ARCHIVIO DELLA RICERCA

University of Parma Research Repository				
Variation in benthic metabolism and nitrogen cycling across clam aquaculture sites				
This is the peer reviewd version of the followng article:				
Original Variation in benthic metabolism and nitrogen cycling across clam aquaculture sites / Murphy, Anna E.; Nizzoli, Daniele; Bartoli, Marco; Smyth, Ashley R.; Castaldelli, Giuseppe; Anderson, Iris C In: MARINE POLLUTION BULLETIN ISSN 0025-326X 127:(2018), pp. 524-535. [10.1016/j.marpolbul.2017.12.003]				
Availability: This version is available at: 11381/2837984 since: 2021-10-06T16:18:36Z				
Publisher: Elsevier Ltd				

Terms of use:

DOI:10.1016/j.marpolbul.2017.12.003

Published

Anyone can freely access the full text of works made available as "Open Access". Works made available

Publisher copyright

note finali coverpage

(Article begins on next page)

Click here to view linked References

1 2 Variation in benthic metabolism and nitrogen cycling across clam aquaculture sites 3 Anna E. Murphy^{1a}, Daniele Nizzoli², Marco Bartoli^{2,3}, Ashley R. Smyth⁴, Giuseppe Castaldelli⁵, 4 Iris C. Anderson¹ 5 6 7 ¹Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, VA 23062, 8 USA 9 ²Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 10 Parco Area delle Scienze 11/A, 43124 Parma, Italy 11 ³Klaipeda University, LT-92294 Klaipeda, Lithuania 12 ⁴Soil and Water Sciences Department, Tropical Research and Education Center, University of 13 Florida, Insitute of Food and Agricultural Sciences, Homestead, FL 14 ⁵Department of Life Sciences and Biotechnology, Ferrara University, Italy 15 16 ^aCurrent Address: Marine Science Center, Northeastern University, Nahant, MA 01908 17 18 ABSTRACT 19 As bivalve aquaculture expands globally, an understanding of how it alters nitrogen is 20 important to minimize impacts. This study investigated nitrogen cycling associated with clam 21 aquaculture in the Sacca di Goro, Italy (Ruditapes philipinarum) and the Eastern Shore, USA 22 (Mercenaria mercenaria). Ammonium and dissolved oxygen fluxes were positively correlated 23 with clam biomass; R. philippinarum consumed ~6 times more oxygen and excreted ~5 times

more NH₄⁺ than M. mercenaria. There was no direct effect of clams on denitrification or dissimilatory nitrate reduction to ammonium (DNRA); rather, nitrate availability controlled the competition between these microbial pathways. Highest denitrification rates were measured at sites where both water column nitrate and nitrification were elevated due to high densities of a burrowing amphipod (Corophium sp.). DNRA exceeded denitrification where water column nitrate was low and nitrification was suppressed in highly reduced sediment, potentially due to low hydrologic flow and high clam densities. **KEYWORDS:** Denitrification; DNRA; nitrification; nitrate respiration; clam aquaculture; nitrogen cycling Acknowledgements We are grateful to the aquaculturists and Consorzio Pescatori Goro for providing access to the clam leases. MIMS analysis was financed by the Emilia-Romagna Region within the POR FESR 2007-2013 Programme. This work was supported by Virginia Sea Grant (NA10OAR4170085, #R/71515W, #R/715168), the NSF GK12 Fellowship (DGE-0840804), the Strategic Environmental Research and Development Program – Defense Coastal/Estuarine Research Program Project SI-1413, and NSF Virginia Coast Reserve LTER Project (DEB

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

0080381, DEB 061014). The authors declare that they have no conflict of interest. This

manuscript is contribution No. XXXX from the Virginia Institute of Marine Science, College of William and Mary.

INTRODUCTION

The presence of bivalve aquaculture in coastal ecosystems has large implications for coastal nitrogen (N) dynamics. As nutrient pollution continues to be problematic in coastal waters worldwide concurrent with the rapid expansion of the bivalve industry (FAO 2014), the influence of bivalve aquaculture on N removal pathways is of increasing interest. Implementing bivalve aquaculture as a means to promote N removal and mitigate coastal eutrophication is a current topic of debate (e.g. Stadmark & Conley 2011, Rose et al. 2012). Effective resource management requires an understanding of the net effect of bivalve cultivation on N cycling, both recycling and removal pathways, and particularly how this changes with different environmental conditions. This study investigates the mechanistic drivers that influence the effects of clam cultivation on benthic N cycling pathways by sampling two clam species that are farmed across a range of environmental conditions.

As infaunal organisms, cultivated clams both directly and indirectly affect sediment N cycling rates and benthic metabolism through bioturbation, biodeposition, excretion, and respiration, which subsequently influence microbial metabolic pathways (reviewed in Laverock et al. 2011). Clam bioturbation transports particles and water, including solutes (e.g. O₂, NO₃), through sediments. Through feeding and biodeposition, clams actively deliver organic carbon to the sediments from the water column, fueling microbial decomposition pathways, enhancing microbial respiration and oxygen demand, and thereby substantially changing redox gradients (Aller 1982, Kristensen et al. 1985) and impacting redox sensitive microbial processes such as nitrification and denitrification (Stief 2013). Benthic infauna, including cultivated clams, also

excrete dissolved inorganic and organic N, directly increasing benthic N fluxes to the water column and potentially providing substrate (e.g. NH₄⁺) for microbial processes such as nitrification and ANAMMOX (Welsh et al. 2015). Bivalves can thus influence both microbial N removal and recycling pathways in coastal sediments.

Bivalves may enhance N removal by promoting denitrification, the microbially mediated pathway that reduces nitrate (NO₃⁻) to inert N₂ gas. This bivalve-facilitated, denitrification enhancement results both from biodeposition of organic matter to sediment microbial communities (Newell et al. 2002, Kellogg et al. 2013, Smyth et al. 2013) and by provision of habitats for denitrifying microorganisms (Heisterkamp et al., 2010; Welsh et al., 2015). However, some studies have reported no significant effect of bivalves on denitrification rates (Higgins et al. 2013, Erler et al. 2017). Additionally, often overlooked is the effect bivalves have on inorganic N regeneration pathways. High densities of bivalves, found in cultivation settings, may accelerate N recycling processes through bivalve excretion and stimulation of microbial ammonification including dissimilatory nitrate reduction to ammonium (NH₄⁺) (DNRA) (Dame 2011, Murphy et al. 2016, Erler et al. 2017), which retain bioavailable N in the aquatic ecosystem.

The question of whether bivalves promote N removal or retention remains equivocal. The discrepancy among previous studies on how bivalves influence benthic N cycling pathways is in part due to differences in the bivalve species studied (e.g. epifaunal oysters or mussels versus infaunal clams), but also likely due differences in the environmental conditions under which bivalves are farmed. Bivalve aquaculture can occupy expansive regions across estuarine environmental gradients. Few studies that investigate N cycling associated with bivalve aquaculture, and specifically clam aquaculture, have captured the natural environmental

variability across which the practice exists. Moreover, few studies have investigated the partitioning of NO₃⁻ reduction between denitrification and DNRA, which is ecologically important as DNRA retains bioavailable N in the system as NH₄⁺ whereas denitrification removes it. Those studies that do provide simulatenouse measurements of denitrification and DNRA are restricted to single study systems. Therefore, we were interested in directly comparing different study systems, which are heavily exploited for infaunal clam cultivation and where previous studies found contrasting results regarding denitrification and DNRA at clam cultivation sites. We chose to sample clam aquaculture in the Sacca di Goro, Italy, where denitrification was reportedly higher than DNRA (Nizzoli et al. 2006) and in coastal Virginia, US, where DNRA generally dominated NO₃⁻ respiration (Murphy et al. 2016).

The objective of this study was to investigate how sediment N cycling associated with clam aquaculture varies across different environmental conditions and between two commonly cultivated infaunal clam species: *Ruditapes philipinarum* (Italy) and *Mercenaria mercenaria* (US). Across the natural environmental gradients in which clam aquaculture exists, we were specifically interested in (1) comparing N cycling and metabolic rates between the two cultivated clam species and determining the direct contribution of these clams to benthic rates and (2) determining the factors that influence the competition between microbial denitrification and DNRA at clam aquaculture sites. By studying two clam species exposed to different environmental conditions and farming practices, we sought to highlight the challenge in generalizing ecological responses across all bivalve aquaculture and, more specifically, across all clam cultivation practices. We hypothesized that both clam species would significantly increase benthic oxygen demand and inorganic N fluxes; however, the contribution of clams to these benthic processes would differ across sites depending on site-specific factors and clam species

physiology. We expected that the degree to which N is removed through denitrification relative to N recycled through DNRA would change depending on the availability of labile organic carbon and NO₃⁻ (Tiedje 1988), factors that would vary broadly across estuarine gradients and clam aquaculture sites.

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

115

116

117

118

METHODS

Study Sites

The Sacca di Goro is a lagoonal system of the Po River Delta, Italy. Approximately 26 km² with an average depth of 1.5 m, the lagoon hosts a substantial clam aquaculture industry, with about 1/3 of the area occupied by clam cultivation. The system is generally divided into three areas based on hydrologic characteristics: the eastern portion is shallow with low energy and slow water exchange; the central region is tidally influenced, and the western portion is riverine dominated with freshwater flow from the Po di Volano (Figure 1A). The lagoon, particularly the eastern region, typically experiences periodic dystrophic events in the early summer when macroalgae bloom. Drastic changes to the hydrodynamics of the system were made over the past 20 years to improve water flow and alleviate dystrophic events, including channel construction along the southern sand spit and dredging of internal canals to increase flow to the Adriatic Sea (Viaroli et al. 2006). The manila clam, R. philippinarum, is farmed in privately leased portions of the lagoon at densities ranging from 100 to >2000 individuals m⁻². Growers collect juvenile clams at the mouth and directly outside the lagoon, transport them to individual leases within the lagoon; after approximately 9 months market-sized clams are hydraulically harvested.

Clam aquaculture occupies large subtidal areas on both the Chesapeake Bay-side and Atlantic-side of the Eastern Shore peninsula of Virginia (Emery 2015). Cherrystone Inlet (ES-23), located on the Chesapeake Bay-side of the Eastern Shore, is a small shallow embayment (~6 km², mean water depth of 1.1 m) that receives little freshwater discharge. Smith Island Bay (ES-33) is the southern-most lagoon, located on the eastern side of the Eastern Shore and is protected from the Atlantic Ocean by a barrier island (Figure 1B). In both locations, the hard clam, *M. mercenaria*, is cultivated in privately owned leases in subtidal regions. Clams are sourced from land-based hatcheries and nurseries and planted in the sediments at ~8-15 mm in shell length. Unlike in Italy, growers set plastic mesh nets over the clam beds flush to the sediment surface as protection from natural predation. Macroalgal blooms, supported by nutrients excreted by clams and from microbial mineralization of organic matter in the sediment, occur on the predator-exclusion nets (Murphy et al. 2015). Periodically growers sweep the nets of macroalgae to prevent the algae from suffocating the clams. After about two years the market-sized clams are hydraulically harvested.

Site Characterization

Surface water column and sediment samples were collected once in summer 2013 at five sites in the Sacca di Goro, Italy (Figure 1A) and two sites on the Eastern Shore, VA USA (Figure 1B). Triplicate water column grab samples were collected at each site at ~50 cm above the sediment, filtered (0.45 μm) and stored frozen in either whirlpak bags or Falcon tubes until analyzed for NH₄⁺ and nitrate plus nitrite (NO_x⁻). Triplicate sediment cores (polycarbonate core tubes, 30 cm height and 4 cm i.d.) were also collected at each site for determination of sediment organic matter by loss on ignition (450 °C over 3 hours) in the 0-2 cm sediment horizon.

Temperature and salinity were measured at each site using a thermometer and refractometer, respectively. Although, both the Sacca di Goro and the Eastern Shore experience seasonal variation in temperature, salinity, and nutrient concentrations (Murphy et al. 2016; Nizzoli et al. 2006), capturing this temporal variability was beyond the scope of this study. We focused on the natural spatial variability of environmental parameters across the study sites during the summer season, when biogeochemical rates are typically high. Throughout the study, site identification refers to the location and measured salinity, for example, Goro-13 was collected in the Sacca di Goro and the salinity was 13.

Benthic Metabolism and Nutrient Flux Measurements – 'Intact Cores'

Twelve sediment cores (10 cm sediment depth) were collected (Eastern Shore (ES) sites, 9.5cm i.d.; Goro sites, 8 cm i.d.) at all sites, except ES-23 where 10 cores were collected, for the determination of benthic metabolism, nutrient fluxes, denitrification and DNRA. From each site, half the cores were incubated in the light and half in the dark. Cores were randomly collected at each site; clam densities varied between sediment cores and some sediment cores contained no clams by chance.

Sediment cores collected in the Sacca di Goro were transported to the University of Parma while cores from the Eastern Shore were transported to Virginia Institute of Marine Science, Eastern Shore Laboratory (VIMS ESL) in Wachapreague VA. Cores were placed in water baths at site-specific salinity and temperature and allowed to equilibrate overnight. Oxic conditions in water baths were assured by bubbling with airstones. The water inside the cores was gently stirred avoiding sediment resuspension during the equilibration and incubation periods with magnetic stirrers driven by a large magnet rotated by an external motor at 40 rpm.

The following day, half the cores were illuminated while the other half remained dark. The water inside the tanks was replaced with new water prior to initiating the incubation. To initiate incubations, the water level in the tank was lowered to below the core tops and all cores were sealed with clear lids. Short term batch incubations were conducted over 4-5 hours, ensuring cores never became hypoxic or anoxic. At each time point, DO was measured and samples of overlying water were collected for determinations of NH₄⁺ and NO_x⁻. Water column nutrient samples were immediately filtered (0.45 µm) and stored frozen until analysis. For the Sacca di Goro incubations, a polargraphic microsensor (50 µm; Unisense, DK) connected to an amperometer (PA2000, Unisense, DK) was used to measure DO concentrations in water samples collected during the incubation, stored in 12 ml exetainers (Labco Inc.) and preserved with ZnCl₂ (100 µl of 7M solution). For the Eastern Shore sites, DO was measured using Hach LDO101 Luminescent dissolved oxygen (DO) sensors (Hach Co., Loveland, CO, USA) secured in the lids of the cores. Hourly fluxes for each analyte (mmol O₂ m⁻² hr⁻¹ or μmol N m⁻² hr⁻¹) were calculated as the change in concentration over time multiplied by the core water volume and divided by the core surface area. Fluxes from the sediment to the water column are represented by positive values (production), while fluxes to the sediment from the water column are negative (consumption).

200

201

202

203

204

205

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

Denitrification and DNRA Rate Measurements - 'Intact Cores'

After the initial flux incubations for NH₄⁺, NO_x⁻, and DO, all cores were uncapped and the overlying water was replaced. Cores were allowed to equilibrate in the water bath for at least one hour; the light cores remained illuminated and the dark cores remained dark. The isotope pairing technique (IPT) was used to measure denitrification (Nielsen 1992) and DNRA

(Risgaard-Petersen & Rysgaard 1995). The water bath level was dropped to just below the core tops; $^{15}NO_3^-$ (98.9 atom %, targeting a final concentration of ~100 μ M) was added to the overlying water of each core. A water sample was collected from each core immediately before and after $^{15}NO_3^-$ addition to determine the ^{15}N -enrichment of the NO_3^- pool. Then the cores were capped and sealed. Incubations typically lasted 3-4 hours, depending on the specific sediment oxygen demand determined in the previous incubation (see above), allowing DO to change by no more than 30% of the initial concentration (Dalsgaard et al. 2000). After the incubation, each core was gently homogenized and slurries were sampled for $^{29}N_2$, $^{30}N_2$, and extractable $^{15}NH_4^+$.

Dissolved $^{29}N_2$ and $^{30}N_2$ gas samples were collected by siphoning the homogenized core slurry into 12 ml exetainer vials (Labco, Inc) without headspace and preserving them with 100 μ l of ZnCl₂ (7M). The abundances of $^{29}N_2$ and $^{30}N_2$ in the dissolved N_2 pool were determined within a month on a membrane inlet mass spectrometer (MIMS, detection limits for $^{29}N_2$ and $^{30}N_2$ are 0.011 and 0.0004 uM, respectively) (Kana et al. 1994) using a PrismaPlus mass spectrometer with an inline furnace operated at 600 °C to allow for O_2 removal (limits of detection for $^{29}N_2$ and $^{30}N_2$ are 10 nM and 0.4 nM, respectively). Denitrification rates were calculated based on the production of $^{29}N_2$ (p29) and $^{30}N_2$ (p30), assuming a binomial distribution of $^{28}N_2$, $^{29}N_2$, and $^{30}N_2$ (Nielsen 1992) as follows:

$$D_{15} = p29 + 2p30 \tag{3}$$

$$D_{14} = D_{15} \times (p29/2p30) \tag{4}$$

where D_{15} represents denitrification of the added $^{15}NO_3^-$ and D_{14} is the ambient denitrification rate of $^{14}NO_3^-$. Direct denitrification of NO_3^- from the water column (D_w) and coupled denitrification (D_n) were calculated as described by Nielsen (1992):

232
$$D_{w} = (^{14}NO_{3}^{-}/^{15}NO_{3}^{-}) * D_{15}$$
 (5)

$$D_{n} = D_{14} - D_{w} \tag{6}$$

where $^{14}NO_3^-$ is equal to the ambient unlabeled NO_3^- concentration (μM) and $^{15}NO_3^-$ is equal to the isotopically-labeled NO_3^- concentration at the start of the incubation. Previous manipulation experiments in which denitrification rates were measured with various concentrations of added $^{15}NO_3^-$, demonstrated that at all sites ANAMMOX contributed a negligible amount of N_2 relative to denitrification (Murphy, unpublished). Thus, the assumptions upon which the isotope pairing technique is based were met and the equations are valid for these systems (Nielsen 1992).

The homogenized cores were also sampled for extractable ¹⁵NH₄⁺ to calculate ambient DNRA rates from the production of ¹⁵NH₄. Potassium chloride (KCl) was added to approximately 200 ml of sediment slurry for a final concentration of 2M. Samples were shaken for 1 hour, filtered (0.45 µm Whatman PES), and frozen until they were diffused and trapped for analyses of ¹⁵NH₄⁺ enrichment and concentration using a method modified from Brooks (1989). Water samples were placed in specimen cups; an acidified (25µl of 2.5M sulfuric acid) GFF filter (1cm, i.d.), threaded onto a stainless steel wire, was suspended on the lip of the cup; magnesium oxide was added and the samples were allowed to diffuse for 2 weeks, after which

samples were placed in tin capsules and analyzed on an isotope ratio mass spectrometer (IRMS) at the University of California Davis Stable Isotope Facility for ¹⁵NH₄⁺.

DNRA rates of the ambient $^{14}NO_3^-$ (DNRA_t) were calculated according to Risgaard-Petersen & Rysgaard (1995) as:

255
$$DNRA_t = p^{15}NH_4^+ \times (D_{14}/D_{15})$$
 (7)

where p¹⁵NH₄⁺is equal to the production of ¹⁵NH₄⁺. This assumes that DNRA occurs in the same sediment horizon as denitrification, resulting in the same proportional use of ¹⁴NO₃⁻ and ¹⁵NO₃⁻ as denitrification (Rysgaard et al. 1993). Direct DNRA of NO₃⁻ from the water column (DNRA_w) and coupled DNRA (DNRA_n) were calculated as:

262
$$DNRA_{w} = (^{14}NO_{3}^{-} / ^{15}NO_{3}^{-}) * p^{15}NH_{4}^{+}$$
 (8)

$$DNRA_n = DNRA_t - DNRA_w$$
 (9)

Nitrification rates were estimated as the sum of denitrification, DNRA, and NO_x effluxes.

Clam Respiration and Excretion Rate Measurements – 'Clam-Only Incubations'

After the 'intact sediment core' incubations, all sediment cores were sieved and the clams from each core were collected and rinsed to remove any sediment; these clams were placed back into the same polycarbonate tubes they were sieved from for a 'clam-only' (i.e. no sediment) incubation. Therefore, the number of clams in each tube varied across samples and reflected the

ambient clam density at each study site. 'Clam-only' static flux incubations were then conducted as described for the 'intact sediment core' incubations. Chambers with the clams were placed back in the water bath, filled with unfiltered water, allowed to equilibrate for at least an hour, and capped for 2-3 hours. Over the incubation, samples were collected for DO, NH_4^+ and NO_3^- . As described above, hourly fluxes for each analyte (mmol O_2 m⁻² hr⁻¹ or μ mol N m⁻² hr⁻¹) were calculated as the change in concentration over time multiplied by the core water volume and divided by the core surface area. All these incubations were conducted under dark conditions. After the incubations, all clams were measured (shell length) and tissue dry weight (DW) and ash-free DW (loss on ignition) were obtained.

Infauna Sampling

After initial observations during field sampling, it was determined that a burrowing amphipod, *Corophium* sp., was present at Goro-10, Goro-13, and Goro-15. As these organisms likely strongly influence N cycling rates (Steif et al. 2013), we collected, counted, and determined biomass (g DW m⁻²) of the amphipods. As this decision was made after sampling Goro-10 and Goro-16, amphipod data were not collected at these sites, although it was clear that amphipods were also abundant at Goro-10. Amphipods were not abundant at the Eastern Shore sites and were not quantified (pers. obs.).

Gross Microbial Ammonification Rates

Additional core samples were collected at each site for gross ammonification rate measurements using the isotope pool dilution technique (Anderson et al. 1997). Cores (5.7 cm i.d, with approximately 5 cm overlying water and 5 cm sediment depth) were collected in pairs at

each sampling site, carefully avoiding inclusion of clams, however other infauna were retained. It is important to note that this method cannot decipher between microbial and infaunal NH_4^+ production; it is not possible to remove infaunal organisms without disturbing the natural sediment gradients important to microbial metabolic pathways. Cores were transported to the laboratory, placed in site water, and held overnight uncapped with gentle mixing and aeration. The following day the sediments were uniformly spiked with $^{15}N-NH_4^+$ (3.6 ml of $[NH_4]_2SO_4$, 30 at.%, 10 mM). One paired core, T_0 , was immediately sacrificed after spiking by shaking in 2M KCl for an hour; the extractant was filtered and frozen until analysis. The T_f cores were capped and incubated for 24 hours in the dark at *in situ* temperatures, after which the cores were processed the same as the T_0 cores above. NH_4^+ was processed and analyzed using the diffusion method modified by Brooks 1989, as described above. Rates of gross ammonification were calculated using a model described by Wessel & Tietema 1992 as

where $Tf_{atm\%}$ and $T0_{atm\%}$ refer to the $^{15}NH_4^+$ enrichment of the T_f and T_0 cores; k is equal to natural abundance of $^{15}NH_4^+$ expressed as atom %; $[NH_4^+T_f]$ and $[NH_4^+T_0]$ are the concentrations of NH_4^+ in the T_f and T_0 cores, respectively, and time is the incubation time.

319 Denitrification Efficiency Calculation

Denitrification efficiency, the percent of organic N that is mineralized via denitrification, was calculated as:

Denitrification Efficiency (%) =
$$\frac{D_{14}}{NO_X^- + NH_4^+ + D_{14}} \times 100$$
 (11)

where D_{14} is denitrification and NO_x^- and NH_4^+ represent the positive fluxes of these nutrients (effluxes).

Statistical Analyses

Data from the 'clam-only' incubations were analyzed using analysis of covariance (ANCOVA) to test the effect of and interaction between clam biomass and species on rate measurements (NH_4^+ , NO_x^- , and DO fluxes). Clam physiological rates (respiration and excretion), were calculated using the slope estimates of the linear models within each species (mmol O_2 g DW^{-1} hr^{-1} or μ mol NH_4^+ g DW^{-1} hr^{-1}). To determine the clam contribution to total benthic fluxes, clam physiological rates were scaled to per m^2 by multiplying by the clam biomass present within each core and dividing by the surface area of the core and compared to the 'intact core'.

A two-way analysis of variance (ANOVA) was used to examine the interactive effects of light condition and site, which refers to all 7 study sites, on 'intact sediment' nutrient fluxes, DO fluxes, denitrification, and DNRA. Tukey HSD post hoc analysis was used to compare means when an effect was significant. For further analysis, all fluxes, regardless of whether they were made in the light or dark were included and the effect of light was ignored because (1) the ANOVAs revealed light condition had minimal effects on the response variables and (2) the

effect of light on benthic biogeochemical rates was not a priority of our study, however we included paired light and dark cores to capture the variability associated with light in our measurements.

Linear models were used to assess the relationship between clam biomass and 'intact core' rate measurements (nutrient and DO fluxes, denitrification, and DNRA) within each site individually. Across all sites, the overall effects of clam biomass and species on 'intact sediment' nutrient fluxes, DO fluxes, denitrification, and DNRA, were assessed using mixed effects models, which accounted for the variance due to site. The mixed effects models (*lme* function from the 'nlme' package (Pinheiro et al. 2017)) were constructed with clam biomass and species as fixed effects while site was included as a random effect. Both the intercept and slope were allowed to vary by site to account for intrinsic site differences that may affect baseline benthic rates as well as differences in clam behavior or metabolisms across the sites.

Linear models were used to examine the effect of *Corophium* abundances on rates of denitrification, DNRA, and estimated nitrification across the three sites in which *Corophium* were quantified. Finally, the ratio of DNRA to denitrification (DNRA : DNF) as a function of labile organic carbon (ammonification rates were considered a proxy) relative to NO₃⁻ availability (ammonification rate : water column NO₃⁻) was explored with a linear model.

Data were checked for normality and homogeneity of variance using the Shapiro-Wilk and Levene's tests and transformed using Box-Cox to meet assumptions. All statistical analyses were considered significant at the p<0.05 level and were conducted in R Studio, version 3.4.1.

RESULTS

Environmental Characteristics

Salinity ranged from 10 to 33, while temperature was relatively consistent with lower temperatures at the Sacca di Goro sites (20-21 °C) than the Eastern Shore sites (25-27 °C) (Table 1). Water column NO_x^- was inversely correlated with salinity ($R^2 = 0.74$, p = 0.01), with the highest concentration at Goro-10 (54 μ M) and lowest concentration at ES-23 (0.2 μ M). Water column NH_4^+ ranged from 0.88 μ M at ES-33 to 38.4 μ M at Goro-16, with no significant relationship with salinity. Sediment organic matter (0-2 cm sediment horizon) was highest at Goro-15 (2.38) and lowest at Goro-16 (0.92), but was generally similar across sites.

Average clam densities in the Sacca di Goro ranged from 365 to 2089 individuals m⁻², and increased with salinity in this system ($R^2 = 0.88$, p = 0.01), while average densities on the Eastern Shore ranged from 258 to 630 individuals m⁻² and did not follow the salinity trend (Table 2). Average clam biomass ranged from 82.9 to 553 g DW m⁻² and was not significantly related to salinity (Table 2). *M. Mercenaria* were generally larger, averaging 39.7 mm in shell length, compared to the *R. philippinarum*, which ranged from 24.5 to 32.5 mm.

Corophium densities ranged from an average of 534 ind m⁻² at Goro-21 to 20,783 ind m⁻² at Goro-13 (Table 2). Based on visual estimation during sampling the densities at Goro-10 were similar to densities measured at the nearby sites (Goro-13 and Goro-15); however, densities were not directly quantified.

Dissolved Oxygen Fluxes

The 'clam only' incubations revealed significantly different respiration rates between the two species (ANCOVA, p < 0.001); *R. philippinarum* had significantly higher rates of respiration (0.024 \pm 0.002 mmol O₂ g DW⁻¹ hr⁻¹) compared to *M. mercenaria*, which averaged

 0.006 ± 0.001 mmol O_2 g DW⁻¹ hr⁻¹ (Table 3). Clam respiration accounted for between 18 and 176% of the 'intact sediment' dark DO fluxes across sites.

The 'intact sediment' incubations revealed all sites to be net heterotrophic (DO consuming) and ranged from a mean of -3.0 ± 0.6 mmol m⁻² hr⁻¹ in the light at ES-23 to a mean of -21.8 ± 3.2 mmol m⁻² hr⁻¹ in the light at Goro-15 (Figure 2A). There was no significant effect of light on DO fluxes; a significant site effect was observed, with highest consumption at Goro-13 and Goro-15 (Supplemental Table 1, Figure 2A). Within each site individually, 'intact sediment' DO fluxes were significantly correlated with clam biomass, except at Goro-10 and ES-23 (Supplemental Table 2). Across all sites, there was a significant effect of clam biomass on 'intact sediment' DO fluxes, while the effect of clam species was not significant (Figure 3A, Table 4).

 NH_4^+ Fluxes

Similar to clam respiration, the clam excretion rates, measured in the 'clam only' incubations, were significantly higher for *R. philippinarum*, averaging 2.73 ± 0.27 µmol N g DW⁻¹ hr⁻¹, compared to *M. mercenaria*, which averaged 0.75 ± 0.10 µmol N g DW⁻¹ hr⁻¹ (ANCOVA, p < 0.001, Table 3). Clam excretion accounted for between 28 and 575% of the total benthic NH₄⁺ fluxes.

There was no significant effect of light or site on the 'intact sediment' NH_4^+ fluxes (Supplemental Table 1). All sites had a net efflux of NH_4^+ in the light and dark, ranging from an average of 101.6 ± 42.7 to 1258.7 ± 173.5 µmol m⁻² hr⁻¹ at Goro-10 and Goro15, respectively. (Figure 2B). Within each site individually, 'intact sediment' NH_4^+ fluxes were significantly positively correlated with clam biomass, except at Goro-15, ES-23, and ES-33 (Supplemental

Table 2). Across all sites, net NH₄⁺ fluxes were significantly positively correlated with clam biomass, while the effect of clam species was not significant (Figure 3B, Table 4).

 NO_x Fluxes

In the 'clam only' incubations NO_x^- fluxes were not significantly related to clam biomass for either species (ANCOVA, p=0.97). In the 'intact sediment' incubations NO_x^- fluxes were negligible at the high salinity sites (ES-33, ES-23, and Goro-21). Sediments were a net sink of NO_x^- at the mid-salinity site (Goro-16), averaging -250.0 \pm 73.6 μ mol m⁻² hr⁻¹, and shifted to a net source of NO_x^- to the water column at the low salinity sites (Goro-10 and Goro-13), which averaged 1349.2 \pm 238.3 μ mol m⁻² hr⁻¹ and 606.2 \pm 120.0 μ mol m⁻² hr⁻¹, respectively (Figure 2C). A significant interaction was observed between site and light condition, driven mainly by the significantly higher NO_x^- efflux in the dark at Goro-10 (Figure 2C, Supplemental Table 1). There was no significant relationship between 'intact sediment' NO_x^- fluxes and clam biomass (mixed effect model, p=0.41, Table 4). Within each site individually, 'intact sediment' NO_x^- fluxes were not related to clam biomass, except at ES-33, where the relationship was significantly negative (Supplemental Table 2). NO_x^- fluxes across the sites were significantly inversely related to salinity ($R^2=0.21$, p<0.001) and directly related to water column NO_3^- concentrations ($R^2=0.23$, p<0.001).

Gross Ammonification Rates

Gross microbial ammonification rates were significantly lower at ES-23, averaging 2.4 ± 0.3 mmol m⁻² d⁻¹, compared to the other sites (Table 5). The high salinity sites in the Sacca di

Goro (Goro-16 and Goro-21) had rates similar to ES-23 and were significantly lower than the up-estuary sites (Goro-15 and Goro-13), which averaged 11.5 mmol m⁻² d⁻¹ (Table 5).

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

432

433

Denitrification, DNRA, and Nitrification

Average denitrification rates ranged from $1.6 \pm 0.2 \,\mu\text{mol m}^{-2}\,\text{hr}^{-1}$ at ES-23 to 259.1 \pm 54.1 µmol m⁻² hr⁻¹ at Goro-10. There was no significant effect of light on denitrification rates. however rates were significantly different across sites (Supplemental Table 1). ES-23, ES-33, and Goro-21 had similar denitrification rates, which were significantly lower than the other sites (Figure 4A). Overall nitrification was the main nitrate source for denitrification at ES-23, ES-33, and Goro-21, where D_n ranged from 78 to 98% of D₁₄ (Table 5). Despite the high water column NO_x concentrations at the low salinity sites (Goro-10, Goro-13, and Goro-15), the percent of denitrification coupled to nitrification was >50%, suggesting high nitrification rates (Table 5). At Goro-16, where water column NO_x was high (~30 μM), the percent denitrification coupled to nitrification was only 27% (Figure 4A, Table 5). Within each site individually, there was no effect of clam biomass on denitrification except at Goro-13, where denitrification increased with clam biomass (Supplemental Table 2). Across all sites, there was no significant effect of clam biomass or species on denitrification rates (Table 4). Denitrification efficiency was generally low at all sites, ranging from 6.6% in ES-23 to 30.5% at Goro-15 (Table 5). DNRA rates ranged from $8.2 \pm 1.2~\mu mol~m^{-2}~hr^{-1}$ at Goro-13 to $87.7 \pm 22.5~\mu mol~m^{-2}~hr^{-1}$ at Goro-16 (Figure 4B). There was no significant effect of light on DNRA rates (Supplemental Table 1). DNRA was significantly higher at Goro-16 compared to all other sites (Figure 4B; Supplemental Table 1). In general, there was no significant effect of clam biomass or species on

total DNRA (Table 4). However when considered within each site, total DNRA significantly

increased with clam biomass at Goro-10 and Goro-13, while clam biomass had no significant effect on DNRA at any of the other sites (Supplemental Table 2).

Across sites in which *Corophium* sp. abundances were quantified (i.e. Goro-13, Goro-15, and Goro-21), DNRA rates were significantly negatively correlated with *Corophium* sp. abundances (Figure 5A), while rates of denitrification and calculated nitrification were significantly positively correlated with *Corophium* sp. abundances (Figure 5B and 5C). However, these relationships should be considered with caution as the environmental variability across the three sites may be confounding and could not be fully assessed statistically with the limited number of sites in which *Corophium* sp. were quantified (e.g. using a mixed effects model).

The ratio of DNRA relative to denitrification (DNRA : DNF) was highest at ES-33, averaging 14.9, and lowest at Goro-13, averaging 0.06 (Table 5). Denitrification exceeded DNRA at Goro-10, Goro-15, Goro-13, while DNRA exceeded denitrification at Goro-21, ES-23, and ES-33; at Goro-16 DNRA : DNF was close to 1. The means of DNRA : DNF across sites were positively correlated with the ratio of ammonification (a proxy for labile carbon availability) relative to water column NO_x^- concentration (p < 0.001) (Figure 6).

DISCUSSION

This study demonstrates the importance of considering environmental factors, specifically those influencing NO₃ supply, when determining the effects of clam cultivation on N removal and recycling processes. By sampling across clam aquaculture sites that spanned two countries and a range of environmental conditions, this study captured some of the natural environmental variability under which clam aquaculture is practiced. However, as this study was

field-based with randomly selected sites, there was little control over environmental conditions. Strong negative covariance between water column NO₃⁻ concentrations and salinity made it difficult to determine the mechanistic controls on the observed differences in rates across sampling sites. Despite this, the data provide insight into the influence of bivalve aquaculture on sediment biogeochemistry and specifically N processing. The study shows the effects of bivalves depends on the local environment and the specific bivalve species cultivated. As such, the ecosystem impact of clam aquaculture should be assessed accordingly.

Clam bioenergetics directly affect NH₄⁺ and DO fluxes

Our results highlight the difference in metabolic rates between the two infaunal clam species. *R. philippinarum* consumed approximately 6 times more oxygen and regenerated approximately 5 times more NH₄⁺ than *M. mercenaria*. These differences could be due to intrinsic species-specific physiological and/or behavioral differences, size/age differences, and/or variation in food sources between the regions. The fact that *R. philippinarum* has higher metabolism may suggest that this species also has higher filtration rates than *M. mercenaria*.

Depending on food availability, which varies by location, *R. philippinarum* may deliver more organic carbon to the sediments than *M. mercenaria*. The methods used to estimate clam respiration and excretion in this study assume that clams behave similarly when removed from the sediment as they do *in situ*. However, our rates reflect reasonable approximations, as they are similar to previously reported rates for *M. mercenaria* (Srna & Baggaley 1976, Hofmann et al. 2006) and *R. philippinarum* (Magni & Montani 2005, Han et al. 2008) measured at similar temperatures.

The relative importance of clam metabolism to total benthic community respiration and NH_4^+ production varied across sites depending on clam biomass present. However, clam biomass only explained 30% and 37% of the variation in DO and NH₄⁺ fluxes, respectively (marginal R² of mixed effect models, Figure 3). This indicates that other processes are likely important in dictating DO and NH₄⁺, such as microbial metabolism and the metabolism of other dominant infauna present. Clam respiration accounted for a high percentage of dark DO consumption at the down-estuary sites in the Sacca di Goro (68-176%) where clam biomass was high, concurrent with low ammonification rates and low sediment organic matter relative to the other sites, suggesting lower microbial respiration. By contrast, clam respiration accounted for <50% of total dark DO consumption where high abundances of the burrowing amphipod Corophium sp. were present (~ 20,000 ind m⁻²) (Goro-10, Goro-13, and Goro-15). Corophium sp. not only contribute directly to benthic community respiration but, through bioirrigation, may stimulate oxygen-consuming microbial pathways such as nitrification and aerobic decomposition (Steif 2013; Figure 5). Finally, despite the high clam biomass present at the US sites, clam respiration accounted for <20% of the benthic DO consumption. These sediments have been reported as being highly reduced with high pore water sulfide concentrations (Murphy et al. 2016; Smyth et al. in review); therefore, microbial respiration and the re-oxidation of reduced compounds such as sulfide may consume the majority of oxygen at these sites.

518

519

520

521

522

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

Locally, clams have little effect on denitrification, DNRA, and NO_x^- fluxes

Previous studies have shown that by depositing organic matter to the sediment surface and by providing substrate for bacteria to colonize (i.e. clam microbiome), clams increase nitrate respiration rates (e.g. Nizzoli et al. 2006, Kellogg et al. 2013, Welsh et al. 2015). However, in

this study, within each of the seven study sites, clam biomass had little to no direct effect on denitrification, DNRA, or net NO_x⁻ fluxes as demonstrated by the linear model analyses of these rates as a function of clam biomass within each site individually (Supplemental Table 2). When the relationship was significant, the effect was small, generally an order of magnitude lower than the effect of clams on NH₄⁺ and DO fluxes. This suggests that on a local scale, other factors aside from labile clam biodeposits (assuming clam biomass is related to biodeposition) are important in regulating NO₃⁻ reduction pathways. For example, as discussed below, factors that strongly influence NO₃⁻ supply (e.g. burrowing *Corophium*) may be more important in controlling N-cycling rates.

There was no effect of clam biomass on denitrification or NO_x⁻ flux, which is in contrast to a previous study conducted in the winter in the central portion of the Sacca di Goro; a positive relationship between denitrification and NO_x⁻ consumption with *R. philippinarum* biomass was reported (Welsh et al. 2015). Differences in sampling locations within the Sacca di Goro and season (i.e. water column NO_x⁻ concentrations and temperature) likely contribute to the conflicting findings. Based on incubations of isolated clams with water column NO₃⁻ approximately 70 μM, Welsh et al. (2015) concluded that nitrifying and denitrifying microorganisms are harbored within the clam tissue and thus, clams directly exert strong controls on benthic N cycling processes. It is possible that our study did not indicate a major control of clams on these processes during the summer because other factors that affect organic carbon and NO₃⁻ availability (e.g. salinity, bioturbation, and sulfide) are more important than the clams themselves in regulating NO₃⁻ respiration pathways, as discussed in more detail below. For example, at the sites where water column NO₃⁻ was high, the presence of *Corophium* sp. and

their strong influence on denitrification may have masked the relationship between clams and denitrification.

Spatial variability of denitrification and DNRA is likely driven by NO_3^- and C supply

The mixed effect models which tested the overall effect of clam biomass on rates of denitrification and DNRA while controlling for the variance across sites, showed no significant effect of clam biomass on denitrification or DNRA (Table 4). We expected clam biodeposition to directly provide organic carbon for heterotrophic denitrification and DNRA. It is possible that clam biomass was not the best predictor to capture clam influences on these microbial pathways. Alternatively or in addition, other environmental factors may be driving organic carbon and nitrate dynamics aside from the clams across these heterogenous sites.

Assuming ammonification is a reasonable proxy for the lability of organic carbon, the ratio of ammonification to water column NO₃⁻, was an important predictor for the partitioning of NO₃⁻ between DNRA and denitrification across study sites (Figure 6). At sites with a high labile carbon to NO₃⁻ ratio, DNRA dominated (i.e. the Eastern Shore sites and eastern region of the Sacca di Goro). Denitrification outcompeted DNRA at sites with lower labile carbon to NO₃⁻ ratios (i.e. low salinity sites in the Sacca di Goro). These trends corroborate previous studies that show strong mechanistic controls of labile carbon relative to NO₃⁻ on the competition among these two pathways (Hardison et al. 2015, Algar and Vallino 2014). In this study, NO₃⁻ supply to the sediments and factors that influence this supply strongly affected the competition between DNRA and denitrification across the study sites.

When NO₃ was readily available either from the water column or nitrification, denitrification was favored over DNRA. This is likely due to the fact that denitrification is a

more energetically favorable pathway than DNRA (Tiedje 1988; Hardison et al. 2015). This occurred in the western portion of the Sacca di Goro (Goro-10, Goro-13, and Goro-15) where not only was water column NO₃⁻ high (~60 μM) but nitrification rates and NO₃⁻ effluxes were also high (Table 5; Figure 2C; Figure 4). Approximately 50-65% of denitrification was coupled to nitrification at these sites despite the ample NO₃⁻ in the water column, indicating high sediment nitrification rates. Elevated nitrification may be associated with the high abundances of the amphipod *Corophium* sp. found at these sites (~4,800-35,600 individual m⁻²). These amphipods can stimulate nitrification (Figure 5C) by creating extensive oxic niches associated with their shallow 'U'-shaped burrows and increasing exchanges of porewater through the sediment profile and overlying water (Henriksen et al. 1983, Middelburg et al. 1996, Kristensen 2000). Additionally, as this study and previous studies have shown, denitrification is enhanced in sediments with high densities of *Corophium* sp., likely due to a tight coupling between nitrification and denitrification within the burrow walls (Pelegri et al. 1994; Figure 5B).

At sites where NO₃⁻ was limiting due to a combination of low ambient water column NO₃⁻ concentrations, low nitrification rates, and possibly competition with benthic microalgae for NO₃⁻ (although not directly measured), DNRA dominated NO₃⁻ respiration (i.e ES-23, ES-33, and Goro-21). Since water column NO₃⁻ concentrations were low at these sites both denitrification and DNRA were tightly coupled to nitrification (~78-98%) (Table 5). However, low oxygen availability likely suppressed nitrification at these sites. The generally reduced state of the sediments at the US sites was evidenced by a net release of NH₄⁺ and high sediment oxygen consumption with clam metabolism only accounting for approximately 25% of these rates. Additionally, the US sites and the eastern region of the Sacca di Goro were reported as having high sulfide concentrations (Murphy et al. 2016, Giordani et al. 1997), which may

directly inhibit nitrification (Joye & Hollibaugh 1995). The use of predator exclusion nets at the US sites, which become fouled by macroalgae (Murphy et al. 2015), likely leads to reduced conditions limiting water flow and exchange between the sediments and water column (Secrist 2013). Similarly, in the shallow, sheltered, eastern region of the Sacca di Goro, where the hydrological residence time is long, significant macroalgal blooms occur seasonally and have been associated with large dystrophic events (as reviewed in Viaroli et al. 2006).

Highest rates of DNRA occurred in the central portion of the Sacca di Goro (Goro-16), where denitrification rates were also relatively high and the ratio between the two pathways was close to one. Strong competition for NO₃⁻ between these two NO₃⁻ respiring pathways was likely due to high water column NO₃⁻ concurrent with high densities of clams that continuously deliver labile carbon to the sediments. This results in rapid utilization of NO₃⁻, as demonstrated by the net influx of NO₃⁻ (Figure 2C), and a balance between denitrification and DNRA.

Denitrification efficiency

Denitrification efficiency is a metric often used to assess the percent of organic N that is microbially mineralized via denitrification and related to organic carbon load to the benthos (Eyre and Ferguson 2009). However, it also includes any N 'mineralized' by infauna (i.e. excretion). In this study, the sediments associated with clam cultivation had low denitrification efficiency (<30%; Table 5). This was not necessarily because denitrification was an unimportant mineralization pathway, in fact it was important in the up-estuary Sacca di Goro sites, but rather because of the high NH₄⁺ production by the clams and other infauna. Additionally, bioturbating infauna such as *Corophium* sp., which stimulate denitrification also promote nitrification (Figure 5). As observed at the low salinity sites in the Sacca di Goro (Goro-10, Goro-13, and Goro-15),

NO₃ production can exceed consumption, likely due to the *Corophium* sp. flushing their burrows, actively transporting NO₃ to the water column. This results in high NO₃ effluxes and subsequently low denitrification efficiencies.

Conclusions

This study demonstrates the variability in N cycling processes in sediments dominated by clam aquaculture. The growth of the clam aquaculture industry in coastal systems worldwide has increased interest in the influence of these operations on coastal N dynamics and specifically the question of whether N removal is promoted through bivalve-facilitated denitrification. This study shows that numerous factors affecting sources of labile carbon, NO₃-, and O₂ including clam biomass, the presence of other dominant infauna, cultivation practices, and the environmental context determine whether bivalve cultivation favors N loss (i.e. denitrification) or N recycling (i.e. DNRA). Our study further highlights the challenge in generalizing about the influence of clam aquaculture on denitrification and the importance of considering environmental factors and competing pathways (i.e. DNRA). A commonality that was apparent across all study sites was that clams promoted high N recycling and NH₄+ release to the water column, due to high excretion rates; thus, determination of whether clam aquaculture promotes denitrification or not should be considered within the context of its influence on N regeneration.

633 Literature Cited. 634 635 Algar CK, Vallino JJ (2014) Predicting microbial nitrate reduction pathways in coastal sediments. 636 Aguat Microb Ecol 71:223–238 637 Aller RC (1982) The Effects of Macrobenthos on Chemical Properties of Marine Sediment and 638 Overlying Water. In: Animal-sediment relations. Springer US, Boston, MA, p 53–102 639 Anderson IC, Tobias CR, Neikirk BB, Wetzel RL (1997) Development of a process-based 640 nitrogen mass balance model for a Virginia (USA). Mar Ecol Prog Ser 159:13-27 641 Bernhard AE, Tucker J, Giblin AE, Stahl DA (2007) Functionally distinct communities of 642 ammonia-oxidizing bacteria along an estuarine salinity gradient. Environ Microbiol 9:1439– 643 1447 644 Burgin AJ, Hamilton SK (2007) Have we overemphasized the role of denitrification in aquatic 645 ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the 646 Environment 5:89–96 Dalsgaard T, Nielsen LP, Brotas V, Viaroli P (2000) Protocol handbook for NICE-Nitrogen 647 648 Cycling in Estuaries: a project under the EU research programme: Marine Science and 649 Technology (MAST III). 650 Erler, D.V., Welsh, D.T., Bennet, W.W., Meziane, T., Hubas, C., Nizzoli, D., Ferguson, A.J.P. The 651 impact of suspended oyster farming on nitrogen cycling and nitrous oxide production in 652 a sub-tropical Australian estuary (2017) Estuarine, Coastal and Shelf Science, 192: 117-653 127.

654	
655	FAO (2014) The State of World Fisheries and Aquaculture. Food and Agriculture Organizationo
656	f the United Nations:1–243
657	Giblin A, Tobias C, Song B, Weston N, Banta G, Rivera-Monroy V (2013) The Importance of
658	Dissimilatory Nitrate Reduction to Ammonium (DNRA) in the Nitrogen Cycle of Coastal
659	Ecosystems. oceanog 26:124–131
660	Giordani G, Azzoni R, Bartoli M, Viaroli P (1997) Seasonal variations of sulphate reduction
661	rates, sulphur pools and iron availability in the sediment of a dystrophic lagoon (Sacca di
662	Goro, Italy). Water, Air and Soil Pollution, 99 (1-4): 363-371
663	Han KN, Lee SW, Wang SY (2008) The effect of temperature on the energy budget of the
664	Manila clam, Ruditapes philippinarum. Aquacult Int 16:143–152
665	Hardison AK, Algar CK, Giblin AE, Rich JJ (2015) Influence of organic carbon and nitrate
666	loadingon partitioning between dissimilatory nitrate reduction to ammonium (DNRA) and N
667	Geochimica et Cosmochimica Acta 164:146–160
668	Henriksen K, Rasmussen MB, Jensen A (1983) Effect of bioturbation on microbial nitrogen
669	transformations in the sediment and fluxes of ammonium and nitrate to the overlaying water.
670	Ecological Bulletins:193–205
671	Hofmann EE, Klinck JM, Kraeuter JN, Powell EN, Grizzle RE, Buckner SC, Bricelj VM (2006)
672	A population dynamics model of the hard clam, Mercenaria mercenaria: development of the
673	age-and length-frequency structure of the population. Journal of Shellfish Research 25(2):
674	417-444

675	Joye SB, Hollibaugh JT (1995) Influence of sulfide inhibition of nitrification on nitrogen
676	regeneration in sediments. Science 270:623–625
677	Kana TM, Darkangelo C, Hunt MD, Oldham JB, Bennett GE, Cornwell JC (1994) Membrane
678	inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in
679	environmental water samples. Analytical Chemistry 66:4166–4170
680	Kellogg ML, Cornwell JC, Owens MS (2013) Denitrification and nutrient assimilation on a
681	restored oyster reef. Mar Ecol Prog Ser 480:1–19
682	Kristensen E (2000) Organic matter diagenesis at the oxic/anoxic interface in coastal marine
683	sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426:1-24
684	Kristensen E, Jensen MH, Andersen TK (1985) The impact of polychaete (Nereis virens Sars)
685	burrows on nitrification and nitrate reduction in estuarine sediments. Journal of Experimenta
686	Marine Biology and Ecology 85:75-91.
687	Laverock B, Gilbert JA, Tait K, Osborn AM, Widdicombe S (2011) Bioturbation: impact on the
688	marine nitrogen cycle. Biochm Soc Trans 39:315–320
689	Magni P, Montani S (2005) Laboratory experiments on bivalve excretion rates of nutrients. In:
690	Lehr, J, Keeley, J, Lehr, J, and Kingery, TB (eds) Water Encyclopedia. John Wiley &Sons,
691	Inc. pp 1-5
692	Megonigal JP, Hines ME, Visscher PT (2004) Anaerobic Metabolism: Linkages to trace gases
693	and aerobic processes. In: Schlesinger WH (ed) Elsevier-Pergamon, pp 317-424
694	Middelburg JJ, Klaver G, Nieuwenhuize J, Wielemaker A, de Haas W, Vlug T, van der Nat

695 JFWA (1996) Organic matter mineralization in intertidal sediments along an estuarine 696 gradient. Mar Ecol Prog Ser 132:157-168 697 Murphy AE, Anderson IC, Luckenbach MW (2015) Enhanced nutrient regeneration at 698 commercial hard clam (Mercenaria mercenaria) beds and the role of macroalgae. Mar Ecol 699 Prog Ser 530:135–151 700 Murphy AE, Anderson IC, Smyth AR, Luckenbach MW, and Song B (2016) Dissimilatory 701 nitrate reduction to ammonium (DNRA) exceeds denitrificiation in hard clam cultivation 702 sediments. Limnology and Oceanography DOI 10.10002/lno.10305. 703 Newell RI, Cornwell JC, Owens MS (2002) Influence of simulated bivalve biodeposition and 704 microphytobenthos on sediment nitrogen dynamics: A laboratory study. Limnol Oceangr 705 47:1367-1379 706 Nielsen LP (1992) Denitrification in sediment determined from nitrogen isotope pairing. FEMS 707 Microbiology Letters 86:357–362 708 Nizzoli D, Welsh DT, Fano EA, Viaroli P (2006) Impact of clam and mussel farming on benthic 709 metabolism and nitrogen cycling, with emphasis on nitrate reduction pathways. Mar Ecol 710 Prog Ser 315:151–165 711 Pelegri SP, Nielsen LP, Blackburn TH (1994) Denitrification in estuarine sediment stimulated by 712 the irrigation activity of the amphipod Corophium volutator. Mar Ecol Prog Ser 105:285– 713 290 714 Pinheiro J, Bates D, DebRoy S, Sarkar D and R Core Team (2017). nlme: Linear and nonlinear

715	mixed effects models. R package version 3.1-131, https://CRAN.R-
716	project.org/package=nlme
717	Risgaard-Petersen N, Rysgaard S (1995) Nitrate reduction in sediments and waterlogged soil
718	measured by 15N techniques. In: Methods in applied soil microbiology. Academic Press,
719	London, p 1–13
720	Rose JM, Ferreira JG, Stephenson K, Bricker SB, Tedesco M, Wikfors GH (2012) Comment on
721	Stadmark and Conley (2011) "Mussel farming as a nutrient reduction measure in the Baltic
722	Sea: Consideration of nutrient biogeochemical cycles" Marine Pollution Bulletin 64:449–
723	451
724	Rysgaard S, Risgaard-Petersen N, Nielsen LP, Revsbech NP (1993) Nitrification and
725	Denitrification in Lake and Estuarine Sediments Measured by the 15N Dilution Technique
726	and Isotope Pairing. Applied and Environmental Microbiology 59:2093–2098
727	Rysgaard S, Thastum P, Dalsgaard T (1999) Effects of salinity on NH 4+ adsorption capacity,
728	nitrification, and denitrification in Danish estuarine sediments. Estuaries 22(1):21-30
729	Seitzinger S, Harrison JA, Böhlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, Van
730	Drecht G (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecological
731	Applications 16:2064–2090
732	Seitzinger SP (1988) Denitrification in freshwater and coastal marine ecosystems: ecological and
733	geochemical significance. Limnol Oceangr 33(4, part 2):702-724
734	Smyth AR, Geraldi NR, Piehler MF (2013) Oyster-mediated benthic-pelagic coupling modifies

735	nitrogen pools and processes. Mar Ecol Prog Ser 493:23–30
736	Srna RF, Baggaley A (1976) Rate of excretion of ammonia by the hard clam Mercenaria
737	mercenaria and the American oyster Crassostrea virginica. Mar Biol 36:251-258
738	Stadmark J, Conley DJ (2011) Mussel farming as a nutrient reduction measure in the Baltic Sea:
739	Consideration of nutrient biogeochemical cycles. Marine Pollution Bulletin 62:1385–1388
740	Stief P (2013) Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic
741	macrofauna: mechanisms and environmental implications. Biogeosciences 10:7829-7846
742	Tiedje JM (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonium.
743	In: Zehnder A (Ed.) Biology of anaerobic microorganisms:179–244
744	Viaroli P, Giordani G, Bartoli M, Naldi M, Azzoni R, Nizzoli D, Ferrari I, Comenges JMZ,
745	Bencivelli S, Castaldelli G, Fano EA (2006) The Sacca di Goro Lagoon and an Arm of the
746	Po River. In: The Handbook of Environmental Chemistry. Springer-Verlag,
747	Berlin/Heidelberg, p 197–232
748	Welsh DT, Nizzoli D, Fano EA, Viaroli P (2015) Direct contribution of clams (Ruditapes
749	philippinarum) to benthic fluxes, nitrification, denitrification and nitrous oxide emission in a
750	farmed sediment. Estuarine, Coastal and Shelf Science 154:84-93
751	Wessel WW, Tietema A (1992) Calculating gross N transformation rates of 15N pool dilution
752	experiments with acid forest litter: analytical and numberical approaches. Soil Biology and
753	Biochemistry 24:931–942

Fig 1 Study sites in the Sacca di Goro, Italy (a) and the Eastern Shore, VA, USA (b)

Fig 2 Intact sediment fluxes of dissolved oxygen (a), NH₄⁺ (b), and NO_x⁻ (c), in the light (white) and dark (gray). Letters designate significant differences due to site (DO fluxes; panel a) or the significant interaction of site and light condition (NO_x⁻ fluxes; panel c). No significant difference due to site or light condition was observed for the NH₄⁺ fluxes (b). Sites are organized by salinity. Error bars are standard errors. Inset in (c) shows Goro-21, Cherrystone Inlet (ES-23) and Smith Island (ES-33) on a smaller scale

Fig 3 'Intact sediment' fluxes of dissolved oxygen (a) and NH_4^+ (b) as a function of clam biomass (g DW m⁻²) at each site from the intact sediment incubations. Data were analyzed using mixed effects models with site as a random effect. The black dashed line represents the fixed effects (clam biomass) while the colored lines show the random effect coefficients for each site. Statistical results are provided in Table 4.

Fig 4 Denitrification (DNF) (a) and DNRA rates (b), in the light (white) and dark (gray), including the portion coupled to nitrification, D_n and DNRA_n (dotted) and direct (NO_x⁻ from the water column), D_w and DNRA_w (solid). No significant effect of light condition was observed for either parameter. Letters indicate significant differences across sites. Error bars are standard errors. Inset in (a) shows Goro-21, Cherrystone Inlet (ES-23) and Smith Island (ES-33) on smaller scale

Fig 5 Relationship between *Corophium* sp. abundance and DNRA (a), denitrification (b), estimated nitrification (calculated as the sum of denitrification, DNRA, and NO_x⁻ efflux) (c) at Goro-13 (triangles), Goro-15 (squares), and Goro-21 (circles)

Fig 6 The competition between DNRA and denitrification (DNRA : D_{14}) as a function of the ratio of labile carbon (estimated as ammonification rate (AMN) to water column NO_x^- . Dashed line represents the linear model.

Table 1. Environmental characteristics at each site. Mean values and (standard error).

Site	Salinity	Temp. (°C)	NO_x^{-1} (μM)	$\mathrm{NH_4}^+$ $(\mu\mathrm{M})$	Sediment Organic Matter (0-2cm)
Goro-10	10	20	53.98 (3.43)	19.11 (1.45)	1.36 (0.06)
Goro-13	13	21	33.96 (1.13)	8.50 (0.41)	1.74 (0.05)
Goro-15	15	21	40.04 (0.66)	9.51 (0.36)	2.38 (0.35)
Goro-16	16	20	34.84 (0.59)	38.4 (2.32)	0.92 (0.08)
Goro-21	21	20	1.07 (0.03)	18.43 (1.06)	1.62 (0.09)
ES-23	23	25	0.20 (0.02)	2.10 (0.55)	1.21 (0.11)
ES-33	33	27	0.25 (0.03)	0.88(0.27)	1.50 (0.15)

Table 2. Clam and Corophium sp. data. Mean values and (standard error). n.d., no data collected.

Site	Clam density (ind m ⁻²)	Clam biomass (g DW m ⁻²)	Clam shell length (mm)	Corophium sp. density (ind m ⁻²)	Corophium sp. biomass (g DW m ⁻²)
Goro-10	398 (139)	82.9 (31.7)	28.0 (0.79)	n.d.*	n.d.*
Goro-13	365 (117)	87.1 (26.0)	28.0 (1.03)	20,783 (2,307)	5.46 (0.60)
Goro-15	1161 (268)	188.9 (40.6)	25.8 (0.44)	19,550 (2,581)	7.10 (1.20)
Goro-16	1127 (193)	553.0 (103.4)	32.5 (0.64)	n.d.	n.d.
Goro-21	2089 (478)	316.9 (64.4)	24.5 (0.35)	533 (154)	0.36 (0.10)
ES-23	630 (102)	192.4 (27.8)	35.5 (1.81)	n.d.	n.d.
ES-33	258 (95)	192.4 (84.9)	43.9 (2.02)	n.d.	n.d.

 $^{^*}$ High abundances of *Corophium* sp. were observed at Goro-10, comparable to the nearby Goro-13 and Goro-15 (pers. obs.).

Response	Source of Variation	Estimate	Standard Error	t value	p value	R^2	F Stat	p value	Residual SE	Metabolic Rate
	Intercept	-198.3	148.1	-1.34	0.18	0.69	$F_{(3,88)} = 68.9$	<0.001	455.4	Excretion (μmol gDW ⁻¹ hr ⁻¹)
NIII +	Clam biomass	0.75	0.35	2.14	0.04					M. mercenaria: 0.75
NH ₄ ⁺	Species	279.89	168.3	1.66	0.10					R. philippinarum: 2.73
	Clam x Species	1.98	0.41	4.8	< 0.001					
	Intercept	-1.65	1.01	-1.64	0.11	0.80	$F_{(3,85)} = 115.1$	<0.001	2.92	Respiration (mmol gDW ⁻¹ hr ⁻¹)
DO	Clam biomass	-0.006	0.002	-2.62	0.02					M. mercenaria: 0.006
DO	Species	-0.77	1.13	-0.68	0.50					R. philippinarum: 0.026
	Clam x Species	-0.02	0.003	-6.36	< 0.001					
	Intercept	4.35	398.6	0.011	0.99					
NO _x	Clam biomass	-0.028	0.98	0.029	0.98	0.11	$F_{(3,87)} = 4.81$	0.003	1205	
I VO _X	Species	-1082	451.3	-2.30	0.02					
	Clam x Species	1.71	1.14	1.50	0.14					

Table 3. ANCOVA results of the 'clam only' incubation data. A significant interaction term suggests significant differences in metabolic rates between the two clam species. Figure 3 depicts DO and NH_4^+ mixed models graphically.

Response	Predictor	Estimate	Standard Error	p value	Marginal R ²	Conditional R ²	
NH ₄ ⁺	Clam Biomass	2.36	0.81	0.005	0.37	0.7	
NH4	Species	293.2	227.1	0.25	0.37	0.7	
DO	Clam Biomass	-0.01	0.001	< 0.001	0.3	0.61	
	Species	5.65	3.47	0.16	0.5	0.01	
NO _x	Clam Biomass	-0.14	0.16	0.41	0.06	0.66	
NO _x	Species	-349.1	462.8	0.48	0.00	0.00	
D	Clam Biomass	2.3E-03	0.03	0.94	0.01	0.44	
D_{14}	Species	-135.5	70.7	0.12	0.01	0.44	
DNRA	Clam Biomass	0.01	0.01	0.42	0.02	0.44	
DINKA	Species	-9.19	23.3	0.711	0.02	0.44	

Table 4. Statistical results of the mixed effects models that accounted for the variance associated with site as random, allowing both the intercept and slope to vary: lme(response ~ clam biomass + Species, random = ~Clam Biomass|Site). Interactive effects between clam biomass and species were not significant for any response variable and thus were removed from the models.

Table 5. Average measured gross ammonification rates, calculated nitrification (the sum of D_n , DNRA_n, and NO_x^- flux), percent of denitrification coupled to nitrification (% D_n), denitrification efficiency (DNF efficiency), relative proportion of DNRA to denitrification (DNRA:DNF), and ammonification rates relative to water column NO_x^- concentrations (AMN: NO_x^-) at each site. n.d. no data collected.

Site	Ammonification (mmol m ⁻² d ⁻¹)	Calculated Nitrification (µmol m ⁻² hr ⁻¹)	Percent coupled DNF (%)	DNF Efficiency (%)	DNRA : DNF	AMN: NO _x
Goro-10	8.06 (0.98)	1656.9 (249.2)	51.4 (7.1)	18.0 (4.3)	0.11 (0.02)	0.14 (0.01)
Goro-13	11.47 (1.6)	762.5 (112.4)	64.5 (1.5)	25.3 (10.3)	0.06 (0.01)	0.25 (0.03)
Goro-15	11.64 (2.6)	405.9 (76.0)	60.2 (1.9)	30.5 (8.2)	0.11 (0.01)	0.24 (0.04)
Goro-16	4.81 (0.79)	185.6 (29.4)	27.4 (8.7)	12.8 (3.3)	1.53 (0.70)	0.15 (0.02)
Goro-21	4.71 (1.17)	58.1 (6.2)	78.2 (2.3)	11.7 (5.8)	2.27 (0.40)	3.18 (0.50)
ES-23	2.38 (0.29)	53.9 (11.8)	93.0 (1.2)	6.6 (3.8)	9.73 (2.30)	11.96 (1.40)
ES-33	n.d.	46.4 (14.0)	97.9 (0.1)	20.5 (11.9)	14.94 (6.10)	n.d.

Figure 1 Click here to download high resolution image

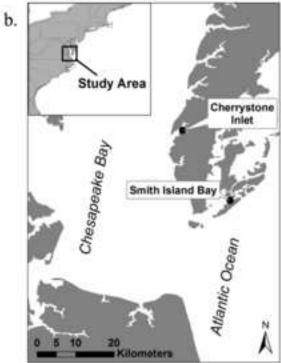


Figure 2 Click here to download high resolution image

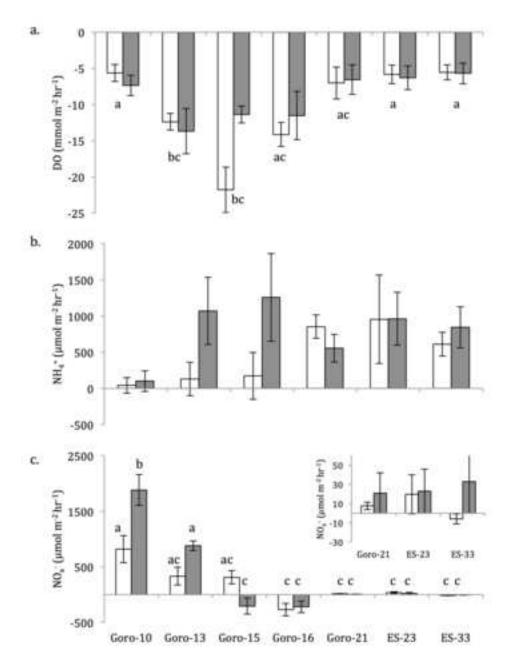
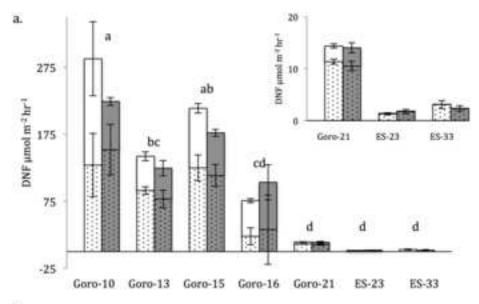



Figure 3
Click here to download high resolution image

Figure 4 Click here to download high resolution image

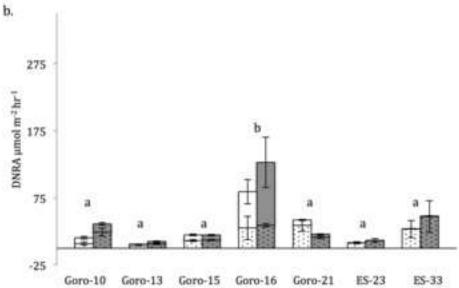
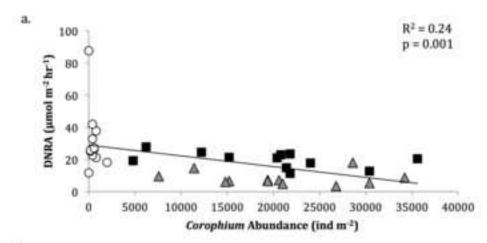
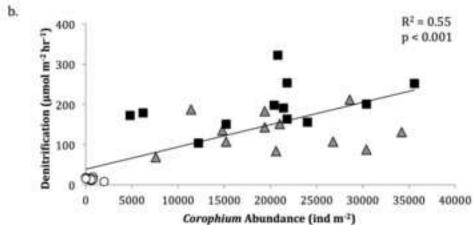




Figure 5
Click here to download high resolution image

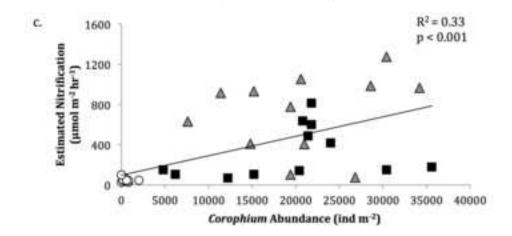
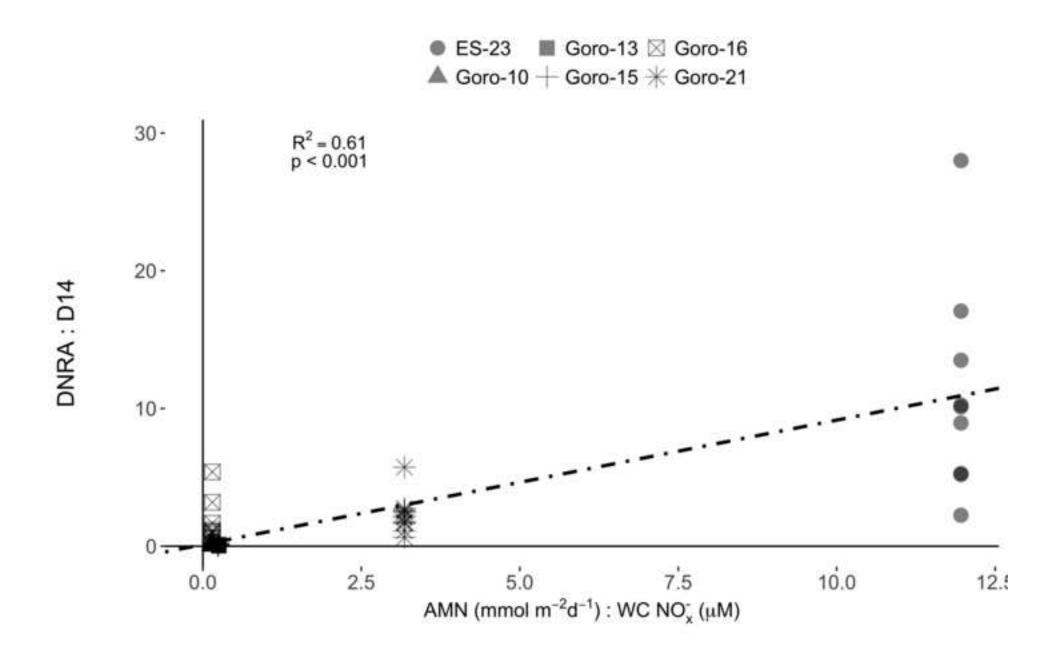



Figure 6 Click here to download high resolution image

