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In order to explore the early detection of mycotoxins in wheat three standardized approaches (Fusarium
disease severity, PCR assays for Fusarium spp. identification and mycotoxin quantification) and a novel
untargeted metabolomics strategy were jointly assessed. In the first phase of this research, standardized
approaches were able to quantify mycotoxins and identify Fusarium spp. Then, an UHPLC-QTOF metabolic
fingerprinting method was developed to investigate plant-pathogen cross-talk. At the same time, chemo-
metrics analysis demonstrated to be a powerful tool in order to distinguish low and strong infection
levels. Combining these results, the cross-talk plant pathogen related to the early detection of mycotoxins
was discovered. As a rapid response to fungal infection an overexpression of phosphatidic acids was
discovered. By contrast, when the infection became stronger an increase of oxylipins and diacylglycerols
was revealed.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Cereals represent one of the most important commodities pro-
viding basic nutrients to human diet, since they are rich sources of
carbohydrates, proteins, fats, minerals and vitamins. Among them,
the average global annual production of wheat was estimated by
FAO as 663 million tones (period 2004–2014) (FAO, 2016). In fact,
wheat is a crop of many talents; wheat and wheat-based products
are used in several sectors, such as food, feed, biofuel, cosmetics
and bio-based plastics (Shewry, 2009). Nevertheless, the main
sector is the food industry, where wheat is generally ground into
flour and is used, among many others, for bread, pasta, and bis-
cuits. Next to wheat flour, the milling process of the grains also
produces bran, which is used as food and animal feed ingredients.

The need of specific characters in terms of nutritional and tech-
nological properties has increased the breeding pressure towards
similar, high quality varieties. Unfortunately, this has led to an
increase of susceptibility towards pathogenic diseases due to
colonization by various toxicogenic fungi (i.e. Fusarium spp.), and
subsequent production of secondary metabolites, called mycotox-
ins (Kumar, Basu, & Rajendran, 2008). Fusarium Head Blight
(FHB) is the most common fungal disease in small grains occurring
worldwide, caused mainly by F. graminearum and F. culmorum
infection (Bottalico & Perrone, 2002; Müllenborn, Steiner,
Ludwig, & Oerke, 2008). It is seen most commonly on spring and
winter wheat, durum and barley. FHB can cause significant yield
losses, quality reductions and accumulation of Fusarium mycotox-
ins, mainly those from the group of trichothecenes, enniatins, and
zearalenones. In addition to production of mycotoxins as com-
pounds causing various acute and chronic adverse health effects,
olution
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the Fusarium pathogens also usually influence the qualitative and
quantitative aspects of the crop yield (Richard, 2007). For this rea-
son, legislated andmodifiedmycotoxins are routinely monitored in
cereal grains (McCormick et al., 2015; Nathanail & Syvähuoko et al.,
2015; Rubert et al., 2012).

In order to reduce the crop loss, together with the costs of
managing noncompliant batches has prompt the search for chem-
ical markers able to identify possible contamination at the earliest
stage, and to univocally characterize resistant varieties and infec-
tion. In this context, a question of potential early detection of this
fungal pathogen on the wheat crop has been arisen.

The early detection of toxigenic fungi directly on cereals can be
useful to put an end to the intake of these contaminated materials
into the food and feed chain. Initially, these toxigenic fungi have
been traditionally identified by microbiological and immunological
methods or polymerase chain reaction (PCR) (Huet et al., 2010;
Mishra, Fox, & Culham, 2003). Besides classical microbiological
and/or PCR-base methods, innovative spectral techniques (i.e.
imaging analysis, near-infrared, Raman) have been proposed for
the early detection of colonizing fungi (Berardo et al., 2005; Del
Fiore et al., 2010). Since fungal growth is not strictly related to
mycotoxin accumulation, and to the pattern of occurring mycotox-
ins, these techniques – although very simple and effective – cannot
provide an univocal response on mycotoxin occurrence. On the
other side, the identification of specific chemical markers, mainly
linked to the plant-pathogen cross-talk, could drive the selection
of resistant wheat varieties, and thus support breeding programs.
In this frame, metabolomics may represent the golden tool for
understanding the biological pathways involved in mechanisms
of plant resistance (Cajka et al., 2014; Rubert, Zachariasova, &
Hajslova, 2015).

The plant-pathogen cross-talk leading to FHB and mycotoxin
accumulation has been significantly studied over the last decade,
but the scientific community is still far from a comprehensive sce-
nario, in consideration of the complexity of genetic and environ-
mental factors affecting this interaction (Cajka et al., 2014;
Gauthier, Atanasova-Penichon, Chéreau, & Richard-Forget, 2015;
Nathanail & Varga et al., 2015; Warth et al., 2015). Recently,
Cajka et al. (2014) have developed an analytical procedure opti-
mizing a solid liquid extraction procedure using methanol/water
(50:50, v/v) in order to isolate polar/medium-polar barley metabo-
lites followed by ultra high performance liquid chromatography
quadrupole-time-of-flight (UHPLC-QTOF). In this research, positive
ionization data highlighted a superior discrimination power. In this
way, control barley and Fusarium infected barley samples were
successfully distinguished. In fact, plant stress-related metabolites
such as jasmonic acid (JA) or dihydro-7-hydroxymyoporone
showed up higher concentrations and correlated positively with
increasing concentrations of deoxynivalenol (DON) and its modi-
fied forms. Focusing on wheat, a profiling metabolomics strategy
has been performed using a stable isotopic labelling approach in
order to understand the metabolic fate of HT-2 toxin and T-2 toxin
in wheat (Triticum aestivum L.) (Nathanail & Varga et al., 2015). The
authors demonstrated that the exposure of wheat to either HT-2
toxin or T-2 toxin primarily activates metabolic reactions involving
hydroxylation, (de)acetylation, and various conjugations. Further-
more, kinetic data revealed that detoxification progressed rapidly,
resulting in the almost complete degradation of the toxins, within
1 week, after a single exposure. In parallel, DON accumulation and
Fusarium infection in cereals have been recently reviewed by
Gauthier et al. (2015) in order to interpret chemical defenses. In
this review, the authors have clearly described that when myco-
toxins were accumulated the major chemical defenses of the plant
cell were related to carbohydrates and amino acid metabolism.
These evidences have been recently confirmed by Warth et al.
(2015) based on a GC–MS based metabolomics workflow. In this
Please cite this article in press as: Rubert, J., et al. Untargeted metabolomics
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research, DON treatment modified both the primary carbohydrate
metabolism and the primary nitrogen metabolism of the plant, and
amino acid levels were significantly increased.

Studies aimed at depicting the resistance/susceptibility of
grains towards FHB are usually based on artificial grain inoculation
in collection fields, in order to decrease natural variability and
highlight significant effects. Giorni et al. (2015) reported, on the
contrary, the identification of lipid markers of infection in maize
naturally infected by F. verticillioides under open field conditions.
Although the experimental plan involved only few maize varieties
in a large number of replicates, the increased variability due to
open field conditions affected positively the robustness of the
statistical model (Giorni et al., 2015).

The main aim of this research work was to develop a novel
metabolomics strategy exploitable for the early recognition of
Fusarium disease, based on the detection of infection-related
metabolites. For this purpose, a set of eighty-six naturally contam-
inated wheat samples was available. For the proper metabolomics
data interpretation, determination of Fusarium disease severity
was visually determined and Fusarium spp. were identified by
PCR assays. Subsequently, targeted mycotoxins were quantified
by a validated analytical method. In the second phase, an
untargeted metabolomics strategy was optimized. First, several
extraction solvents and mixtures of them were studied in order
to extract the bulk of information, and then an UHPLC-QTOF
method was developed to separate and detect metabolites isolated.
Afterwards, advanced chemometric tools were used for wheat
samples clustering, and metabolic pathways elucidation.
2. Material and methods

2.1. Chemicals and reagents

Polytetrafluoroethylene (PTFE) 50 mL centrifugation cuvettes
were obtained from Merci (Praha, Czech Republic). HPLC grade
methanol, ethanol, dichloromethane, 2-propanol and hexane were
purchased from Merck (Darmstadt, Germany). Ammonium for-
mate and formic acid were supplied by Sigma–Aldrich (St. Luis,
MO, USA). Water was purified by Milli-Q purification system
(Millipore, Bedford, MA, USA).

2.2. Plant material

Altogether, 86 naturally contaminated winter wheat samples
(harvest 2012) from the Czech Republic were analyzed within this
study. All the samples were collected by the Central Institute for
Supervising and Testing in Agriculture as a part of long-term study
focused on FHB symptoms assessment and determination of myco-
toxins (Chrpová et al., 2016). Regarding the sampling strategy, 25
randomly selected wheat ears from different places of each field
were collected and further analyzed.

2.3. Standardized approaches

2.3.1. Visual determination of Fusarium disease severity
The extent of Fusarium disease severity was realized at the Crop

Research Institute (Prague, Czech Republic). These experiments
were visually determined using a 10-point scale (0–9; 0 – no
symptoms up to 9 – severe symptoms) introduced by Schaller
and Qualset (1980). Description of each level of Fusarium disease
severity is described Table 1.

2.3.2. DNA extraction and PCR assays for species identification
For the purpose of Fusarium species identification, PCR assays

were used, as it was recently described by Chrpová et al. (2016).
based on ultra-high-performance liquid chromatography–high-resolution
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Table 1
Description and percentage of each level of Fusarium disease severity, pathogens associated with Fusarium head blight and mycotoxin co-occurrence are described.

Fusarium infection level (%)1 0 – Traces of Fusarium spp. infection 45
1 – Clear infection of either one spikelet or a slight infection
of several spikelets

29

2 – Either stronger infection of 2–3 spikelets (the rest of the
spikelets without infection) or a slight infection of several spikelets

13

3 – Approximately one third of spikelets are strongly infected or more
spikelets show a slight infection

2

4 – A half of spikelets with clear symptoms with a slight expression of infection 5
5 – Either two thirds of spikelets with slight infection or a half of spikelets
infected with several strongly infected spikelets

6

Fusarium spp. (%)1 n.d.2 11
F. poae 89
F. sporotrichioides 1
F. graminearum 15
F. culmorum 1
F. avenaceum 6
F. equiseti 5

Mycotoxin content range lg/kg3, and frequency of occurrence (%)1 Nivalenol 153–307 (3)
Deoxynivalenol 51–10,034 (25)
Zearalenone 2–76 (9)
Deoxynivalenol-3-glucoside 53–402 (11)
Enniatin B 1–2147 (99)
Enniatin B1 1–488 (91)
Enniatin A 1–106 (80)
Enniatin A1 1–148 (79)
HT-2 toxin 50 (1)
T-2 toxin 5–13 (5)
Beauvericin 1–105 (86)

1 Overall percentage.
2 Non-detected.
3 Minimum-maximum range.
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Nine pathogens associated with FHB were investigated: F. gramin-
earum, F. culmorum, F. poae, F. avenaceum, F. equiseti, F. langsethiae,
F. tricinctum, F. sambucinum and F. sporotrichioides (Oerke et al.,
2010).

2.3.3. Mycotoxin quantification
Wheat samples were also analyzed by an ISO 17025 accredited

method for 57 mycotoxins using UHPLC coupled with Q-Exactive
system (Dzuman, Zachariasova, Veprikova, Godula, & Hajslova,
2015; Dzuman et al., 2014). Mycotoxins were unambiguously
identified, and subsequently were accurately quantified.

2.4. Untargeted metabolomics strategy

Three steps can be clearly distinguished within metabolomics
analysis: (i) sample preparation, (ii) the chromatographic separa-
tion and detection conditions and (iii) data processing. In this
research, UHPLC-QTOF untargeted metabolomics method and data
processing have been performed based on previous works (Righetti
et al., 2016; Rubert, Lacina, Zachariasova, & Hajslova, 2016).

2.4.1. Sample preparation and optimization
Several extraction solvents and mixtures were initially tested in

order to optimize an untargeted metabolomics extraction
procedure: (a) methanol/water (50/50, v/v), (b) methanol/water
(65/35, v/v), (c) methanol/water (80/20, v/v), (d) ethanol/water
(65/35, v/v), (e) dichloromethane/methanol (50/50, v/v), (f) hex-
ane/ethanol (70/30, v/v) and (g) hexane. Within each experiment,
1 g of wheat was extracted by hand shaking for 1 min with
10 mL of particular extraction solvents, and subsequently an auto-
matic shaker (IKA Laboratortechnik, Staufen, Germany) was used
for 30 min at 240 S/min. Wheat extracts were then centrifuged
5 min, 13,416g at 20 �C (Rotina 35 R, Hettich Zentrifugen, DJB
Labcare, Newport, UK). These experiments were done in five
Please cite this article in press as: Rubert, J., et al. Untargeted metabolomics
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repetitions. Extracts (a–d) were directly injected. By contrast,
extracts (f–g) a prior to UHPLC-QTOF measurements, 1 mL of the
extract was evaporated with a gentle stream of nitrogen and the
residue was reconstituted to a final volume of 1 mL 2-propanol/
methanol/water (65:30:5, v/v/v) prior to the analysis.

2.4.2. Optimized sample preparation procedure
Wheat samples were ground into a fine powder using a ball mill

(MM 301 Retsch, Haan, Germany). Then, 1 g wheat was extracted
by hand shaking for 1 min with 10 mL of dichloromethane/metha-
nol (50/50, v/v), and subsequently an automatic shaker (IKA Labo-
ratortechnik, Staufen, Germany) was used for 30 min at 240 S/min.
Wheat extracts were then centrifuged 5 min, 13,416g at 20 �C
(Rotina 35 R, Hettich Zentrifugen, DJB Labcare, Newport, UK). A
prior to UHPLC-QTOF measurements, 1 mL of the extract was
evaporated with a gentle stream of nitrogen and the residue was
reconstituted to a final volume of 1 mL 2-propanol/methanol/
water (65:30:5, v/v/v).

2.4.3. UHPLC-QTOF untargeted metabolomics method
Dionex UltiMate 3000 RS UHPLC system (Thermo Fisher Scien-

tific, Waltham, MA, USA), equipped with BEH C18 (2.1 � 100 mm,
1.7 lm) analytical column and maintained at 60 �C was optimized.
The mobile phases consisted of (A) 5 mM ammonium formate and
0.1% formic acid inwater/methanol (95/5, v/v), and (B) 5 mMammo-
nium formate and 0.1% formic acid in 2-propanol/methanol/water
(65/30/5, v/v/v). A multi-step elution dual-mode gradient was
developed as follow: at 0.0 min (10% B; 0.40 mL min�1) a gradient
begun up to 1.0 min (50% B; 0.4 mL min�1), and a second step was
set to 5.0 min (80% B; 0.4 mL min�1), then the third step 11.0 min
reached 100% B and slightly increased the flow (100% B;
0.5 mL min�1), subsequently an isocratic step was executed during
four minutes and half, 15.5 min (100% B; 0.50 mL min�1), 15.1 min
(10% B; 0.40 mL min�1) a reconditioning period up to 17.5 min
based on ultra-high-performance liquid chromatography–high-resolution
early detection of mycotoxins. Food Chemistry (2016), http://dx.doi.org/
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(10% B; 0.40 mL min�1) was used. The sample injection volumewas
1 lL for both positive and negative ionization modes and the
autosampler temperature was kept at 5 �C.

TripleTOF� 5600 QTOF mass spectrometer (SCIEX, Concord, ON,
Canada) was used for wheat metabolic fingerprints, as it was
recently described by Rubert et al. (2016). The ion source was a
Duo SprayTM. Electrospray ionization (ESI) ion source was used for
the measurement, while atmospheric pressure chemical ionization
(APCI) probe worked as the second gas heater. The source ESI(+)
settings were as follows: nebulizing gas pressure 55 psi; drying
gas pressure 50 psi; curtain gas 35 (arbitrary units); temperature
550 �C; capillary voltage +5500 V and declustering potential 80 V.
The capillary voltage in negative ESI was �4500 V, other source
settings were the same as for ESI(+).

The method consisted of a full scan MS ranged from m/z 100–
1200, followed by acquisition of product ion spectra, ranging from
m/z 50–1200, for the ten most intensive ions of the survey spectra
throughout the chromatographic run (MS/MS) with a collision
energy of 35 V and collision energy spread of ±15 V. Dynamic Back-
ground Subtraction was activated. The total cycle time of MS and
MS/MS methods took 0.65 s. The APCI was used for exact mass cal-
ibration of the TripleTOF instrument. An automatic m/z calibration
was performed by the calibration delivery system (CDS) every 5
samples using positive or negative APCI calibration solution
(SCIEX, Concord, ON, Canada) according to the batch polarity. Each
set of samples in each polarity was preceded by 3 blank controls, it
was recently described by Rubert et al. (2016). The same MS
approach was carried out by ESI(�) mode.

Instrument control and data acquisition were carried out with
the Analyst 1.6 TF software (Sciex, Concord, ON, Canada), the qual-
itative analysis was performed using PeakView 2.2 (Sciex, Concord,
ON, Canada) and LipidView (SCIEX, Concord, ON, Canada). Note
that the in-batch sequence of the samples was random (random
number generation). In order to evaluate overall process variabil-
ity, metabolomics studies were augmented to include a set of six
samples technical replicates and pooled quality control. In this
way, repeatability, reproducibility, precision and mass accuracy
of metabolites were successfully supervised (Righetti et al., 2016;
Rubert et al., 2015, 2016).
2.4.4. Data processing and chemometrics analysis
MS data processing, filtering and multivariate data analysis

have been performed based on previous works (Righetti et al.,
2016; Rubert et al., 2016). Briefly, MarkerView software (version
1.2.1, SCIEX, Concord, ON, Canada) was employed in order to per-
form data processing of the UHPLC-HRMS records. Data mining
was performed using an automated algorithm using retention time
range (RT) (0.4–14 min), peak finding (m/z range was 100–1200).
Subsequently, RT and m/z alignment of the respective peaks was
executed using RT and m/z tolerances of 0.2 min and 0.02 Da,
respectively. Two data matrices, positive and negative, containing
lists of molecular features and characterized by (i) RT, (ii) m/z
value, (iii) respective intensity and (iv) charge state, were automat-
ically obtained. The variables were then filtered. Molecular fea-
tures in at least 50% of the Quality Controls (QCs), with
coefficients of variation less than 30% across the QCs, were
selected, and models were built using SIMCA software (v. 13.0,
2011, Umetrics, Umea, Sweden; www.umetrics.com). In the last
step, groups were compared using t-tests followed by Bonferroni
corrections to minimize false positives (corrected p value 60.05;
MATLAB 7.10.0.499). Prior to PCA, the data were pre-processed
using the pareto scaling. Orthogonal partial least squares discrim-
inant analysis (OPLS-DA) was constructed using SIMCA. The quality
of this unsupervised model was evaluated according to a previous
work (Rubert et al., 2016) and a recent review (Rubert et al., 2015).
Please cite this article in press as: Rubert, J., et al. Untargeted metabolomics
mass spectrometry merged with chemometrics: A new predictable tool for a
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3. Results and discussion

3.1. Characterization and quality of wheat samples (Fusarium disease
and mycotoxins content)

Toxigenic fungi activity has been traditionally reported by
Fusarium disease severity, identification of pathogens associated
with FHB and co-occurrence of mycotoxins (Chrpová et al., 2016).
The extent of Fusarium disease severity was visually determined
using a visual score scale (Table 1). A modified ‘‘Horsfall-Barrett”
scale was used based on a 0–10 rating system (Schaller &
Qualset, 1980). The severity index was ranked according to visual
inspection, performed by a trained person.

In the vast majority of wheat samples considered within this
study, Fusarium infection level was low ranged from 0 to 1 marks
(74% total). A medium-low severity level, ranged from 2 to 3
marks, was observed for 15% of wheat samples. In levels slightly
above, 11% of wheat samples presented medium level (4–5 marks).
In this study, wheat sample set did not show up a severity degree
higher than 5.

In addition, pathogens associated with FHB were genetically
identified (Table 1). Results obtained by PCR assays highlighted
that F. poae was found in a significant number of samples, approx-
imately 90% of total wheat collection, followed by F. graminearum,
which was identified in 15% of cases. Overall, one quarter of wheat
samples showed up co-occurrence of Fusarium spp. It should be
noted that F. culmorum and F. graminearum are well known to be
the most aggressive Fusarium species causing significant visual
symptoms of FHB in wheat kernels. By contrast, F. poae infection
is characterized by none significant visual symptoms on ears,
resulting in a difficult FHB diagnosis (Stenglein, 2009).

As regards mycotoxins occurrence, the content range, together
with% of positive samples, are summarized in Table 1. First, emer-
gent Fusarium toxins, such as beauvericin and enniatins A, A1, B
and B1 were detected in over 80% of wheat samples, with concen-
tration levels ranging from 1 to 2.147 lg/kg. Deoxynivalenol
(DON), the major trichothecene commonly found in wheat, was
detected in about 25% of samples, at a concentration varied from
a few lg/kg up to 10 mg/kg. Three out of 25 samples exceeded
maximum tolerable level for unprocessed cereals of 1.250 lg/kg
(EU, 2006, 2007). However, considering the DON contamination
as the overall amount of DON-related metabolites, as recom-
mended by EFSA, 5 out of 36 samples would have been exceeded
maximum tolerable level. The first goal of this research was suc-
cessfully archived by three standardized methods, in the following
step an untargeted metabolomics approach was explored in-depth.
3.2. Untargeted metabolomics and the early recognition of Fusarium
diseases

3.2.1. Untargeted metabolomics method optimization
First, an UHPLC-HRMS metabolic fingerprinting method was

optimized in order to detect as many metabolites as possible.
The chromatographic run had to provided separation efficiency
and good peak resolution. In this way, a BEH (Ethylene Bridged
Hybrid) C18 column was used. This column presented versatility
and an excellent capacity to separate a diverse range of analytes
based on a strong mobile phase (65% of 2-propanol), modifiers
(ammonium formate and formic acid) and temperature (60 �C).
As a result, polar or medium-polar metabolites, such a free fatty
acids (FFA) or lysophospholipids (LysoPC) were nicely separated
(time window 0–6 min), as well as late eluting compounds, such
as triacylglycerol (TGs) (time window 10–12 min), showed an
excellent chromatographic resolution, as it can be seen in the
Fig. 1. A good peak shape, chromatographic resolution and RTs
based on ultra-high-performance liquid chromatography–high-resolution
n early detection of mycotoxins. Food Chemistry (2016), http://dx.doi.org/
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Fig. 1. Base peak chromatograms of a wheat sample extract (dichloromethane/methanol (50/50, v/v)) are compared for positive ionization mode (A) and negative ionization
mode (B). The chromatographic separation was carried out using BEH C18 column, a multi-step elution dual-mode gradient and column oven temperature at 60 �C.
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stability are vital for rapid data mining procedures and alignment
within metabolomics analyses (Rubert et al., 2015). A part from
this, the QTOF system had to guarantee enough data point and lin-
ear dynamic range. In this research, the accumulation time took
0.65 s, under these conditions, more than 15 data points for 10–
15 s chromatographic peaks were earned. In other words, detection
of metabolites from low responses to high responses was enabled.

Consecutively, the extraction procedure was evaluated in-depth
in order to extract the bulk of the information. In particular, the
extraction capability of 7 solvent mixtures was compared, as
described elsewhere (Section 2. Material and Methods). The
extracts were measured by UHPLC-QTOF in both positive and neg-
ative ESI modes to perceive the number of ionizable/detectable
metabolites under different experimental conditions. MarkerView
software assessed the detected molecular features in the different
wheat extracts (Fig. 2). Among those tested, ethanol/water (65/35,
v/v), dichloromethane/methanol (50/50, v/v) and hexane/ethanol
(70/30, v/v) provided a superior number of molecular features
using both ESI(+) and ESI(�) modes. The number of obtained fea-
tures varied slightly 796, 718, and 696 using ESI(�) for ethanol/
water (65/35, v/v), hexane/ethanol (70/30, v/v) and dichloro-
methane/methanol (50/50, v/v), respectively. On the other hand,
evaluating the ESI(+) performance, dichloromethane/methanol
(50/50, v/v) showed superior extraction efficiency. In agreement,
Please cite this article in press as: Rubert, J., et al. Untargeted metabolomics
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dichloromethane/methanol (50/50, v/v) was chosen as extraction
solvent for further experiments.
3.2.2. Data processing and statistical evaluation
Mycotoxin accumulation and Fusarium infection had to be

understood in terms of cross-talk responses. Therefore, the
UHPLC-QTOF untargeted metabolomics method had to detect
simultaneously as many metabolites as possible in wheat, in order
to understand metabolic pathways. In other words, hundreds of
variables (m/z, RT, intensity) had to be converted into more man-
ageable information. After data processing and data pre-
treatment, multivariate data analysis was carried out based on a
statistical comparison and molecular feature identification. Two
steps can be clearly distinguished; (i) unsupervised model and (ii)
supervised model (Rubert et al., 2015).

Principal component analysis (PCA) was initially employed, as
the first step in the data analysis in order to detect sample cluster-
ing in the measured data. The same sample clustering was clearly
observed using both ESI(+) and ESI(�) modes. Furthermore, in both
cases, the sum of PC1 and PC2 was superior to 48%, in the same
direction the goodness-of-fit parameter showed suitable values
for ESI+(65%) and ESI(�) (80%), therefore, nicely fitting the models.
It can be seen in the Fig. 3A and B.
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Fig. 2. Venn diagram shows all possible relations between three extraction procedures selected, common molecular features of these extraction procedures being
represented by intersections of the circles. Venn diagrams depicts shared and unique molecular features detected in the wheat extracts prepared under the different
extraction procedures and analyzed using (A) UHPLC–ESI(+)-QTOF and (B) UHPLC–ESI(�)-QTOF.

Fig. 3. Unsupervised and supervised statistical models using principal components analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). The
unsupervised models, PCA, are the first step in the data analysis in order to detect sample clustering in the measured data, based on linear combinations of their shared
features. PCA scores plot for low (green) and strong infection (red) levels using positive ionization mode (A) and negative ionization mode (B). Discriminant models are based
on building models for the known classes. In this case, OPLS-DA scores plot for low (green) and strong (red) infection levels using positive ionization mode (C) and negative
ionization mode are depicted (D). The score plots of these statistical models, n = 86. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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Nevertheless, initially, this grouping was not easily understood
based on the sample description and results provided by classical
methodologies (described above), and further evaluation was vital.
Step-by-step, these two groups were successfully defined based on
qualitative and quantitative data: (i) Fusarium infection level, (ii)
Please cite this article in press as: Rubert, J., et al. Untargeted metabolomics
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Fusarium spp. and (iii) mycotoxin content range (Table 1 supple-
mentary material). On the one hand, the first group was called
‘‘low infection” (LI) level. This group was characterized by infection
levels from 0 to 1, in 90% of cases for both ESI(+) and ESI(�) modes,
three Fusarium spp. detected; F. poae, F. avenaceum and F. equiseti,
based on ultra-high-performance liquid chromatography–high-resolution
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and amycotoxin content ranged from0 to 2.773 lg/kg. On the other
hand, the second group was called ‘‘strong infection” (SI) level. In
this case, this cluster was defined by infection levels from 1 to 5, in
75% of cases for both ESI(+) and ESI(�) modes, Fusarium spp.
detected; F. poae, F. sporotrichoides, F. graminearum, F. culmorum,
F. avenaceum, and a mycotoxin content ranged from 13 to
10.510 lg/kg. Table 1 supplementary material summarizes LI and
SI levels.

Once the sample clustering was fully understood, supervised
models, concretely OPLS-DA models, were validated. OPLS-DA
scores plots showed successful discrimination between LI and SI
levels, as it can be seen in the Fig. 3C and D. The statistical model
parameters were R2X = 0.63, R2Y = 0.91 and Q2 = 0.83 for positive
ionization mode and R2X = 0.65, R2Y = 0.91 and Q2 = 0.86 for
negative ionization mode, in both cases using two components.
The prediction ability and proportion of variance explained by
the models justified the sample clustering defined above.

3.3. Marker interpretation

As the last step, the most significant markers related to LI and SI
levels were tentatively identified. These markers are summarized
in the Table 2. The tentative identification was crucial in order to
understand up and down regulated markers and metabolite path-
ways. These markers can be split into three categories, according to
their chemical structure and their biological role; (i) oxylipins; (ii)
alkylresorcinols; (iii) acyl glycerols.

Oxylipins are key signaling compounds that are involved in the
plant-pathogen cross-talk. These molecules have been reported as
able to regulate the expression of certain defense-related genes,
modulating fungal sporulation, mycotoxin production, and the
biosynthesis of the plant signaling molecule JA (Ludovici et al.,
2014). In our study, four oxylipins related to 13-lipoxygenase
(13-LOX) pathway were up regulated for SI group (Table 2). The
accumulation of 13-LOX pathway related oxylipins in SI group is
in agreement with the literature, since studies suggested that the
13-LOX pathway is activated after pathogen assault as a defense
response (Carrasco & Mérida, 2006; Ciccoritti, Pasquini,
Sgrulletta, & Nocente, 2015; Dong, Lv, Xia, & Wang, 2012; Gao
et al., 2007; Hong, Zhang, & Wang, 2010; Ludovici et al., 2014;
Ross et al., 2003; Testerink & Munnik, 2011).

In this way, Ludovici et al. (2014) and Gao et al. (2007) reported
that 13-LOX derived products related to linoleic acid, such as
13-HODE and 12,13-diHOME significantly increased in maize ears
after F. verticilloides infection. Consistently, both markers were
upregulated in SI samples with a significant relation with higher
mycotoxin amount and higher fungal biomass. Among 13-LOX
Table 2
Identification of the most significant metabolites related to low infection (LI) and strong in
formula, mass errors, p-values, percentage of change and coefficient of variance (CV) in qu

Tentative identification Pseudomolecular
ion

m/z RT (m

13-Keto octadecadienoic acid [M�H]� 293.2122 3.56
13-Hydroxy octadecadienoic acid [M�H]� 295.2282 3.57
12,13-Di-Hydroxy octadecadienoic acid [M�H]� 311.2228 2.69
12,13-Di-hydroxy octadecenoic [M�H]� 313.2385 2.93
5-Nonadecanylresorcinol (C19:0) [M�H]� 375.3286 6.66
5-Heneicosylresorcinol (C21:0) [M�H]� 403.3601 7.20
5-Tricosylresorcinol (C23:0) [M�H]� 431.3888 7.75
Diacylglycerol (C15:1/C18:2) [M+H]+ 577.4825 6.59
Phosphatidic acid (C18:2/C18:2) [M+NH4]+ 714.5091 7.23
Phosphatidic acid (C16:0/C18:2) [M+NH4]+ 690.5060 7.46

1 Significant according to t-test (p value 60.05).
2 Significant according to FDR correction.
3 Increased/decreased percentage of change in the first group (Strong Infection).
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derived compounds, 12,13-diHOME revealed to be the most dis-
criminant marker using ESI(�) ionization mode (Table 2, Fig. 4A),
having a VIP value higher than 4.5.

Another group of lipids that contributed significantly to the sep-
aration using ESI(�) records were alkylresorcinols (ARs). These par-
ticular phenolic lipids are 1,3-dihydroxybenzene derivatives with
an odd numbered alk(en)yl chain at position 5 of the benzene ring
and carbon chains of different lengths (i.e. C15:0, C17:0) (Ciccoritti
et al., 2015; Ross et al., 2003). ARs are synthesized as secondary
metabolites in the outer parts of grains and in the plant. They have
been reported to act as protective agents against parasites like fungi
and other microorganisms. Recently, Ciccoritti et al. (2015) con-
firmed that ARs showed a fungistatic activity against Fusarium spp.
under in vitro conditions, andhighlighted that the antifungal activity
was positively correlated to C21:0/C23:0 ratio. In agreement, our
results showed that C21:0 and C23:0 were over-expressed in LI
group, being themost significant discriminant compounds (Table 2).
This evidence suggests that the localization of ARs at the surface of
plant tissue and their amphiphilic structure could act as a chemical
barrier against fungal infection.

In addition to oxylipins and phenolic lipids, different lipid sig-
naling molecules can be produced as a consequence of membrane
modifications, such as diacylglycerol (DAG) and phosphatidic acid
(PA) (Carrasco & Mérida, 2006). In this research work, one DAG and
two PA compounds, were found to contribute significantly to ESI(+)
sample clustering.

On the one hand, DAG (15:1/18:2) was exclusively found in the
SI group, probably as a consequence of membrane alteration due to
a pathogen attack. By contrast, PA (C18:2/C18:2), as it can be seen
in the Fig. 4B, and PA(C16:0/C18:2) were mainly found as signifi-
cant up-regulated markers in LI group. Under physiological condi-
tions, the DAG content of the plant cell is low and its production
and clearance must be rigorously controlled to guarantee a
permanent reservoir of this lipid, being, among others, an essential
component of membranes (Dong et al., 2012). However, upon
membrane alteration and glycerolphospholipid hydrolysis, DAG
may accumulate in the apical domain of the plasma membrane
(Testerink & Munnik, 2011). The phosphorylation of DAGs by dia-
cylglycerol kinase leads to the formation of PAs (Testerink &
Munnik, 2011), which are signaling lipids involves in the plant
response to biotic and abiotic stress (Carrasco & Mérida, 2006).

In short, we hypnotize that the exclusive occurrence of DAG
(C15:1/C18:2) in SI group, and the strong accumulation of PAs in
LI group may suggest that in low infected plants DAGs were
immediately phosphorylated to PAs, as a rapid response to fungal
infection. At the same time, high contents of ARs at the surface
of kernels could act as a chemical barrier against fungal infection.
fection (SI) groups. Pseudomolecular ions, m/z values, retention times (RT), molecular
ality control (QC) are summarized.

in) Molecular
formula

Mass error
(Dppm)

p-value Change SI vs LI
[%]3

CV in QCs
[%]

C18H30O3 0,0 3,7E�251,2 11 8
C18H32O3 1,0 1,1E�231,2 93 4
C18H32O4 0,3 1,0E�221,2 83 8
C18H34O4 1,7 3,0E�221,2 89 4
C25H44O2 4,5 4,5E�211,2 �59 9
C27H48O2 4,7 1,6E�201,2 �129 4
C29H52O2 1,6 1,3E�181,2 �89 4
C36H64O5 0,3 1,9E�191,2 152 6
C39H69O8P 1,6 1,2E�191,2 �85 5
C37H69O8P 1,5 6,3E�201,2 �82 6
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Fig. 4. 12,13-DiHome and PA (18:2/18:2) variable trend plots show up and down regulated markers for strong and low infection levels to confirm the behavior of selected
variables across all samples. On the one hand, 12,13-DiHome m/z 313.2385 retention time 2.93 min (A), SI level responses were higher than LI level. On the other hand, PA
(18:2/18:2) m/z 714.5091 retention time 7.23 min (B), SI intensities have a negligible signal.
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Lastly, in plants where the infection was more aggressive, two
metabolic pathways were activated; (i) PA hydrolysis, and (ii)
13-LOX signaling pathway, leading therefore to an increase of
C18:2 derived oxylipins.
4. Conclusions

The outcome of our study strongly supports the key role played
by lipid signaling compounds in the complex regulatory network.
The undertaken study described the interconnection of metabolic
pathways taking place in the Fusarium infected wheat, in other
words, how the Fusarium infections influence mycotoxin and other
metabolites formation. The main conclusions of this research can
be summarized below:

� In the LI group of samples, an overexpression of PAs occurred.
This suggests the hypothesis that DAGs are phosphorylated to
PAs as a rapid response to fungal infection.
Please cite this article in press as: Rubert, J., et al. Untargeted metabolomics
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� The high content of ARs in the LI wheat samples could refer to
the chemical barrier created against the fungal pathogen.

� The increased level of DAGs and oxylipins in the SI wheat sam-
ples reflects the activation of PA hydrolysis and 13-LOX signal-
ing pathway.

The workflow developed here allows a significant simplification
in future research focused on mycotoxins and plant-pathogen
cross-talk. (Bio)monitoring of the most significant markers
described here could serve as an effective tool for the early detec-
tion of mycotoxins, and Fusarium disease prevention.
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