published61,70,72,73 in which Arabidopsis was exposed to
352uncoated TiO2 NPs (nanotitania), with experiments differing
353in particle size, concentration, time of exposure, and plant
354developmental stage (Table 1). Analysis of differentially
355expressed genes reveals a general down-regulation induced by
356early exposure (2 days) to nanotitania (10−40 nm diameter;
357Tables 1 and S1 and Figure S2).70 Conversely, a more
358prolonged exposure (29 days) to high concentrations (500 mg
359L−1) of nano titania (33 nm diameter) up-regulates 55% and
36063% of transcripts in roots and shoots of Arabidopsis seedlings,
361respectively.73 Smaller changes in gene expression (Figure S2)
362are instead produced in Arabidopsis by nanotitania treatments
363for 7 to 12 days.61,72 Hierarchical clustering analysis reveals that
364the transcriptional profiles depend more strongly on the time of
365exposure (or on plant materials) than on the size or doses of
366the ENMs, and that response to short-term exposure to
367nanotitania70 is rather similar to that induced by bulk material
368(Figure S2).
369Early exposure to nanotitania (10−40 nm; Tables 1 and S4)
370causes down-regulation of genes encoding proteins involved in
371pathways usually associated with plant stress responses, such as
372ROS detoxification (e.g., peroxidases), triterpenoid and phenyl-
373propanoid metabolism, or with hormone-signaling pathways
374involved in the response to SA, jasmonic acid (JA), ethylene,
375and brassinosteroids (BRs). Similar to what was observed with
376nanosilver (see above), genes classified into these GO
377categories are significantly up-regulated during the longer-
378term exposure to nanotitania (33 nm)73 (Table S4).
379Furthermore, SA supplement rescues the depressive effects of
380nano titania on root-hair development, as observed for
381nanosilver.70

382Plant response to water stress is mainly controlled by a
383complex molecular network regulated by abscisic acid (ABA)
384and the activities of transcription factors (TFs) involved in the
385regulation of stomatal responses to enable plants to adapt and
386survive.125 Genes encoding components of ABA signaling
387pathway, involved in stomatal complex development, lignin
388biosynthesis, in response to chitin (e.g., chitinases) and to water
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389 deprivation (e.g., aquaporins) are significantly induced by long-
390 term exposure to TiO2 NPs73 (Table S4). A prolonged
391 treatment with nano titania could therefore induce drought
392 stress. Nanotitania accumulation in maize (Zea mays L.)
393 primary roots is, in fact, accompanied by a reduction in the cell-
394 wall pore diameter that negatively affects water transport and
395 transpiration.47 In cucumber (Cucumis sativus L.), TiO2 NPs are
396 transported to the leaf trichomes, suggesting that these
397 structures serve as a sink or even an excretory organ for
398 these ENMs.126 Trichomes, which are generally considered to
399 have evolved to protect against water loss and herbivorous
400 animals, are also involved in defense against heavy metal
401 stress.127

402 Nanotitania treatment also induces genes associated with
403 photosynthesis and chloroplast organization (Table S4). In S.
404 oleracea, TiO2 NPs increase light absorbance, chlorophyll
405 formation, and plant photosynthetic rates.57,60,128,129 These
406 ENMs are thought to enter the chloroplast, where they likely
407 promote energy transfer and oxygen evolution in photosystem
408 components, thereby accelerating the photosynthetic reactions.
409 It is also possible that nano titania can protect the chloroplast
410 from excessive light by augmenting the activity of antioxidant
411 enzymes.57

412 A high induction of genes in the GO category “microtubule
413 organization” is also observed upon long-term exposure to nano
414 titania (Table S4).73 Small TiO2 NPs (2.8 nm diameter) can
415 induce microtubule disorganization in leaf epidermal and
416 stomatal cells, followed by the 26S proteasome-dependent
417 degradation of tubulin monomers.130 This effect could be a
418 secondary consequence of ROS generated by these ENMs2 but
419 could also arise from a direct physical interaction between the
420 ENMs and the cytoskeleton. In fact, TiO2 NP binding to
421 microtubules has been observed in vitro, resulting in conforma-
422 tional changes to the cytoskeleton.131

423 Case of Post-Transcriptional Regulation: miRNA
424 Response to TiO2 NP Exposure. A study with tobacco76

425 showed that nanotitania (25 nm diameter; Table 1) exposure
426 inhibits root elongation and biomass formation and significantly
427 influences the expression profiles of several microRNAs
428 (miRNAs), short noncoding RNA (about 22 nucleotides in
429 length) with a role in plant development and response to
430 environmental stresses,132,133 usually controlling mRNA
431 stability or translation of target genes. Nano titania exposure
432 strongly increases the expression levels of miR395 and miR399,
433 and to a lesser extent, that of miR159, miR169, miR172,
434 miR393, miR396, and miR398.76 miR395 and miR399 control
435 plant adaptive responses to nutrient stress.134 miR395
436 expression is greatly increased under sulfate starvation, and its
437 known targets are transcripts involved in sulfur assimilation;135

438 these data are in agreement with the up-regulation of
439 glucosinolate metabolism genes observed in Arabidopsis plants
440 exposed to ENMs61,73 and it is possible that symptoms of S
441 starvation may be induced by nano titania exposure in tobacco.
442 In Arabidopsis, miR399 is up-regulated by Pi deficiency,136 and
443 its mature form is translocated from shoot to root via the
444 phloem, where it targets the transcript of the gene encoding E2-
445 conjugase Pho2, leading to the expression of Pi transporters.137

446 The miR169 family is conserved in plant species and
447 mediates the transcriptional regulation of several genes involved
448 in plant development and in response to environmental
449 stresses. The miR169 family responds differentially to nutrient
450 deficiency in Arabidopsis;133 nitrogen starvation up-regulates
451 miR169d−g, while S and Pi starvation reduces the abundance

452of nearly all miR169 members.136 The compromised growth
453and development of tobacco seedlings challenged with TiO2
454NPs76 may therefore reflect a nutrient deficiency induced by
455ENM exposure. The overabundance of miR169a and miR169c
456reduces the transcriptional levels of NFYA5, encoding for a
457transcriptional regulator of drought tolerance.138,139 Drought
458stress also enhances the abundance of miR159.140 Thus, it is
459also possible that exposure to nanotitania causes water stress in
460tobacco, as has been shown for both maize47 and
461Arabidopsis.61,73 In tobacco, miR395, miR399, miR169,
462miR398, and miR159 are also induced when plants are exposed
463to Al2O3 NPs,

77 which have a negative effect on root growth
464and germination26,34,77 (Table 1).
465Both miR16372 and miR40870 are reduced in abundance
466when Arabidopsis is exposed to nanotitania. Targets of miR163
467are genes for components of the defense pathways,141 while
468those of miR408 encode various Cu-containing proteins, such
469as plantacyanin and laccases. Plantacyanin is essential for
470electron transfer between the cytochrome b6f complex
471(plastoquinol−plastocyanin reductase) and photosystem I.142

472Laccases are involved in different physiological mechanisms,
473such as in lignin synthesis, maintenance of cell wall structure
474and integrity143 and response to stress.136 It is relevant that
475genes encoding components involved in photosynthesis and
476lignin metabolic processes are up-regulated by nano titania in
477Arabidopsis (Table S4).
478In summary, plant general stress response based on
479phenylpropanoid metabolism (e.g., lignin), hormone signaling
480pathways and ROS detoxification is involved in response to
481nanotitania and nanosilver. Transcriptomic profiling (including
482miRNA) analyses show that nutritional starvation and drought
483stress are closely associated with nano titania toxicity. These
484results are in agreement with those of two recent papers144,145

485focused on the metabolomic response of O. sativa plants treated
486with nanotitania. The studies show nanotitania exposure yields
487high levels of aspartic and glutamic acids, indicative of an
488increase in GSH metabolism and instrumental in maintaining
489the intracellular redox status,144,145 and increased levels of
490linoleic and linolenic acid in treated rice leaves,144 suggesting a
491potential membrane lipid peroxidation. High levels in plants of
492the multifunctional amino acid proline, which plays various
493roles in abiotic stress including drought,146 are also observed in
494rice upon nanotitania treatment.144,145

495■ CERIUM DIOXIDE NANOPARTICLES
496Transcriptomic Response. A pair of reports that were
497recently published61,73 (Table 1) show that CeO2 NPs
498(nanoceria; 21 nm in diameter) promote seed germination
499and seedling growth in Arabidopsis. The up-regulation of genes
500(Table S5) involved in water and nutrient uptake, trichoblast
501differentiation, and lateral root and xyloglucan metabolism is in
502agreement with the observation that seedling growth was
503enhanced by nanoceria treatment.61 Notably, xyloglucan
504catabolism increases cell wall extensibility147,148 that, in
505association with an increased nitrate accumulation (Table
506S5),149 can lead to growth stimulation.
507As previously described for nanosilver and nanotitania, a
508prolonged exposure to nanoceria (29 days)73 increases the
509transcription of genes repressed by ENM treatment performed
510for shorter times (12 days).61 Genes associated with several
511stress responses, including ROS detoxification, various
512metabolic processes associated with SAR, response to ethylene
513stimulus and S-containing compound metabolism are repre-
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514 sentative of this differential molecular response associated with
515 different times of ENM exposure. A strong down-regulation of
516 genes involved in oxidative stress response has been observed
517 after shorter time of nanoceria treatment61 (Table S5),
518 indicating that ROS may play a crucial role at early stages of
519 Arabidopsis seed germination. Interestingly, ROS are produced
520 during germination in radish through an active, developmen-
521 tally controlled, physiological process for protecting the
522 emerging seedling against pathogens and other stressors.150

523 Proteomic Response. Majumdar et al.81 reported a
524 proteomic analysis in kidney bean seeds exposed to nanoceria
525 (8 nm diameter; Tables 1 and S2). The levels of 23 proteins are
526 differentially modulated upon nanoceria exposure; the majority
527 of these proteins (91%) are under-abundant in treated plants.
528 Although the plants did not exhibit overt toxicity, the levels of
529 seed proteins associated with nutrient storage (phaseolin),
530 carbohydrate metabolism (lectins), and protein storage
531 (legumin) were significantly reduced in a dose-dependent
532 manner (Table S2). The authors suggest that nanoceria could
533 impair the nutritional content and quality of kidney beans.
534 Lectins, associated with carbohydrate metabolism, also play a
535 role in defense against biotic stress.151 Therefore, their
536 reduction indicates that nanoceria could diminish pathogen
537 resistance in beans. Increased levels of purple acid phosphatase
538 suggest that nanoceria can induce better Pi acquisition, in
539 agreement with a higher Pi content observed in plants exposed
540 to these ENMs.81,152

541 Therefore, long-term treatment with nanoceria in Arabidopsis
542 plants increases expression of genes associated with SAR,
543 ethylene-dependent pathway, S-containing compound metabo-
544 lism, and in the oxidative stress response.73 In the same way, a
545 recently published study on a proteomic and metabolomic
546 analysis in Phaseolus vulgaris L.153 shows that nanoceria alters
547 the abundance of antioxidant compounds, such as carotenoids
548 and phenolics, glucosinolate metabolism, and the abundance of
549 some key enzymes involved in response to oxidative stress, such
550 as ascorbate peroxidase and glutathione peroxidase. In the seeds
551 of exposed kidney beans, many under-abundant proteins are
552 involved in nutrient storage, carbohydrate metabolism, and
553 protein storage.81

554 ■ ZINC OXIDE NANOPARTICLES
555 ZnO NPs have been reported to be more toxic than other
556 ENMs.26,27,72,74 Different doses (4−100 mg L−1) of ZnO NPs
557 (20−100 nm diameter) negatively affect plant growth and
558 morphology and induce similar transcriptional changes in
559 Arabidopsis (Tables 1 and S6).72,74 GO analysis of the affected
560 genes (Table S6) revealed commonalities with the response to
561 Zn2+ ions.154 The up-regulation of genes (Table S1) encoding
562 proteins involved in metal binding, transport (e.g., Nramp4,
563 Zif1, Hma4), metal homeostasis and detoxification (e.g.,
564 metallothioneins and oligopeptide transporter Opt3) suggests
565 that Zn2+ ion release by ZnO NPs is a key factor in mediating
566 their toxicity.74

567 ZnO NP exposure strongly represses genes involved in the
568 biosynthesis of BRs (Table S6), which have been shown to play
569 a critical role in alleviating heavy metal stress.155 BR
570 supplementation to tomato seedlings treated with ZnO NPs
571 reduces oxidative stress, by increasing the activities of key
572 antioxidant enzymes, and decreases Zn content in plants.155

573 Negative effects induced by ENM treatment in Arabidopsis can,
574 therefore, be related to the repression of BR biosynthesis
575 genes.72,74

576ZnO NP exposure induces the expression of genes involved
577in N and Pi starvation and in lateral root formation, while it
578represses genes for primary root and root hair development
579(Table S6). PHR1, a master regulator of the plant transcrip-
580tional response to Pi starvation,156 along with the transcription
581factor WRKY75, is induced by exposure to ZnO NPs72 but not
582to Zn2+ ions (Table S1).
583The presence of ZnO NPs reduces the abundance of
584transcripts involved in the modification and degradation of
585hemicellulose (Table S6), which is able to adsorb heavy metal
586ions.45,157 ZnO NPs also induce alterations in cell division, cell
587structure, and nucleosome assembly, leading to perturbations in
588DNA packaging and transcriptional regulation (Table S6). As
589reported for other ENMs,79,80 ZnO NP treatment inhibits
590ribosome biogenesis and, consequently, protein synthesis,
591increases protein degradation, and down-regulates transcripts
592involved in electron transport and energy production, especially
593photosynthesis (Figure S3 and Table S6). These adverse effects
594can be related to an increased production of ROS induced by
595these ENMs.10

596In summary, negative effects are observed in the roots of
597Arabidopsis upon ZnO NP exposure. Response to ZnO NPs
598involves several pathways centered on oxidative stress response,
599root architecture remodeling, protein synthesis/turnover and
600energy balance. Modulation of key proteins and enzymes
601involved in metal homeostasis and detoxification indicate that
602Zn2+ ions are released by these ENMs. A gap in the current
603literature is the lack of proteomic studies focused on plant
604response to ZnO NPs; future research efforts should target
605pathways involved in the response to ZnO NPs so as to provide
606necessary mechanistic information for an accurate assessment
607of risk from these particles.

608■ COPPER OXIDE NANOPARTICLES
609Experiments performed by Tang et al.75 on Arabidopsis
610seedlings exposed to CuO NPs (30−50 nm diameter; Table
6111) under hydroponic conditions showed a reduction in root
612elongation. In these conditions, an altered expression of genes
613that are responsive to oxidative stress, phenylpropanoid
614biosysthesis and several hormone signaling pathways is
615observed (Table S7). Although there are no reports in
616literature of microarray experiments conducted in Arabidopsis
617plants treated with Cu2+ ions under experimental conditions
618comparable to those of Tang et al.75 to use as a comparison, it
619is possible to hypothesize that metal ions can be released by
620these ENMs;158 this aspect could partially explain some effects
621reported, as observed in O. sativa by Wang et al.159 For
622example, CuO NPs strongly up-regulate ZAT12, encoding a
623transcription factor involved in abiotic stress response,160 that
624play a key role in ROS signaling pathway.75 Zat12 also seemed
625to be involved in response to metal ions (Cu2+ and Cd2+) and
626iron deficiency.161 Furthermore, Zat12 is co-expressed with the
627gene orf 31, a chloroplastic electron carrier involved in
628photosynthesis that has been identified as putative biomarker
629of ENM exposure and effect in some crops.162,163 Wang et al.164

630reported how CuO NPs inhibited general chloroplast
631functionality, particularly through ROS generation and electron
632transport chain inhibition. Nair and Chung165 reported primary
633root growth delay, enhanced lateral root formation, and loss of
634root gravitropism upon CuO NP exposure. As observed for
635ZnO NPs, the transcription factor WRKY75 involved in the
636transcriptional response to Pi starvation was also up-regulated
637by CuO NP treatment (Table S1).
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638 Therefore, CuO NPs modulate genes involved in root
639 development and in plant stress response, as well as those
640 implicated in hormone signaling, oxidative stress response and
641 phenylpropanoid biosynthesis. Similar to ZnO NPs, CuO NP
642 treatment affects the expression of genes associated with metal
643 stress, suggesting a release of Cu2+ ions from these ENMs.

644 ■ CADMIUM SULFIDE QUANTUM DOTS
645 Marmiroli et al.46,166 characterized the major transcriptomic
646 and proteomic changes associated with exposure to CdS QDs
647 (5 nm diameter) in Arabidopsis. CdS QD treatment decreases
648 biomass accumulation, respiration, and chlorophyll content
649 while inducing a reprogramming of the transcription with
650 respect to >1000 genes (63% of which were up-regulated;

f2 651 Figure 2). Various evidence suggests a negligible Cd2+ ion

652release from CdS QDs;46,167 in fact, neither of the Arabidopsis
653mutants identified as tolerant to CdS QDs shows tolerance to
654Cd2+,46 and in addition, neither of the Cd2+ hypersensitive
655mutants is hypersensitive to CdS QDs.168

656Genes encoding antioxidant enzymes are up-regulated in
657both Cd2+ and CdS-QD-treated plants, suggesting that the QDs
658induce ROS production (Table S1). Plant response to CdS
659QDs and Cd2+ includes the production of anthocyanins,
660antioxidant pigments able to chelate metals.54,71,72,169−172 CdS
661QD exposure represses the genes involved in pectin synthesis
662(Table S8), and it has been shown that pectin degradation
663mediated by ROS is promoted by other ENMs.54 As observed
664for other ENMs (Tables S3, S4, S6, and S7), CdS QDs down-
665regulate genes encoding for components of trichoblast
666differentiation and root development pathways (Table S8).

Figure 2. Transcriptional response to CdS QDs. (a) CdS QD-responsive genes compared to those regulated by Cd2+ ions in roots (R) or leaves (L)
in A. thaliana. QD (I) and QD (II) represent gene expression profiles of plants exposed to two doses of CdS QDs (40 and 80 mg L−1, respectively).
(b) Flux through the phenylpropanoid synthesis pathway is enhanced by exposure to CdS QDs but not by exposure to Cd2+ ions. Several genes
involved in phenylpropanoid synthesis, such as At5g44630 (encoding terpene synthase and cyclase) and At4g16740 (ATTPS03, terpene synthase
03), are induced by CdS QDs. (c) Genes associated with photosynthesis are up-regulated by CdS QDs.
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667 The treated plants heightened response to water stress suggests
668 that CdS QD exposure may reduce hydraulic conductivity in
669 the primary root, leading to a reduction in leaf transpiration and
670 growth (Table S8). It is conceivable that physical interactions
671 between CdS QDs and the cell wall lead to increased root
672 lignification, thus compromising root morphology, apoplastic
673 flow and stomatal function.
674 CdS QD exposure up-regulates genes involved in root sulfate
675 uptake (Table S8). In Cd-treated plants, the increase in sulfate
676 uptake is related to changes in the levels of antioxidant species
677 (e.g., glutathione) and Cd-binding peptides involved in metal
678 detoxification, such as phytochelatins, or is caused by higher
679 turnover of sulfur-containing proteins inactivated by metal

680stress.173,174 Possible changes in S-dependent mechanisms may

681be also implicated in CdS QD stress response. Genes involved

682in photosynthesis and phenylpropanoid synthesis107 are up-

683regulated by the presence of CdS QDs but not by that of the
684Cd2+ ions (Figure 2).
685In summary, CdS QDs release negligible amounts of Cd2+

686ions and the toxicity observed upon CdS QD exposure seems

687to be associated with the ENM itself. CdS QD treatment

688decreases biomass, chlorophyll content, and respiratory

689efficiency in Arabidopsis but increases the transcription of

690gene products involved in antioxidant synthesis, water stress
691response, photosynthesis, and plant-root development.

Figure 3. PCA and enrichment analysis and similarities among plant responses to metal-based ENMs. (a) PCA of normalized microarray data
considered in this review. Capital letters (A−T) refers to different sets of microarray data enlisted in Table 1: Ag NPs [10 (A), 20 (B), 40 (C), and
80 (D) nm diameter] from Garciá-Sańchez et al.;70 PVP-Ag NPs (E) from Kaveh et al.;71 TiO2 NPs [10 (F), 20 (G), and 40 (H) nm diameter] from
Garciá-Sańchez et al;70 TiO2 NPs (I) from Landa et al.;72 TiO2 NPs (J) from Tumburu et al.;61 TiO2 NPs (roots, K; shoots, L) from Tumburu et
al.;73 CeO2 NPs (M) from Tumburu et al.;61 CeO2 NPs (roots, N; shoots, O) from Tumburu et al.;73 ZnO NPs (P) from Landa et al.;72 ZnO NPs
(Q) from Landa et al.;74 CuO NPs (R) from Tang et al.75 and CdS QDs [40 (S) and 80 (T) mg L−1] from Marmiroli et al.46 PCA plot with relative
proportions of variance of overall data set; the first two components (25.6% and 11% of variance, respectively) correspond to data sets from early
exposure to Ag and TiO2 NPs,

70 and data sets from plants treated with ENMs that showed negative effects, as CdS QDs, CuO, and ZnO NPs. (b)
Enrichment analysis identify shared response to CdS QDs, CuO, and ZnO NP exposure. Analysis performed with the DAVID Functional
Annotation Tool is visualize as a network using the Cytoscape network visualization software. Nodes represent gene sets, and edges represent mutual
overlap; highly redundant gene sets are grouped together as clusters. Node (inner circle) size corresponds to the number of genes in data set 1
(modulated genes shared by CdS QDs, CuO NPs, and ZnO NP treatments) within the gene set. Node border (outer circle) size corresponds to the
number of genes in data set 2 (shared by two out of three treatments) within the gene set. The color of the node (inner circle) and border (outer
circle) correspond to the significance of the gene set for data set 1 and data set 2, respectively. Edge size corresponds to the number of genes that
overlap between the two connected gene sets. Green edges correspond to data set 1, and blue corresponds only to data set 2.

Environmental Science & Technology Critical Review

DOI: 10.1021/acs.est.7b04121
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

I

http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b04121/suppl_file/es7b04121_si_002.zip
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b04121/suppl_file/es7b04121_si_002.zip
http://dx.doi.org/10.1021/acs.est.7b04121


692 ■ INTEGRATING “OMICS” APPROACHES FOR
693 METAL-BASED ENM TOXICITY

694 In this Review, plant response to metal-based ENM exposure
695 has been analyzed comparing data from various “omics”
696 studies46,61,70−75 to construct a holistic representation of the

f3f4 697 plant response to ENMs (Figures 3 and 4). Complexity
698 underlying the reported data likely reflects experimental
699 differences regarding the size, dose and aggregation state of
700 the ENMs, as well as the plant developmental stages and time
701 of exposure (Table 1). A further complication is due to the fact

702that omics studies considered in this review (Table 1) identify
703very few proteins (Table S2)78−81 or miRNAs76,77 modulated
704by ENM treatments in plants other than Arabidopsis, whose
705molecular functions are often hypothetical.
706Response to various metal-based ENMs involves both
707common and specific pathways, but in general, the toxicity of
708metal-based ENMs may result from a synergistic action of the
709metal in nano and ionic forms. In an effort to identify molecular
710pathways affected by different ENMs and those genes similarly
711modulated in different conditions, PCA (Figure 3a) was used to
712assess the relationships between the transcriptomic responses

Figure 4. Pathways mediated by metal-based ENMs in plants. (a) Simplified cross-talk diagram showing the interaction between hormone signaling
pathways and NP stress response. Hormone-signaling pathways coordinate root growth and lateral root and root-hair development through complex
cross-talk. The activities of auxin, ethylene, ABA, JA, cytokinins (CKs), and brassinosteroids (BRs) exhibit either synergistic or antagonistic
interactions. TiO2 NPs (ET), early treatment to nanotitania; TiO2 NPs (ST), long-term treatment to nanotitania. (b) Schematic illustration of
cellular pathways responding to NP stress. PXs, peroxidase proteins; GRXs, glutaredoxin proteins; TCA cycle, tricarboxylic acid cycle. Black arrows
indicate stimulatory effects; blue horizontal bars indicate inhibitory effects. Dotted lines represent hypothetical interactions. Up-regulated genes are
indicated by red arrows and down-regulated by green arrows.
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713 induced by ENM treatments. The first and second components
714 of these analysis (Figure 3a), which captured, respectively,
715 25.6% and 11% of the variation, are represented by the
716 response to early treatments to Ag (10−80 nm) and TiO2 (10−
717 40 nm) NPs70 (first component) and ENM treatments that
718 cause negative effects in plant growth (second component),
719 especially CdS QDs (5 nm) but also ZnO (20−100 nm) and
720 CuO (30−50 nm) NPs. Notably, PVP−Ag NP (20 nm)
721 exposure causes negative effects on plant biomass,71 but the
722 observed transcriptomic changes are not crucial in terms of
723 effects on the total variance of the system (Figure 3a).
724 Microarray analysis uncovers several genes, e.g., involved in
725 ROS response or root architecture remodeling, whose
726 expression is repressed during the shorter but over-expressed
727 under longer treatments with Ag and TiO2 NPs. It is possible
728 that early signaling events may influence the capacity of plants
729 to trigger a successful adaptive response and a transcriptional
730 repression of stress-related genes is suspected to be an
731 important molecular mechanism to maintain plant responses
732 under tight control.175 This hormetic time-response emphasizes
733 a dynamic adaptive response or phenotypic plasticity of the
734 plant following exposure to metal-based ENMs. Among the
735 genes transcriptionally repressed by an early exposure to Ag
736 and TiO2 NPs, a number are activated by nutrient starvation,
737 water stress and other stimuli that modulate root system
738 architecture (Figure 4 and Tables S3 and S4). Many studies
739 have shown that the exposure to metal-based ENMs affects the
740 nutritional status (e.g., Pi, S, and Fe content) of many crop
741 species.48,81,105,176−180 S metabolism, normally directed to
742 produce Met and Cys for protein synthesis, can be redirected
743 to the production of GSH, a key element for antioxidant
744 response upon ENM exposure. Nutritional changes associated
745 with ENM exposure are also highlighted by the modulation of
746 several miRNAs (e.g., miR395 and miR399) that regulate these
747 pathways under nanotitania exposure in tobacco plants.
748 Furthermore, a decreased abundance of proteins associated
749 with nutrient storage (e.g., phaseolin) mediated by nanoceria
750 treatment in P. vulgaris suggests that ENMs also affect the
751 nutritional quality of seeds.81

752 In addition, PCA plot (Figure 3a) shows that ENM
753 treatments that cause negative effects in Arabidopsis plant
754 (CdS QDs, CuO, and ZnO NPs) clustered together. GO
755 analysis of shared genes modulated by these “negative” ENM
756 treatments reveals that several pathways are significantly
757 enriched (Tables S9 and S10 and Figure 3b). “Negative”
758 ENMs cause an overexpression of genes involved in other stress
759 responses (e.g., water deprivation) and in phenylpropanoid
760 metabolism (Figures 3b and 4b), suggesting that an increase in
761 suberification or lignification of plant cell walls can be crucial
762 for the ENM stress response. However, excessive lignification
763 of the cell wall makes mineral and water uptake more difficult,
764 subsequently reducing plant growth and total chlorophyll
765 content.181

766 “Negative” ENMs also increase the expression of genes
767 belonging to hormone signaling pathways182,183 (Figure 4a and
768 Tables S9 and 10). Ethylene acts primarily to increase cell
769 expansion along the transverse axis,183 and synergistically with
770 auxin, to promote root-hair formation, inhibiting simultaneous
771 primary root elongation.184 Lateral root formation is also
772 prevented by ethylene, but it is increased by auxin and
773 brassinosteroids; up-regulation of genes involved in the
774 ethylene signaling pathway is observed in the presence of
775 CdS QDs, CuO, and ZnO NPs (Tables S6−S8 and S10).

776Notably, an early exposure to Ag and TiO2 NPs have the
777opposite effect (Tables S3 and S4). ABA plays a key role in
778inhibiting lateral root formation when plants are exposed to
779environmental stress185 and acts as an antagonist of BR-
780promoted growth. Genes induced by ABA are up-regulated by
781CdS QDs and CuO and ZnO NPs, while genes involved in BR
782biosynthesis are repressed by treatment with these ENMs
783(Tables S6−S8 and Figure 4a). The major role of JA is in
784defense against pathogen attack, but this hormone also has a
785role in plant growth control;183 the transcription of some JA-
786responsive genes is increased upon exposure to “negative”
787ENMs (Tables S6−S8). Genes involved in biosynthesis of SA, a
788signaling molecule that plays a role in general plant stress
789response, are down-regulated by an early exposure to Ag and
790TiO2 but are up-regulated by exposure to CdS QD and CuO
791and ZnO NP treatments (Tables S3, S4, S6−S8, and S10).
792The “omics” platforms are consistent in predicting that
793“negative” ENMs induce in Arabidopsis an oxidative stress
794response through ROS production (Tables S9 and S10; Figures
7953b and 4b), as reported in crops.105,162,163 Genes encoding
796proteins belonging to NADPH oxidase and SODs but mainly
797peroxidases and GST families, all involved in antioxidant
798pathways that drive ROS detoxification, are significantly
799modulated upon CdS QD and CuO and ZnO NP treatments
800(Figures 3b and 4b). The up-regulation of genes as GSTs can
801be associated with an elevated S demand in root and leaves.105

802In addition, the biosynthesis of nonenzymatic antioxidants (e.g.,
803flavonoids) is increased upon CdS QD exposure (Tables S8).
804Oxidative stress can damage lipids, proteins and DNA and
805interfere with biochemical reactions, such as reducing photo-
806synthesis.3,21,39,49−52,54,55 Interestingly, alteration in the tran-
807script or protein levels of key components of protein synthesis
808and protein degradation are modulated in plants exposed to Ag,
809TiO2, and ZnO NPs (Tables S3, S4, and S6; Figure 4b).
810Conversely, different transcriptional changes are observed in
811genes involved in synthesis and function of both photosynthetic
812complexes I and II upon ENM treatments (Figure 4b).
813Negative and positive effects on chlorophyll synthesis have
814b e e n o b s e r v e d upon t r e a tmen t w i t h s e v e r a l
815ENMs.3,10,20,46,186−188 A more-practical insight that arises
816from these molecular studies is related to the possibilities to
817develop new strategies and predictive tools for assessing
818exposure and effects (e.g., biomarkers) in plants.162

819■ ENVIRONMENTAL IMPLICATIONS
820Omics approaches have succeeded in identifying certain
821responses, which point to potential toxicity pathways and to
822modes of action of ENMs. Exposure to ENMs clearly provokes
823a generalized stress response, and plenty of evidence favors the
824notion that oxidative stress is one of its drivers. However, ENM
825exposure is also associated with the regulation of a suite of
826genes involved in nutrient uptake and transport, root
827development, and hormone-signal transduction that induce a
828range of physiological and morphological changes. This more-
829holistic view of the plant response may well conflict with
830outcomes inferred from purely transcriptomic or proteomic
831data, which impose a largely mechanistic perspective. Here, the
832approach was to consider omics data derived from a variety of
833sources, and the issue was how to integrate multiple data sets
834derived from distinct experimental conditions and based on a
835number of different ENMs. The comparisons have been further
836complicated by inherent differences in the size of the omic data
837sets. This disparity in itself mitigates against any straightforward
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838 application of multivariate statistics. Nevertheless, some
839 interesting insights have been obtained, as reported in Figures
840 3 and 4.
841 Phenotypic data, while being highly informative, suffer from a
842 lack of robustness as reflected in the variability, which arises
843 from the existence of genotype-environment interactions;
844 instead, omics data, while generally robust, tend to be less
845 informative and are essentially descriptive, if not properly
846 deciphered and integrated. It has been frequently noted that
847 transcriptomic and proteomic data are at best only loosely
848 correlated with one another,166,189 but this discrepancy arises
849 from other processes, notably post-translation modification,
850 which intervene between transcription and protein accumu-
851 lation. Nevertheless, omics-based analyses do clearly benefit
852 from the use of mutants, just as phenotypic studies do.46,166 In
853 critically reviewing the existing data, we have not fully
854 considered metabolomic studies, in part because most of
855 these works have been published only recently.144,145,153,190,191

856 Indeed, metabolomic profiling analysis is a powerful tool that
857 can provide a deeper insight into the response of complex
858 biological systems under ENM stress. Metabolites in many
859 cases represent the final downstream product of gene
860 expression, and as such, the metabolome is strongly related
861 to the phenotype when a genetic control in the response has to
862 be considered. The incorporation of these omics metadata into
863 networking analysis should promote the integration of
864 mechanistic and holistic views of the living organism.
865 From an environmental perspective, a thorough under-
866 standing of plant response to ENMs is very important. New
867 applications of nanotechnologies in agriculture, which range
868 from crop productivity and nutritional quality to plant
869 protection,192−195 may in fact pose unpredictable risks
870 associated with the intentional release of ENMs into the
871 environment.196 This may lead to higher input fluxes than
872 predicted to date.197

873 Therefore, some results discussed suggest caution when
874 advocating the use of metal-based ENMs on crop plants
875 because properties, such as nanoscale size, composition,
876 coating, and application method, may cause problematic effects
877 even when overt toxicity is not evident.192 In addition, further
878 studies are needed to understand how ENMs are transferred
879 through ecosystems along various pathways, how these
880 materials can cause toxicity to different organisms and
881 communities, including affecting biodiversity, and how transfer
882 within food chains to top level consumers can occur. Many of
883 these questions will need to be addressed prior to the
884 sustainable application of ENMs in agriculture.
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