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RIESZ POTENTIAL ESTIMATES FOR A GENERAL CLASS OF
QUASILINEAR EQUATIONS

PAOLO BARONI

ABSTRACT. We consider solutions to nonlinear elliptic equations with measure data and
general growth and ellipticity conditions of degenerate type, as considered in Lieberman
[Comm. PDE, 1991]; we prove pointwise gradient bounds for solutions in terms of linear
Riesz potentials. As a direct consequence, we get optimal conditions for the continuity of
the gradient.

1. INTRODUCTION AND STATEMENT OF RESULTS

Starting from the fundamental works of Kilpeläinen and Malý [20, 21], it is known
that the local behavior of solutions to nonlinear elliptic equations with right-hand side
measures can be controlled in terms of nonlinear Wolff potentials. In particular, for the
classic p-Laplace equation

− div(|Du|p−2Du) = µ in Rn, p > 1, (1.1)

pointwise estimates for solutions can be obtained via Wolff potentials, in the case the mea-
sure is positive, as follows:

|u(x0)| ≤ c(n, p)Wµ
1,p(x0,∞) = c

∫ ∞
0

[
|µ|(B%(x0))

%n−p

] 1
p−1 d%

%
. (1.2)

The above estimate is sharp, in the sense that the Wolff potential appearing in the right-
hand side cannot be replaced by any other potential whatsoever, and this is the consequence
of the fact that the same potential bounds the pointwise values of u also from below.

In the recent paper [24], see also [27, 34], Kuusi and Mingione proved a pointwise
estimate for gradient of solutions to (1.1) in terms of the linear, Riesz potential of the
right-hand side, for p ≥ 2:

|Du(x0)|p−1 ≤ c(n, p) I|µ|1 (x0,∞) for any x0 ∈ Rn; (1.3)

we recall that the linear Riesz potential of the measure |µ| is defined by

I
|µ|
1 (x0,∞) :=

∫ ∞
0

|µ|(B%(x0))

%n−1

d%

%
.

Estimate (1.3) surprisingly extends to the case of the p-Laplacian the classical gradient
estimates that hold for the Poisson equations. These are, in turn, a straightforward conse-
quence of the representation formula for the solution, a tool that is obviously unavailable
in the nonlinear case. On the other hand, (1.3) states that, when considering pointwise
gradient estimates for the p-Laplacian equation, different potentials come into the play.
The reader might examine in this regard also the interpolation estimates in [22, 27], which
clarify in which sense and at which extent linear and non-linear potentials are related to
the different levels of regularity of solution to (1.1) in a bounded domain Ω.
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2 PAOLO BARONI

This phenomenon is formally related to the operation of inversion of the divergence
operator. Indeed, if for just a moment we imagine that a Riesz type potential can be
used to invert the divergence operator, then (1.3) formally follows by applying the Riesz
potential to both sides of (1.1); indeed, we would get

|v(x0)| = |Du(x0)|p−1 . I
|µ|
1 (x0,∞) where v := |Du|p−2

Du. (1.4)

Clearly this rough heuristic has to be made rigorous, and this has been accomplished in
[24]. On the other hand, using the same argument, in order to get pointwise estimates for
u we should again formally invert the differentiation operator:

|Du(x0)| .
[
I
|µ|
1 (x0,∞)

] 1
p−1 ⇒ |u(x0)| . I

|µ|
1

([
I
|µ|
1 (·,∞)

] 1
p−1

)
(x0,∞)

and by a classic result the latter potential, so called Havin-Maz’ya one [17], differs from
Wµ

1,p(x0,∞) just by constants.

In this paper we are interested in understanding for which classes of quasilinear equa-
tions the principle still works. We show that it does for equations like

− div

(
g
(
|Du|

)
|Du|

Du

)
= µ in Ω, (1.5)

where Ω ⊂ Rn, n ≥ 2 is a bounded open set and µ is a Borel measure with finite total
mass, |µ|(Ω) < ∞; once considering appropriate but classic assumptions on the function
g, pointwise gradient estimates in terms of linear Riesz potentials hold true. In order to give
some more details, we introduce the positive function g ∈ C1(0,∞), satisfying essentially
only the following bound:

g0 ≤ Og(t) :=
tg′(t)

g(t)
≤ g1, for t > 0, with 1 ≤ g0 ≤ g1. (1.6)

Remark 1.1. From now on, we shall suppose g0 = 1; note that this is clearly not restric-
tive. Moreover, one could see that all the constants, in the case we would take g0 > 1,
would be stable as g0 → 1.

Equations as in (1.5) have been introduced and studied by Lieberman [29] and they are,
in his own words “the natural, and, in a sense, the best generalization of the p-Laplace
equation” (where the function g takes the power-like form g(t) = tp−1, with p > 1), seen
as Euler equation for local minimizers of the functional

G(Dw) :=

∫
Ω

G
(
|Dw|

)
dx, (1.7)

with G(t) = tp. The p-Dirichlet energy provides a model case for the growth and ellip-
ticity conditions considered by Ladyzhenskaya and Ural’tseva; hence, it becomes natural
to investigate about more general forms of convex densities G(·) than power-like ones,
and related Euler equations. Notice that if G is smooth enough, then the Euler equation
of minimizers of (1.7) is (1.5) with g = G′ and µ = 0. In Lieberman’s work a full ba-
sic regularity theory (local boundedness and Hölder regularity both of solutions and their
gradients, Harnack’s inequalities and characterizations of De Giorgi classes) is proved for
this class of equations, essentially only supposing (1.6), for different bounds on g0; we
will exploit extensively his work. Natural examples of functions g satisfying (1.6) are the
logarithmic perturbations of powers, i.e.

g(t) = tp−1
[

log(a+ t)
]α
, p ≥ 2, a ≥ 1, α ≥ 0.

Another interesting examples, given in [29] and related to (p, q)-growth conditions, are
given by appropriate gluing of the monomials tα1 , tα1−ε, tα2+ε for ε < α1 < α2; it turns
out that is this case g0 = α1−ε and g1 = α2 +ε. In this paper we thus prove the following
result:
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Theorem 1.2. Let u ∈W 1,G(Ω) be a weak solution to

− div a(Du) = µ, (1.8)

where µ is a Radon measure with finite total mass or a function in L1(Ω), where the vector
field a(·) is modeled upon on (1.5), in the sense specified by (2.1), and where the function
g satisfies (1.6) with g1 ≥ g0 = 1 and the degeneracy condition (3.2). Then there exists a
constant c, depending only on n, ν, L, g1, such that the pointwise estimate

g
(
|Du(x0)|

)
≤ c I|µ|1 (x0, 2R) + c g

(∫
BR(x0)

|Du| dx
)

(1.9)

holds for every x0 ∈ Ω Lebesgue’s point of Du and for every ball B2R(x0) ⊂ Ω.

We recall that the truncated, linear Riesz potential I|µ|1 (x,R) is naturally defined by

I
|µ|
1 (x0, R) :=

∫ R

0

|µ|(B%(x0))

%n−1

d%

%
;

in the case µ ∈ L1(Ω) we denote

|µ|(B%(x0)) :=

∫
B%(x0)

|µ| dx.

Once having the a priori potential bound (1.9) at hand, the following Corollary follows in
a straightforward way:

Corollary 1.3. Let u ∈ W 1,G(Ω) be a weak solution to (1.8), where the vector field a(·)
satisfies the assumptions (2.1) and where g satisfies (1.6). Then

I
|µ|
1 (·, R) ∈ L∞loc(Ω) for some R > 0 =⇒ |Du| ∈ L∞loc(Ω).

Moreover the following local estimate holds true:

‖Du‖L∞(BR/2) ≤ c g−1

(∥∥I|µ|1 (·, R)
∥∥
L∞(BR)

)
+ c

∫
BR

|Du| dx,

for every ball B2R ⊂ Ω and with constant depending on n, ν, L, g1.

It is worth to remark that this shows that the classic, sharp Riesz potential criterium
implying the Lipschitz continuity of solutions to the Poisson equations still remains valid
when considering operators of the type (1.8), at least for the range we consider, namely
g0 ≥ 1. We stress however that global Lipschitz regularity for solution to (1.5) in the
vectorial case has been proved by Cianchi and Maz’ya [8, 9], under weaker assumptions
on the function g: they indeed prove, using our notation,

0 < g0 ≤
tg′(t)

g(t)
≤ g1, and µ ∈ L(n, 1)(Ω) =⇒ Du ∈ L∞(Ω)

under a very mild, but sharp, condition on ∂Ω. L(n, 1) is the Lorentz space defined just few
lines below, and the inclusion µ ∈ L(n, 1)(Ω) actually implies that I|µ|1 (·, R) ∈ L∞(Ω),
see the proof of Corollary 1.5. Our local L∞ bound, however, actually opens the way to
gradient continuity statements. We indeed have the following general criterion:

Theorem 1.4. Let u ∈W 1,G(Ω) be as in Theorem 1.2 and suppose that

lim
R→0

I
|µ|
1 (·, R) = 0 locally uniformly in Ω with respect to x; (1.10)

then Du is continuous in Ω.

The previous theorem allows to extend to our setting a few classical results. The first is
a classic theorem of Stein [37] stating

4u ∈ L(n, 1)(Ω) =⇒ Du ∈ C0(Ω). (1.11)
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We recall now that the Lorentz space L(n, 1)(Ω) consists in all measurable functions µ
such that∫ ∞

0

∣∣{x ∈ Ω : |µ(x)| > λ}
∣∣1/n dλ <∞;

its local variant is defined in the usual way. Note that if µ belongs locally to L(n, 1)(Ω),
then not just I|µ|1 (·, R) ∈ L∞(Ω), but also (1.10) holds true, see again the proof of the
forthcoming Corollary 1.5 in Section 7. The sharpness of (1.11) has been shown in [4].

The second one result we are going to cover has been proved by Lieberman in [30] and
asserts that, when considering elliptic equations as (1.1) in Ω, the density condition

µ(Bρ(x)) ≤ c ρn−1+η, for any Bρ(x) ⊂ Ω and for some η > 0,

implies the local Hölder continuity of the gradient (see Kilpeläinen [19] for an analogous
statement concerning u rather than Du). We have the following

Corollary 1.5. Let u ∈ W 1,G(Ω) be as in Theorem 1.2. If one of the following two
conditions holds:

(1) µ ∈ L(n, 1) locally in Ω,
(2) |µ|(BR(x)) ≤ cRn−1h(R), for some constant c ≥ 1 and for any ball BR(x) ⊂

Ω, being h Dini continuous in the sense that
∫

0

h(ρ)
dρ

ρ
<∞,

then Du is continuous in Ω.

This Corollary (and the previous Theorem 1.4) shows in particular that the gradient
continuity result in (1.11) still holds true if we replace the linear, Laplace operator with
a much more general one, and, quite surprisingly, the structure of the operator does not
influence the sharp condition on the right-hand side, which is actually independent on the
form of the operator itself. This fact is essentially encoded in the following observation,
again formal and similar to the one in (1.4): the correct quantity to consider, once treating
equations as (1.5), is

ṽ :=
g
(
|Du|

)
|Du|

Du.

Therefore, if in order to prove continuity of Du we instead prove the continuity of ṽ, it
then becomes clear that the condition to be imposed on µ has to be independent of the
vector field. A similar argument has been developed in detail in particular in the recent
paper [26] by Kuusi and Mingione, where it is proved that the condition µ ∈ L(n, 1)(Ω) is
a sufficient one for the continuity of the gradient of solutions to p-Laplacian type systems
of quasi-diagonal type.

To conclude, we first refer the reader to the classic book [18] for more on the relation
between Wolff potentials and local behavior of solution to (1.1) and we mention the paper
[31] where a zero-order estimate, analogue to (1.2), has been proved for minimizers of
functionals satisfying growth conditions related to g; the papers [23, 25] contain parabolic
potential estimates in terms of Riesz potentials and sharp continuity results similar to those
just described, but in the evolutionary setting; we also mention [22, 27] where, as well
as the aforementioned interpolation potential estimates in terms of linear and nonlinear
potentials together with sharp criteria for Hölder regularity for solutions, the reader can
find also gradients Hölder estimates for solutions to measure data problems. We finally
highlight the paper [33], where a low-order regularity theory in term of Riesz potential
for nonlinear equations is developed, in the sense that integrability properties analogue to
those implied by (1.3) are studied when the regularity of the vector field is so weak (for
instance, when the p-Laplacian equation is endowed with merely bounded and measurable
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coefficients) to just allow for gradient estimates in terms of Riesz potentials at the level of
measures of super-level sets.

Finally note that Theorem 1.2, which is given in the form of a priori estimate, actually
extends to the case when u is a particular very weak solution, which does not necessarily
belong to the energy space W 1,G(Ω); lack of integrability is indeed typical when dealing
with measure data problems, see [2, 3]. This extension goes via a standard approximation
argument briefly described in the last Section 7.

2. ASSUMPTIONS AND NOTATION

We shall consider a differentiable vector field satisfying the ellipticity and growth con-
ditions 

〈∂a(z)λ, λ〉 ≥ ν g(|z|)
|z|
|λ|2

|a(z)|+ |∂a(z)||z| ≤ Lg(|z|)
(2.1)

for all z, λ ∈ Rn and with 0 < ν ≤ 1 ≤ L <∞. ∂a denotes the gradient of a with respect
the variable z and g is the function considered in the preceding Section and satisfying (1.6).
By defining

Vg(z) :=

[
g(|z|)
|z|

]1/2

z (2.2)

we have the analog of a well-known quantity in the study of the p-Laplacian operator, and
also in our case the following relation holds:∣∣Vg(z1)− Vg(z2)

∣∣2 ≈ g(|z1|+ |z2|)
|z1|+ |z2|

|z1 − z2|2 ≈ g′
(
|z1|+ |z2|

)
|z1 − z2|2. (2.3)

We introduce here a notation which we find pretty convenient; we shall use it many times
through the whole paper. By writing A . B we will mean that there exists a positive
constant c̃, depending only on g1, such that A ≤ c̃ B. With the expression A ≈ B we
will mean that both A . B and B . A hold. Moreover in the case the constant c̃ will
depend also on other quantities, we will write them below these signs. For example, if
A ≤ c̃(n, g1)B, we shall write A .n B. This notation will show to be very useful since,
besides lightening notation, it will also highlight how (1.6) plays a fundamental role in our
proofs; therefore it will be used mainly for equivalences of functions. For example, using
(1.6), we have

g(t) ≈ f(t) :=

∫ t

0

g(s)

s
ds, (2.4)

being f(·) convex (see (3.1)) while g(·) is not; note that also f(·) satisfies (1.6). Using
(2.1)1 it is easy to prove, or see [11, Lemma 20], the following monotonicity inequality

〈a(z1)− a(z2), z1 − z2〉 & c(ν)g′
(
|z1|+ |z2|

)
|z1 − z2|2

& c |Vg(z1)− Vg(z2)|2 (2.5)

and the Lipschitz continuity

|a(z1)− a(z2)| . c(L)g
(
|z1|+ |z2|

)
|z1 − z2|.
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More on notation. In the following we shall adopt the customary convention of denoting
by c a constant, always larger than one, that may vary from line to line; peculiar dependen-
cies on parameters will be properly emphasized in parentheses when needed, sometimes
just at the end of the chains of equations, for the sake of readability. Special occurrences
will be denoted by special symbols, such as c1, c2, c̃, c∗. We again stress that we will try to
use the “.” notation mainly to highlight equivalence of functions.
BR(x0) will be the open ball with center x0 and radius R. We shall avoid to write the

center of the balls when no ambiguity will arise: often the reader will read BR ≡ BR(x0)
or the like. Being C ∈ Rn a measurable set with positive measure and ` : C → Rk, k ∈ N,
an integrable map, we denote with (`)C the averaged integral

(`)C :=

∫
C

`(x) dx :=
1

|C|

∫
C

`(x) dx.

Again for ` and C as above, the (L1-)excess functional E(`, C) is defined as

E(`, C) :=

∫
C

∣∣`− (`)C
∣∣ dx. (2.6)

Note that

E(`, C) ≤ 2

∫
C

|`− ξ| dx for all ξ ∈ Rk (2.7)

is a useful property which will be often used, despite not always being made explicit. We
use the notation∫

0

l(s) ds <∞ for l : (0,∞)→ (0,∞) continuous function

to mean
∫ r

0
l(s) ds < ∞ for some (and then for all) r > 0. Similarly for

∫
0
l(s) ds = ∞;

the same for improper integrals at infinity
∫∞. By R+ we will mean the open half-line

(0,∞), by N the set {1, 2, . . . } and N0 := N ∪ {0}.

3. BASIC PROPERTIES OF THE g FUNCTION AND ORLICZ-SOBOLEV SPACES.

First of all we note that we can suppose without loss of generality g1 > 1 and that the
lower bound OG(t) ≥ 1 implies not only that g is monotone, but also that

t→ g(t)

t
is increasing; (3.1)

the proof is a simple computation of its derivative and this implies that g(0) = 0. Moreover
we shall assume the degeneracy conditions

lim
t→0+

g(t)

t
= 0, lim

t→∞

g(t)

t
=∞; (3.2)

this is to say that as the gradient vanishes, the modulus of ellipticity of the equation be-
comes zero and that the equation is not asymptotically non-degenerate. We make this
choice in order to simplify the (already technically heavy) presentation, still considering a
case that in many respects can be considered as the most interesting one. It is easy to find
sufficient conditions, in terms of g0 and g1 implying (3.2).

We can also assume the normalization condition∫ 1

0

g(s) ds = 1. (3.3)

At this point elementary calculus shows that g(1) ≈ 1. Note now that the sole assump-
tion (1.6), together with a simple computation of derivatives, gives that t 7→ t−g1g(t) is
decreasing and this yields, together with (3.1), that

min{α, αg1} g(t) ≤ g(αt) ≤ max{α, αg1} g(t) for all t ≥ 0, α ≥ 0. (3.4)
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Define now the function G ∈ C2(0,+∞) as the primitive of g:

G(t) :=

∫ t

0

g(s) ds.

It is straightforward to see that G(1) = 1 from (3.3), G is convex and there holds

tg(t)

1 + g1
≤ G(t) ≤ tg(t)

2
if t ≥ 0. (3.5)

Inequality (3.5) can be rewritten in a more expressive way as

2 ≤ OG(t) =
tG′(t)

G(t)
≤ 1 + g1 :

as above, this implies that the function t−2G(t) is increasing and that t−(1+g1)G(t) is
decreasing, so we have

min{α2, α1+g1}G(t) ≤ G(αt) ≤ max{α2, α1+g1}G(t) (3.6)

for all t ≥ 0, α ≥ 0. In the customary terminology, the right-hand side inequalities of
(3.4) and (3.6) mean that g and G satisfy a global ∆2-condition. We recall that a function
A : R+ → R+ is said to satisfy a global ∆2- (or doubling) condition if there exists a
constant k ≥ 1 such that

A(2t) ≤ k A(t) for all t ≥ 0.

Note the peculiar form of (3.6) when t = 1 (and then G(1) = 1). Being G strictly
increasing and with infinite limit, then G−1 exists, is defined for all t ∈ R and it is strictly
increasing. Replacing t with G−1(t) and α with α2 (respectively, α1+g1 ), (3.6) implies

min{α 1
2 , α

1
1+g1 }G−1(t) ≤ G−1(αt) ≤ max{α 1

2 , α
1

1+g1 }G−1(t) (3.7)

for α, t ≥ 0; something similar holds for g. We shall use this estimate, as also (3.6) and
(3.4), mainly with the purpose of confining constants outside the Young functions we are
going to consider.

Remark 3.1. Note that for an increasing function f : R+ → R+ satisfying a doubling ∆2

condition f(2t) . f(t) for t ≥ 0, it is easy to prove that f(t + s) . f(t) + f(s) holds
for every t, s ≥ 0. Indeed f(t + s) ≤ f(2t) + f(2s). Analogue estimates hold, e.g., if
f(2t) .n f(t) or similar conditions.

The Remark above shows that both g and G satisfy the following subadditivity property:

G(t+ s) . G(t) +G(s), g(t+ s) . g(t) + g(s). (3.8)

Finally note that, since we have at hand monotonicity (3.1), then

G
(
|Du−Dv|) .

g
(
|Du−Dv|

)
|Du−Dv|

|Du−Dv|2 .
g
(
|Du|+ |Dv|

)
|Du|+ |Dv|

|Du−Dv|2

. c
∣∣Vg(Du)− Vg(Dv)

∣∣2. (3.9)

3.1. Young functions, N -functions and Young’s inequality. We call Young function a
left-continuous convex function A : R+ → R+ ∪ {+∞} such that A(0) = 0. An N -
function is a finite valued (therefore continuous) Young function C such that

lim
t→0+

C(t)

t
= 0, lim

t→∞

C(t)

t
=∞. (3.10)

A good reference for such functions, as for all the results stated in the following lines, is
the book [35]. The Young’s conjugate of an N -function C is defined by

C̃(t) := sup
s>0

{
st− C(s)

}
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and throughout the whole paper when using the tilde notation over a function we shall
always mean its Young’s conjugate. If C is an N -function, then also C̃ is an N -function
and for these functions Young’s inequality holds; moreover, in the case a condition of the
type C(αt) ≤ αqC(t) for α ∈ (0, 1) and with some positive exponent q, the choice of an
appropriate power of ε ∈ (0, 1), ε1/q , leads to the following improved form:

ts ≤ εC(t) + c(ε, q)C̃(s) (3.11)

for all t, s ≥ 0 and for any ε ∈ (0, 1). Another important feature of Young’s conjugate
function is the following inequality, which can be found in [1, Chapter 8, (6)]:

C̃

(
C(t)

t

)
≤ C(t) (3.12)

for t > 0. The previous inequality can be inferred from the similar one:

t ≤ C−1(t)C̃−1(t) ≤ 2t for all t ≥ 0. (3.13)

Remark 3.2. A useful argument to keep in mind when dealing with N -functions, which
has beed already used when defining f in (2.4), is the following. Usually, and in particular
in several occasions in this paper, it could be difficult to check whether a (regular) function
D is convex or not, while it will be easier to verify its monotonicity, after computing its
derivative. In the case we know that 1 ≤ d0 ≤ OD(t) ≤ d1, then, if we define

D̄(t) :=

∫ t

0

D(s)

s
ds,

we have that d0D(t) ≤ D̄(t) ≤ d1D(t) and moreover, since d0 ≥ 1, then t 7→ D(t)/t
has positive derivative and hence it is increasing. Hence, D̄(t) turns out to be convex. On
the other hand, if d̃0 ≤ OD(t) ≤ d̃1 ≤ 1, then t 7→ D(t)/t is decreasing and hence D̄ is
concave. Often, in order to not overburden notation, we shall simply and directly suppose
D convex, leaving to the reader the simple task of properly adapting the proof, in the spirit
of the proofs of Proposition 3.5 or Lemma 5.1; see for instance (5.2).

3.2. Orlicz and Orlicz-Sobolev spaces. Given a Young function A satisfying a global
∆2-condition, the Orlicz space LA(Ω) is the Banach space of all measurable functions
f : Ω→ R such that

∫
Ω
A
(
|f |
)
dx <∞, endowed with the Luxemburg norm

‖f‖LA(Ω) := inf

{
λ > 0 :

∫
Ω

A

(
|f |
λ

)
dx ≤ 1

}
.

Note that for the above norm there holds the inequality

‖f‖LA(Ω) ≤
∫

Ω

A(|f |) dx+ 1, (3.14)

see for example [35, Chapter III]. The Orlicz-Sobolev space W 1,A(Ω) is just made up of
the functions f ∈ LA(Ω) ∩ W 1,1(Ω) such that Df ∈ LA(Ω). By W 1,A

0 (Ω) we mean
the subspace of W 1,A(Ω) made up of the functions whose continuation by zero outside
Ω belongs to W 1,A(Rn). Note that for ∂Ω smooth enough, say Lipschitz regular, this
space coincides with the closure of C∞c (Ω) in W 1,A(Ω), at least when A satisfies a ∆2

condition, that is our case; we shall need this observation in particular for Ω a ball. Finally
we remark that in the following we shall mention the space W 1,g(Ω) that, in view of the
previous lines, cannot even be defined, since g(·) is not necessarily a convex function.
However we can define the Orlicz-Sobolev space W 1,f (Ω), f(·) defined in (2.4), and set
W 1,g(Ω) := W 1,f (Ω). This definition makes sense since f ≈ g and therefore there is
no qualitative difference in between these spaces, i.e.,

∫
Ω
g(|v|) dx < ∞ if and only if∫

Ω
f(|v|) dx <∞.
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3.3. Sobolev’s embedding. For the Sobolev-Orlicz spaces usual embedding theorems
hold true. In particular, we can still find what can be roughly distinguished as the two
different behaviors of function belonging to W 1,A(Ω) depending on the growth of the
Young function A at infinity. If the function A grows “slowly” at infinity, then we get that
functions in W 1,A

0 (Ω) are more integrable in the Orlicz setting, as in the standard case
when we have p ≤ n. Note that the borderline case p = n can be “embedded” in this case,
due to the general structure of Orlicz spaces (Trudinger’s Theorem [39] is nothing else
than the embedding of W 1,n(Ω) into the Orlicz space LC(Ω), where C(t) = et

n′ − 1). In
order to be more precise, let us suppose that the Young function A satisfies the following
bounds: ∫

0

(
s

A(s)

) 1
n−1

ds <∞ and
∫ ∞( s

A(s)

) 1
n−1

ds =∞. (3.15)

In this case we have the space W 1,A(Ω) embeds into LAn(Ω), where we define the Young
function An in the following line:

Hn(t) :=

(∫ t

0

[
s

A(s)

] 1
n−1

ds

)n−1
n

, An(t) := (A ◦H−1
n )(t). (3.16)

Note that the function Hn(·) depends on the starting function A, but we don’t explicit this
dependence for ease of notation. We will however recall this fact often in order to avoid
misunderstandings. Moreover observe that the first condition in (3.15), call it (3.15)1,
is not really restrictive: given a Young function satisfying (3.15)2, we can appropriately
modify it near zero in order to satisfy (3.15)1. This does not invalidate the function as
belonging to the Orlicz-Sobolev space, and also in our context will lead to minor changes,
see Section 5. The following (sharp) integral form of Sobolev’s embedding can be found
in this form in [6, Theorem 3] by Cianchi.

Proposition 3.3 (Sobolev’s embedding). Let Ω ⊂ Rn, n ≥ 2 be a bounded open set and
let A be a Young function satisfying (3.15). Then there exists a constant cS depending only
on n such that for every weakly differentiable function u ∈W 1,A

0 (Ω) there holds∫
Ω

An

(
u

cS(n)
( ∫

Ω
A
(
|Du|

)
dx
)1/n) dx ≤ ∫

Ω

A
(
|Du|

)
dx, (3.17)

where An(t) := A
(
H−1
n (t)

)
is the function defined in (3.16).

If indeed A has fast growth at infinity, i.e., if∫ ∞( s

A(s)

) 1
n−1

ds <∞, (3.18)

we have the embedding into L∞ by Talenti [38]; the more transparent version we propose
here can be found in the paper [5] by Cianchi.

Proposition 3.4 (Sobolev’s embedding - II). Let Ω as in the previous proposition and letA
be a Young function satisfying (3.18). Then there exists a constant depending on n, g1, |Ω|
such that for every function u ∈W 1,A

0 (Ω)

sup
Ω
|u| ≤ c ‖Du‖LA(Ω). (3.19)

Finally an easy Sobolev-type embedding for the function g. We state it explicitly here
since in the following we shall often need to refer to it; we stress that this Proposition is
the only result where we need (3.2)2.
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Proposition 3.5. Let g ∈ C1(0,∞) be a positive function satisfying (1.6) and (3.2); let
BR be a ball in Rn. Then there exists a constant c ≡ c(n, g1) such that∫

BR

[
g

(
|u|
R

)] n
n−1

dx ≤ c
(∫

BR

g
(
|Du|

)
dx

) n
n−1

for every weakly differentiable function u ∈W 1,g
0 (BR).

Proof. Define f as in (2.4) and note that it is convex and satisfies (1.6) and (3.2); thus it is
an N -function. By Sobolev’s embedding in W 1,1, using (1.6) for f we know(∫

BR

[
f

(
|u|
R

)] n
n−1

dx

)n−1
n

≤ c(n)R

∫
BR

f ′
(
|u|
R

)
|Du|
R

dx

. c
∫
BR

f

(
|u|
R

)
R

|u|
|Du| dx.

Now we use Young’s inequality (3.11) with conjugate functions f and f̃ – note that f is
convex and recall (3.2); (3.12) and Hölder’s inequality then yield∫

BR

f

(
|u|
R

)
R

|u|
|Du| dx dx ≤ c

∫
BR

f
(
|Du|

)
dx+

1

2

∫
BR

f̃

(
f

(
|u|
R

)
R

|u|

)
dx

≤ c

∫
BR

f
(
|Du|

)
dx+

1

2

(∫
BR

[
f

(
|u|
R

)] n
n−1

dx

)n−1
n

.

To conclude we reabsorb the latter term in the left-hand side and we recall that f ≈ g. �

4. HOMOGENEOUS EQUATIONS

In this section we collect some results for homogeneous equations of the form

− div a(Dv) = 0 on A ⊂ Rn bounded open set. (4.1)

We will assume that the vector field a : Rn → Rn satisfies the ellipticity and growth
conditions (2.1)-(1.6) and in the following we will propose some variations on classical
themes of Lieberman [28, 29]. The following Lemma is indeed essentially a little variation
of [29, Lemma 5.1]:

Lemma 4.1. Let v ∈ W 1,G(A) be a solution to (4.1) under the assumptions (2.1)–(1.6).
Then for every ball BR ≡ BR(x0) ⊂ A the following De Giorgi type estimate holds:

sup
BR/4

|Dv| ≤ c
∫
BR

|Dv| dx. (4.2)

Moreover v ∈ C1,α(A) for some α ∈ (0, 1) and the following estimate for the excess
decay holds:∫

Br

∣∣Dv − (Dv)Br

∣∣ dx ≤ ch ( r
R

)α ∫
BR

∣∣Dv − (Dv)BR

∣∣ dx, (4.3)

for 0 < r < R, Br having the same center of BR. Finally we have

|Dv(x1)−Dv(x2)| ≤ co
( r
R

)α ∫
BR

|Dv| dx (4.4)

for every x1, x2 ∈ Br/2. The three constants and the exponent α share the same depen-
dence on n, ν, L, g1.
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Proof. For (4.2) we merge the De Giorgi-type estimate present in [29, Lemmata 5.1 &
5.2] with the forthcoming Lemma 4.2, which allows to reduce the integrability of Dv on
the right-hand side. We have

sup
BR/4

G
(
|Dv|

)
≤ c

∫
BR/2

G
(
|Dv|

)
dx ≤ cG

(∫
BR

|Dv| dx
)
.

For (4.3) and (4.4) we take inspiration from [14, Theorem 3.1], which is in turn a re-
visitation of [29, Lemma 5.1] for the case of Hölder estimates below the natural growth
exponent in the standard super-quadratic case. At some points we therefore shall only
sketch the proof, leaving to the reader the task of completing the missing details with the
help of [14, Theorem 3.1]. First note that by an appropriate argument, described in [29,
Lemma 5.2], we could consider approximating vector fields aε satisfying (2.1) with gε in
place of g and satisfying

lim
t→0

gε(t)

t
= ε > 0; (4.5)

accordingly, we could consider approximate solutions vε solving (4.1) with aε in place of
a; condition (4.5) will allow to differentiate the equation for vε. Once proved (4.3) and
(4.4) for vε, then we shall pass to the limit, exactly as shown in [29, Lemma 5.2], to infer
the result for our original solution v. For ease of notation we shall omit the subscript ε in
the proof. Take a ball Br̃(x0) ⊂ BR, recall the definition of the excess in (2.6) and set

M(r̃) := max
k∈{1,...,n}

sup
Br̃

|Dkv|.

It is a well known regularity fact, see [10, 28], that there exists constant µ0, η ∈ (0, 1)
depending only on n, ν, L, g1 such that if one of the following two alternatives holds

|{Dkv < M(r̃)/2} ∩Br̃| ≤ µ0|Br̃| for some k ∈ {1, . . . , n}, (4.6)

|{Dkv > −M(r̃)/2} ∩Bv| ≤ µ0|Br̃| for some k ∈ {1, . . . , n}, (4.7)

then

|Dv| ≥ 1

4
M(r̃) in Br̃/2,

while if neither (4.6) nor (4.7) holds for any k, then

M(r̃/2) ≤ ηM(r̃). (4.8)

Now we define first the constant H1 ∈ N, then K1 ∈ N, both depending on n, ν, L, g1,
such that they satisfy

8c∗
√
n ηH1 ≤ 1, 2n(H1+2)+2ηK1−1 ≤ 1, (4.9)

where η ∈ (0, 1) is the quantity appearing in (4.8) and c∗ the constant appearing in (4.2).
Define moreover

j0 := H1 +K1.

We distinguish now two situations, which may seem unrelated; at the end of the proof we
shall show how to merge all these together.
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The first alternative. Consider first the case where, for some ̄ ∈ N, we have that (4.6) or
(4.7) holds for some k in for r̃ = R/2̄−1. Hence we have

|Dv| ≥ 1

4
M(R/2̄−1) in BR/2̄ .

Note now that for k = 1, . . . , n, ṽ := Dkv is a weak solution to a uniformly elliptic linear
equation:

div
(
ã(x)Dṽ

)
= 0, where ã(x) = ∂ξa(Dv(x)), in Bρ/2;

notice that the differentiation of the equation is possible, see [28, Lemma 1] since we are
in the nondegenerate regime (4.5). We can now use (2.1), the monotonicity (3.1) and to get

〈ã(x)λ, λ〉 = 〈∂ξa(Dv)λ, λ〉 ≥ ν g(|Dv|)
|Dv|

|λ|2 ≥ ν 2−2g1

√
n

g(M(r̃))

M(r̃)
|λ|2,

|ã(x)| ≤ Lg(|Dv|)
|Dv|

≤ 4L
√
ng1

g(M(r̃))

M(r̃)
,

both the inequalities being valid for x ∈ BR/2̄ ; we shortened here r̃ = R/2̄−1. Hence
here ṽ = Dkv satisfies a uniformly elliptic linear equation in Bρ/2 and hence classic
theory, see e.g. [14, Lemma 3.2], gives in particular for %̃ ≤ R/2̄∫

B%̃

∣∣Dv − (Dv)B%̃
∣∣ dx ≤ c( %̃

R/2̄

)α1
∫
BR/2̄

∣∣Dv − (Dv)BR/2̄
∣∣ dx, (4.10)

with α1 and c depending on n, ν, L, g1. The important point here (and also later) is that
the dependence of the Hölder exponent and the constant is upon the ellipticity ratio, and
therefore they do not depend on M(ρ/2).

The second alternative. Suppose here that there exists ρ ≤ R such that neither (4.6) nor
(4.7) holds for every r ∈ {ρ, ρ/2, . . . ρ/2j0} and for any k. This implies

M(2−jρ) ≤ ηM(2−(j−1)ρ) j ∈ {1, . . . , j0 + 1};

(4.6) and (4.7) fail in for r̃ = 2−jρ for j = 1, . . . , j0 and for every k. Then, iterating the
previous inequality we get in particular

M(2−(H1+2)ρ) ≤ ηH1M(ρ/4),

M(2−(j0+1)ρ) ≤ ηK1−1M(2−(H1+2)ρ). (4.11)

Note moreover that there holds E(Dv,Br̃) ≤ 2
√
nM(%̃) for any %̃ ≤ R. Now we

consider two different cases. In the case |(Dv)Bρ | ≤ 2
√
nM(2−(H1+2)ρ) we have, using

estimate (4.2), that in particular

M(ρ/4) ≤ c∗
∫
Bρ

|Dv| dx ≤ c∗E(Dv,Bρ) + 2c∗
√
nM(2−(H1+2)ρ).

Combining the last two estimates and taking into account the definition of H1 in (4.9) we
can reabsorb the second term on the right-hand side obtaining

M(ρ/4) ≤ 2c∗E(Dv,Bρ) =⇒ M(2−(H1+2)ρ) ≤ 2c∗η
H1E(Dv,Bρ)

and consequently, using (4.11)2

E(Dv,B2−(jo+1)ρ) ≤ 2
√
nM(2−(j0+1)ρ) ≤ 2

√
nM(2−(H1+2)ρ)

≤ 4c∗
√
n ηH1E(Dv,Bρ) ≤

1

2
E(Dv,Bρ)

by (4.9) again. In the case |(Dv)Bρ | > 2
√
nM(2−(H1+2)ρ) we have

|Dv − (Dv)Bρ | >
√
nM(2−(H1+2)ρ) in B2−(H1+2)ρ.
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Taking averages of the previous relation and using (4.11)2 yields

2
√
nM(2−(H1+K1+1)ρ) ≤ 2

√
n ηK1−1M(2−(H1+2)ρ)

≤ 2ηK1−1

∫
B

2−(H1+2)ρ

|Dv − (Dv)Bρ | dx

≤ 2n(H1+2)+1ηK1−1

∫
Bρ

|Dv − (Dv)Bρ | dx

≤ 1

2
E(Dv,Bρ)

by the choice of K1 in (4.9). Hence also in this case E(Dv,B2−(jo+1)ρ) ≤ 1
2E(Dv,Bρ).

Hence we proved that in the case neither (4.6) nor (4.7) holds in B2−jρ for some ρ ≤ R
and all j = 1, . . . , j0 + 1, then there exists τ = 2−(j0+1) ∈ (0, 1/2] depending only
on n, ν, L, g1 such that E(Dv,Bτρ) ≤ 1

2E(Dv,Bρ). The way this previous inequality
together with (4.10) leads to (4.3) is quite standard and we refer to [14] for its proof; we just
sketch the main argument. For r as in (4.3) we choose k ∈ N such that τk+1R < r ≤ τkR
and we define

S := {i ∈ N : (4.8) holds in Bτ iR}.
Now if S = N the conclusion is easy, since we can apply the result of the second alternative
choosing as ρ every dyadic radius τ iR and hence we have

E(Dv,Bτ iR) ≤ 1

2i
E(Dv,BR) = τ iαE(Dv,BR)

for an appropriate α ∈ (0, 1); this gives E(Dv,Br) ≤ c (r/R)αE(Dv,BR) which is
(4.3). Otherwise we set m := min(N r S) and we can apply the first alternative with
̄ = m and %̃ = τγ+`R, for γ, ` ∈ N0 to be chosen, such that γ + ` ≥ m, which yields

E(Dv,Bτγ+`R) ≤ c
(
2mτγ+`

)α1
E(Dv,BR/2m) (4.12)

for all %̃ ≤ R/2m; recall that τ = 2−(j0+1). Then we choose γ ∈ N0 such that γ(j0 +
1) < m ≤ (γ + 1)(j0 + 1) and this gives in the estimate above E(Dv,Bτγ+`R) ≤
c τ `α1E(Dv,BR/2m). Now we apply the second alternative exactly γ times, with γ which
could even be zero. Together with the estimateE(Dv,BR/2m) ≤ 2n(j0+1)+1E(Dv, τγR),
this yields

E(Dv,BR/2m) ≤ c τγα2E(Dv,BR), α2(n, g1, ν, L) ∈ (0, 1)

=⇒ E(Dv,Bτγ+`R) ≤ c τ (γ+`) min{α1,α2}E(Dv,BR/2m),

and this estimate gives (4.3) exactly as after (4.12). We have been quite sloppy in the proof,
but we refer to [14, Theorem 3.1], where it is performed in full detail.

(4.4) follows now by a Campanato type argument, see [16, Theorem 2.9]. �

Now we give the proof of the Reverse Hölder’s inequality we used to deduce (4.2):

Lemma 4.2 (Reverse Hölder’s inequality). Let v ∈ W 1,G(A) be a solution to (4.1) under
the conditions (2.1)–(1.6). Then for every ball BR(x0) ≡ BR ⊂ A there holds∫

BR/2

G
(
|Dv|

)
dx ≤ cG

(∫
BR

|Dv| dx
)
. (4.13)

for a constant depending on n, ν, L, g1.

Proof. In order to lower the integrability level on the right-hand side we first consider a
preliminary reverse Hölder inequality and then we exploit the self-improving character of
such kind of inequalities, see [36], with an approach which wants to mimic [16, Remark
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6.12]. In particular we have the following inequality, which can be found in [7, Equation
(1.11)]: ∫

Bρ/2(y)

G
(
|Dv|

)
dx ≤ c

(
G ◦ S−1

)(∫
Bρ(y)

S
(
|Dv|

)
dx

)
(4.14)

for a constant depending on n, ν, L, g1, valid for ballsBρ(y) ⊂ BR, and where the Young’s
function S, which grows essentially slower than G at infinity, is given by

S(t) := G(t)

[
G(t)

t

]− 1
n

.

Note that (4.14) is proved for minimizers of functionals like (1.7) combining a Cacciop-
poli’s inequality with an appropriate Sobolev’s type inequality involving the function S;
its proof for equations requires however only slight modifications. See also [36] for a
Caccioppoli’s inequality for minimizers satisfying hypotheses similar than ours.

Suppose nowR = 1; we will prove the general case with the help of a scaling argument.
Moreover take r ≤ 1, α ∈ (0, 1) and a point y ∈ Bαr(x0). Apply inequality (4.14) for
ρ = (1− α)r, i.e. over B(1−α)r(y). Note that we have B(1−α)r(y) ⊂ Br. We have∫

B(1−α)r/2(y)

G
(
|Dv|

)
dx ≤ c

(
G ◦ S−1

)(∫
Br(1−α)(y)

S
(
|Dv|

)
dx

)
.

Now we come to a bit of algebra. By its definition, with Bρ ≡ B(1−α)r(y), we have∫
Bρ

S
(
|Dv|

)
dx =

∫
Bρ

[
G(|Dv|)

]n−1
n |Dv| 1n dx (4.15)

≤
(∫

Bρ

G
(
|Dv|

)
dx

)n−1
n
(∫

Bρ

|Dv| dx
) 1
n

,

using Hölder’s inequality. Now we want to use Young’s inequality with conjugate functions
C(t) := S(tn) and C̃(t); it is easy to see that C(0) = 0 and it satisfies (3.10). Moreover a
direct computation shows that 2n−1 ≤ OC(t) ≤ (n−1)(g1 +1)+1 and hence, in view of
Remark 3.2, we can suppose C convex. If this would not be the case, as already explained,
all the forthcoming computations would have to be performed using

∫ t
0
C(s)/s ds and

the proof would be concluded by recalling that
∫ t

0
C(s)/s ds ≈n C(t). Now, using an

argument we will use also elsewhere in the paper, changing variable (s = σ
1
n ) in the

definition of the Young’s conjugate function, for α > 0,

C̃(α
n−1
n ) = sup

s>0
α
n−1
n s− S(sn) (4.16)

.n
[

sup
σ>0

αn−1σ −
[
S(σ)

]n] 1
n

=:
[
T̃
(
αn−1

)] 1
n

where the function T is defined by T (t) := [S(t)]n. Notice that we can clearly restrict our
attention to the set where α

n−1
n s ≥ S(sn). At this point the reader might recall that

T̃
(
[G(τ)]n−1

)
= T̃

(
[S(τ)]n

τ

)
= T̃

(
T (τ)

τ

)
≤ T (τ) =

[
S(τ)

]n
from the definition of S; the choice τ = G−1(α) leads now to

T̃
(
αn−1

)
≤
[
S
(
G−1(α)

)]n
,

and plugging the latter estimate into (4.16) and choosing α =
∫
Br
G(|Dv|) dx gives the

bound

C̃

((∫
Bρ

G
(
|Dv|

)
dx

)n−1
n
)
.n

(
S ◦G−1

)(∫
Bρ

G
(
|Dv|

)
dx

)
. (4.17)
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Note now that t 7→ (G ◦ S−1)(t) is increasing and therefore the subadditivity property
(3.8) holds. Using this fact and Young’s inequality with appropriate ε ∈ (0, 1), together
with (4.17) into (4.15), and recalling that ρ = (1− α)r gives∫

B(1−α)r/2

G
(
|Dv|

)
dx ≤ 1

2

∫
B(1−α)r

G
(
|Dv|

)
dx+ cG

(∫
B(1−α)r

|Dv| dx
)

with c ≡ c(n, g1); in turn∫
B(1−α)r/2

G
(
|Dv|

)
dx ≤ 1

2

∫
B(1−α)r

G
(
|Dv|

)
dx

+ c
[
(1 − α)r

]−ng1
G

(∫
B(1−α)r

|Dv| dx
)
.

Note now that the ball Bαr can be covered by balls of this kind in such a way that only a
finite and independent of α number of balls of double radius intersect, all included in Br.
We then have calling αr =: s < r∫

Bs

G
(
|Dv|

)
dx ≤ 1

2

∫
Br

G
(
|Dv|

)
dx+

c

(r − s)−ng1
G

(∫
Br

|Dv| dx
)

;

at this point a standard iteration Lemma (see [16, Lemma 6.1]) gives (4.13) for the case
R = 1. For the general case rescale in the following way: define ṽ(x) := v(x0 +Rx)/R.
ṽ solves − div a(Dṽ) = 0 on B1(0) and therefore we can apply (4.13) to ṽ. Rescaling
back gives the reverse Hölder’s inequality in the general case. �

Finally, a so-called “density improvement Lemma”:

Lemma 4.3. Suppose that the two conditions
λ

C
≤
∫
σmB

|Dv| dx and sup
B/4

|Dv| ≤ Cλ, (4.18)

hold for some m ∈ N, some numbers C ≥ 1 and λ ≥ 0 and with

0 < σα ≤ 1

23α+2co C2
<

1

8α
, (4.19)

where α ∈ (0, 1) and co appear in Lemma 4.1. Then
λ

4C
≤ |Dv| in σB.

Proof. From (4.18)1 we deduce that there exists a point x0 ∈ σmB such that |Dv(x0)| >
λ/2C. On the other hand, (4.4) and (4.18)2 give |Dv(x)−Dv(x0)| ≤ co(2σ)αCλ when-
ever x ∈ Br/2 ≡ σB ⊂ B/8. The choice above for σ together with the last two inequali-
ties gives

|Dv(x)| ≥ |Dv(x0)| − |Dv(x)−Dv(x0)| ≥ λ

2C
− λ

4C
=

λ

4C
for all x ∈ σB. �

5. COMPARISON ESTIMATES

In this Section we want to derive comparison estimates between the solution to equation
(1.8) and to a suitable homogeneous Cauchy problem. In particular, given a ball BR ≡
BR(x0) ⊂ Ω, we consider the solution v ∈ u+W 1,G

0 (BR) to the Cauchy problem{
−div a(Dv) = 0 in BR,

v = u on ∂BR.
(5.1)

Existence and uniqueness of such functions are given with approximation and monotonic-
ity arguments, see [29, Lemma 5.2].
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The technique permitting to obtain Lq estimates, being q “close” to one, for the dif-
ference Du − Dv via scaling arguments has appeared several time before this paper, see
[13, 14, 32]. However the proof for the general setting we are considering in this paper
appears to be more technical and involved.

In his first part of the Section we introduce and study separately some auxiliary func-
tions we shall use in the proofs. First we introduce two functions directly depending on g:

fχ(t) :=

∫ t

0

[
g(s)

s

]1+χ

ds, gχ(t) :=

[
g(t)

t

]1+χ

t, (5.2)

for χ ≥ −1. Note that functions similar to gχ have been already used for example in
[15]; fχ follows the spirit of Remark 3.2. Indeed we immediately stress that, by a simple
computation of derivatives, the use of (1.6) and integration over (0, t) we have

fχ(t) ≤ gχ(t) ≤
[
g1(1 + χ)− χ

]
fχ(t) (5.3)

and therefore fχ(t) ≈χ gχ(t). Note also that

fχ(αt) . max
{
α, α(g1−1)(1+χ)+1

}
fχ(t)

for α ≥ 0. Moreover we need to introduce the function Hχ(t) defined through the follow-
ing formula

H−1
χ (t) := t−χ

[
G−1

(
1

t

)]−(2χ+1)

≈χ
[g(τ)]χ

τχ+1
. τχ(g1−1)−1

with τ := G−1(1/t); hence, since χ < 1/(g1 − 1),

H−1
χ (t)→ 0 as t

t→0,τ→∞−→ 0, H−1
χ (t)→∞ as t

t→∞,τ→0−→ 0.

Here (and in the sequel) we eventually use the conventions that 1/0 = ∞, 1/∞ = 0 and
G−1(∞) =∞, so that H−1

χ (and other functions) are defined in zero in a direct way. Note
that a computation shows that

d

dt
H−1
χ (t) =

[
G(τ)

]χ+1
τ−(2χ+2)

[(
2χ+ 1

)G(τ)

g(τ)
− χτ

]
≥
[

2χ+ 1

1 + g1
− χ

][
G(τ)

]χ+1
τ−(2χ+1) ≥ 0

if χ ≤ 1/(g1 − 1). t 7→ H−1
χ (t) is hence increasing and we can suppose it is concave and

it makes sense to define its convex inverse, namely Hχ(t). Indeed, using the computation
above

2χ+ 1

1 + g1
− χ ≤

d
dtH

−1
χ (t)

H−1
χ (t)G(τ)

=
t ddtH

−1
χ (t)

H−1
χ (t)

= OH−1
χ

(t) ≤ 2χ+ 1

2
− χ =

1

2

and we are allowed to use Remark 3.2. Note moreover that by (5.3) we have

H−1
χ (t) ≈χ t gχ

(
G−1

(1

t

))
≈χ t fχ

(
G−1

(1

t

))
(5.4)

and this can be used to prove that t/H−1
χ (t) goes to zero as t→ 0 and has infinite limit for

t→∞; the same hence holds for Hχ(t)/t. By (3.13) we also deduce[
H̃χ

]−1
(

1

G(t)

)
≈ 1

G(t)

1

H−1
χ ( 1

G(t) )
≈ 1

G(t)

t2χ+1[
G(t)

]χ ≈ 1

fχ(t)
.

Matching this estimate together with the one inferred from the left-hand side inequality of
(3.13) and (5.4) we deduce

H−1
χ

(
H̃χ

(
1

fχ(t)

))
≈ H−1

χ

(
1

G(t)

)
=

[
G(t)

]χ
t2χ+1

≈
[
g(t)

]χ
tχ+1

=
gχ(t)

g(t)t
. (5.5)
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Finally, being the functionH−1
χ (·) increasing and having the doubling propertyH−1

χ (2t) .χ
H−1
χ (t) at hand, by Remark 3.1 we have that the following inequality

H−1
χ (t+ s) .χ H

−1
χ (t) +H−1

χ (s) (5.6)

for t, s ≥ 0. Finally we come to the proof of the comparison estimate:

Lemma 5.1. Let u ∈ W 1,G(Ω) be the solutions to the equation (1.5) and v ∈ u +

W 1,G
0 (BR) the solution to the problem (5.1) on BR. Then the following estimate holds

true: ∫
BR

gχ
(
|Du−Dv|

)
dx ≤ c1gχ(A) where A := g−1

(
|µ|(BR)

Rn−1

)
, (5.7)

where gχ is the functions defined in (5.2), for

χ ∈
[
−1,min

{ 1

g1 − 1
,

g1

(g1 − 1)(n− 1)

})
(5.8)

and with a constant c1 depending on n, ν, g1, χ.

Proof. Step 1: rescaling.

Define A as in (5.7); we can suppose without loss of generality that A > 0, since in the
case |µ|(BR) = 0 the monotonicity of the vector field ensures u = v on BR and then (5.7)
is trivially true. Consequently we define

ū(x) :=
u(x0 +Rx)

AR
, v̄(x) :=

v(x0 +Rx)

AR
,

ā(z) :=
a(Az)

g(A)
, µ̄(x) := R

µ(x0 +Rx)

g(A)
, (5.9)

then, subtracting the weak formulations of (1.8) and (5.1) and rescaling we have

− div
[
ā(Dū)− ā(Dv̄)

]
= µ̄ in B1; (5.10)

note that the growth function ḡ of the vector field ā is given by

ḡ(t) :=
g(At)

g(A)
:

indeed

〈∂ã(z)λ, λ〉 =
A

g(A)
〈∂a(Az)λ, λ〉 ≥ ν A

g(A)

g(A|z|)
A|z|

|λ|2 = ν
ḡ(|z|)
|z|
|λ|2

for all z, λ ∈ Rn. Since we are treating measure data problems, this is enough since we
will use only the ellipticity of the vector field. However a similar estimate holds true for
the growth of the vector field. Moreover note that

Oḡ(t) =
tḡ′(t)

ḡ(t)
=
At g′(At)

g(At)
∈ [1, g1]

for all t > 0. The aim of this substitution is twofold: we can restrict ourselves to prove the
Lemma in the case BR(x0) = B1; moreover we can exploit the following estimate

|µ̃|(B1) =
1

g(A)

|µ|(BR)

Rn−1
= 1. (5.11)

In this case what we want to prove is simply∫
B1

ḡχ
(
|Dū−Dv̄|

)
dx ≤ c(n, ν, g1), (5.12)

where ḡχ is obtained starting from ḡ instead of g in the expression appearing in (5.2). At
the very end of the proof we will show how to recover the full result from (5.12).

Step 2: measure data estimates.



18 PAOLO BARONI

From now on we will drop the tilde notation, recovering it only in Step 3, equation
(5.31). We recall we are working under the assumptionsBR = B1 and |µ|(B1) = 1. Since
we want estimates involving only the mass of the measure µ, we shall at least initially
follow the standard truncation method for which the unavoidable references are the works
of Boccardo and Gallouët [2, 3]. Some changes are however needed in order to handle
the growth condition we are considering. Moreover, two different approach are needed to
treat the two different kind of growth G could have at infinity. In the standard case, this
correspond to consider the two cases p ≤ n and p > n. In both cases we will need to
consider the weak formulation of (5.10)∫

B1

〈a(Du)− a(Dv), Dϕ〉 dx =

∫
B1

ϕdµ (5.13)

holding true for bounded functions ϕ ∈W 1,G
0 ∩ L∞(B1).

Step 2.1: The slow growth case. With this expression we want to suggest the case where∫ ∞( s

G(s)

) 1
n−1

ds =∞. (5.14)

In order to use Sobolev’s embedding, we need to introduce a slightly modified function
in order to have the integrability property (3.15)1. We therefore define the continuous
function

fχ(t) :=


0 t = 0,

fχ(1)t for t ∈ (0, 1),

fχ(t) for t ∈ [1,∞).
(5.15)

Let’s begin putting into (5.13) the test function

ϕ := Tk

(
u− v

cS(n)
(∫
B1

fχ(|Du−Dv|) dx
) 1
n

)
=: Tk

(
u− v
cS(n)F

)
,

for any k ∈ N0, being cS(n) the constant appearing in (3.17) and fχ(·) the function defined
in (5.15). The classical truncation operators are defined as

Tk(σ) := max
{
−k,min{k, σ}

}
, Φk(σ) := T1

(
σ − Tk(σ)

)
(5.16)

for k ∈ N0 and σ ∈ R. Note that we can clearly suppose F ≥ 1 and that ϕ ∈W 1,G
0 (B1)∩

L∞(B1), since σ → Tk(σ) is Lipschitz; then ϕ is allowed as test function. We moreover
have Dϕ = D(u−v)

cS(n)F χCk , being χCk the characteristic function of the set Ck, where

Ck :=
{
x ∈ B1 :

|u(x)− v(x)|

cS(n)
(∫
B1

fχ(|Du−Dv|) dx
) 1
n

≤ k
}
.

Using (3.9) we have∫
B1

〈a(Du)− a(Dv), Dϕ〉 dx =
1

cS(n)F

∫
Ck

〈a(Du)− a(Dv), Du−Dv〉 dx

≥ c

cS(n)F

∫
Ck

G
(
|Du−Dv|

)
dx,

Estimating the right-hand side in the trivial way∣∣∣∣∫
B1

Tk

( u− v
cS(n)F

)
dµ

∣∣∣∣ ≤ ∫
B1

k d|µ| = k|µ|(B1) = k

by (5.11), we deduce the estimate∫
Ck

G
(
|Du−Dv|

)
dx ≤ c k

(∫
B1

fχ
(
|Du−Dv|

)
dx
) 1
n

= c kF , (5.17)
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for all k ∈ N0, where c ≡ c(n, ν, g1). Reasoning in an analogous way, using as test
function Φk

(
(u− v)/(cS(n)F)

)
∈W 1,G

0 (B1) ∩ L∞(B1), we infer∫
Dk

G
(
|Du−Dv|

)
dx ≤ c(n, ν)

(∫
B1

fχ
(
|Du−Dv|

)
dx
) 1
n

= cF

since Φk ≤ 1, where we have denoted

Dk :=
{
x ∈ B1 : k <

|u(x)− v(x)|

cS(n)
(∫
B1

fχ(|Du−Dv|) dx
) 1
n

≤ k + 1
}
.

Now we come back to fχ defined in (5.2) and we note that t 7→ fχ
(
G−1(t)

)
is increasing

and concave: indeed a computation of derivatives, denoting τ := G−1(t), gives

d

dt
fχ
(
G−1(t)

)
=
f ′χ(τ)

g(τ)
=

[g(τ)]χ

τ1+χ
,

d2

dt2
fχ
(
G−1(t)

)
=
χτ1+χ[g(τ)]χ−1g′(τ)− [g(τ)]χ(1 + χ)τχ

g(τ)τ2(1+χ)
(5.18)

=

[
g(τ)

]χ−2

τχ+2

[
χτg′(τ)− (1 + χ)g(τ)

]
≤
[
g(τ)

]χ−1

τχ+2

[
χg1 − (1 + χ)

]
< 0

by (1.6) and the fact that χ < 1/(g1 − 1). Therefore using Jensen’s inequality and (5.17)
we get ∫

Ck

fχ
(
|Du−Dv|

)
dx ≤

(
fχ ◦G−1

)(∫
Ck

G
(
|Du−Dv|

)
dx

)
. c

(
fχ ◦G−1

)( kF
|Ck|

)
. (5.19)

So using (5.4) and doing an easy algebraic manipulation we infer∫
Ck

fχ
(
|Du−Dv|

)
dx . c kFH−1

χ

(
|Ck|
kF

)
. (5.20)

with c ≡ c(n, ν, g1, χ). By a similar argument we have for the integrals over Dk∫
Dk

fχ
(
|Du−Dv|

)
dx . cFH−1

χ

(
|Dk|
F

)
. (5.21)

We hence have, using (5.20) and (5.21)∫
B1

fχ
(
|Du−Dv|

)
dx =

∫
C1

fχ
(
|Du−Dv|

)
dx+

∞∑
k=1

∫
Dk

fχ
(
|Du−Dv|

)
dx

≤ c̃F
[
H−1
χ

(
|B1|
F

)
+

∞∑
k=1

H−1
χ

(
|Dk|
F

)]
(5.22)

with c̃ ≡ c̃(n, ν, g1, χ). Here to estimate the summation appearing on the right-hand side,
we have to work on the modified function fχ defined in (5.15). Note that fχ(·) is a Young
function and∫

0

(
s

fχ(s)

) 1
n−1

ds <∞ and
∫ ∞( s

fχ(s)

) 1
n−1

ds = +∞; (5.23)

the first by construction and the second by (5.14), since for s ≥ 1

fχ(s) = fχ(s) ≈
[
g(s)

s

]1+χ

s . G(s)
[g(s)]

χ

s1+χ
.χ G(s) sχg1−(1+χ) ≤ G(s)
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being χ ≤ 1/(g1 − 1). We can therefore define the Sobolev’s conjugate function (fχ)n :=
fχ ◦ H−1

n , where in this case Hn is given by (3.16)1 with the choice A ≡ fχ. Moreover,
since

fχ(1) =

∫ 1

0

[
g(s)

s

]1+χ

ds .
∫ 1

0

ds . 1,

then we have, for t ≥ 1, using (5.15)

H−1
n (t) ≥

[∫ 1

0

(
s

fχ(s)

) 1
n−1

ds

]n−1
n

=

(
1

fχ(1)

) 1
n

& 1. (5.24)

At this point we have

|Dk| ≤
1

(fχ)n(k)

∫
Dk

(fχ)n

(
|u− v|
cS(n)F

)
dx (5.25)

for every k ∈ N by the definition of the set Dk. Having now both assumptions (3.15) at
hand, we can deduce, using Sobolev’s embedding (3.17), the following estimate for the
summation: taking into account Young’s inequality with conjugate functions Hχ, H̃χ with
ε ∈ (0, 1) to be chosen, (3.17) and subadditivity (5.6)

∞∑
k=1

H−1
χ

(
|Dk|
F

)
≤
∞∑
k=1

H−1
χ

(
1

F(fχ)n(k)

∫
Dk

(fχ)n

(
|u− v|
cS(n)F

)
dx

)

≤ ε

F

∫
B1

(fχ)n

(
|u− v|
cS(n)F

)
dx+ c(g1, χ, ε)

∞∑
k=1

H−1
χ

(
H̃χ

( 1

(fχ)n(k)

))

≤ ε

F

∫
B1

fχ
(
|Du−Dv|

)
dx+ cε

∞∑
k=1

H−1
χ

(
H̃χ

( 1

(fχ)n(k)

))

≤ ε

F

∫
B1

fχ
(
|Du−Dv|

)
dx+ c(n, g1, χ) + cε

∞∑
k=1

[
g
(
H−1
n (k)

)]χ[
H−1
n (k)

]1+χ (5.26)

by (5.5), having

(fχ)n(k) = fχ
(
H−1
n (k)

)
= fχ

(
H−1
n (k)

)
since H−1

n (k) & 1 by (5.24);

here cε ≡ cε(g1, χ, ε). Moreover in the last line we also replaced fχ with fχ in the first
term, since fχ(t) ≤ fχ(1) + fχ(t) .χ 1 + fχ(t) and ε/F ≤ 1. Now we inquire the con-
vergence of the series on the right-hand side. A quite long but elementary calculation of its
derivative, similar to (5.18), shows that σ 7→ [g(H−1

n (σ))]χ/[H−1
n (σ)]1+χ is decreasing,

since χ < 1/(g1−1), and hence it is easily seen that the series is dominated by the quantity

[g(H−1
n (1))]χ

[H−1
n (1)]1+χ

+

∫ ∞
1

[
g
(
H−1
n (σ)

)
H−1
n (σ)

]χ
dσ

H−1
n (σ)

.

Therefore now we want to show that∫ ∞
1

[
g
(
H−1
n (σ)

)
H−1
n (σ)

]χ
dσ

H−1
n (σ)

= c(n, g1, χ) <∞. (5.27)

We use the change of variable s = H−1
n (σ); this is allowed by (5.23) and the fact that

σ 7→ H−1
n (σ) is increasing. We note that

dσ = H ′n(s) ds = c(n)
[
Hn(s)

] 1
1−n

[
s

fχ(s)

] 1
n−1

ds (5.28)

and by monotonicity

Hn(s) =

(∫ s

0

[
τ

fχ(τ)

] 1
n−1

dτ

)n−1
n

≥ s
n−1
n

[
s

fχ(s)

] 1
n

.
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Hence for s ≥ H−1
n (1) ≈ 1 we have

[
Hn(s)

] 1
1−n

[
s

fχ(s)

] 1
n−1

≤
[

s

fχ(s)

] 1
n

s−
1
n

≤
[

s

fχ(s)

] 1
n

s−
1
n .n

[
s

gχ(s)

] 1
n

s−
1
n ,

since we have fχ(s) ≤ fχ(s). We therefore have by (5.3)∫ ∞
1

[
g
(
H−1
n (σ)

)
H−1
n (σ)

]χ
dσ

H−1
n (σ)

.n,χ 1 +

∫ ∞
H−1
n (1)

[
gχ(s)

]1− 1
n

ds

sg(s)
<∞.

The latter integral is finite since in the case χ ≥ 1/(n− 1) (i.e. in the case we can use the
estimate from above (3.4) in the second inequality of the next line)[

gχ(s)
]1− 1

n

sg(s)
=
[
g(s)

](1+χ)(1− 1
n )−1

s−1−χ(1− 1
n ) .n,χ s

e,

where e := g1(1 + χ)
(
1− 1

n

)
− (g1 + 1)− χ

(
1− 1

n

)
< −1 by the fact that χ < g1

(g1−1)(n−1) .

In the case χ ∈ [−1, 1/(n− 1)) we instead have[
gχ(s)

]1− 1
n

sg(s)
.χ

[
g(t)

](1+χ)(1− 1
n )−1

s−1−χ(1− 1
n ) .n,χ s

−1− 1
n .

Therefore in both cases (5.27) holds. Coming then back to (5.26) and (5.22)∫
B1

fχ
(
|Du−Dv|

)
dx ≤ c̃FH−1

χ

(
|B1|
F

)
+ εc̃

∫
B1

fχ
(
|Du −Dv|

)
dx + c̃εF .

First we choose ε, depending on n, ν, g1, χ, so small that we can reabsorb the second term
of the right-hand side into the left-hand side, i.e. ε = 1/(4c̃). This fixes the value of c̃ε as
a constant depending on n, ν, g1, χ. Then we recall the definition of F and we estimate

F =

(∫
B1

fχ
(
|Du−Dv|

)
dx

) 1
n

≤ ε̃
∫
B1

fχ
(
|Du−Dv|

)
dx+ c(n, g1, ε̃)

with ε̃ small in order to reabsorb also this term, i.e. ε̃ := 1/(4c̃ε). To conclude note that
(5.4) gives

FH−1
χ

(
|B1|
F

)
.χ |B1| gχ

(
G−1

( F
|B1|

))
.n,χ F1+χ

[
G−1

(
F
)]−(2χ+1)

.

from the definition of gχ and the fact that g(t) ≈ G(t)/t. Recall again we are supposing
F ≥ 1, and therefore using (3.7) we infer

F1+χ
[
G−1

(
F
)]−(2χ+1)

.χ F1+χ− 1+2χ
1+g1 .

Since the exponent of F reveals to be strictly smaller than one again by χ < 1/(g1 − 1),
we use for the third time Young’s inequality together with fχ ≈ gχ to finally get (5.12).

Step 2.2: The fast growth case. We here approach the simpler case where∫ ∞( s

G(s)

) 1
n−1

ds <∞.
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In this case, since both u and v belong to W 1,G(B1), their difference is bounded and we
can directly choose ϕ = u− v ∈ W 1,G

0 (B1) ∩ L∞ as a test function in (5.13). Therefore
using (2.5) we infer∫

B1

G
(
|Du−Dv|

)
dx ≤

∫
B1

(u− v) dµ

≤ sup
B1

|u − v||µ|(B1) ≤ c ‖Du −Dv‖LG(B1) (5.29)

by (3.19) and the fact that |µ|(B1) = 1, with c ≡ c(n, g1). Let’s apply inequality (3.14) to
the function εf with ε ∈ (0, 1). We have

ε‖f‖LG(B1) = ‖εf‖LG(B1) ≤
∫
B1

G(ε|f |) dx+ 1 ≤ ε2

∫
B1

G(|f |) dx+ 1

by (3.6) and therefore we can use the following version of Young’s inequality:

‖f‖LG(B1) ≤ ε
∫
B1

G(|f |) dx+ ε−1. (5.30)

Let’s make use of it with f = Du − Dv into (5.29): choosing ε small enough and reab-
sorbing the right-hand side term gives∫

B1

G
(
|Du−Dv|

)
dx ≤ c(n, g1).

Arguing as in (5.19) we infer∫
B1

gχ
(
|Du−Dv|

)
dx . c(n)

∫
B1

fχ
(
|Du−Dv|

)
dx

≤ c
(
fχ ◦G−1

)(∫
B1

G
(
|Du−Dv|

)
dx

)
≤ c

with c ≡ c(n, g1, χ), from the fact that t 7→
(
fχ ◦G−1

)
(t) is concave.

Step 3: Recovering the situation.

Now we recover the tilde notation: recalling the definitions given in (5.9), denoting in
short y = x0 +Rx, (5.12) can be rephrased as[

A

g(A)

]1+χ
1

A

∫
B1

[
g
(
|Du(y)−Dv(y)|

)
|Du(y)−Dv(y)|

]1+χ

|Du(y)−Dv(y)| dx

=

∫
B1

[
ḡ
(
|Dū−Dv̄|

)
|Dū−Dv̄|

]1+χ

|Dū−Dv̄| dx ≤ c, (5.31)

that is (5.7), once performing a simple change of variable on the left-hand side and recalling
the definition of gχ in (5.2). �

Once having the previous Lemma at hand, a minor modification of the proof allows
to get the following similar result which, despite being surely not optimal, it is therefore
sufficient for our purposes. We introduce the further following function for the sake of
shortness:

hχ(t) :=

[
g(t)

t

]1+χ

=
gχ(t)

t
.

Corollary 5.2. Let u ∈ W 1,G(Ω) and v ∈ u + W 1,G
0 (BR) as in Lemma 5.1. Then the

following comparison estimate holds true:∫
BR

hχ
(
|Du−Dv|

)
dx ≤ c hχ(A) with A := g−1

(
|µ|(BR)

Rn−1

)
,

for χ as in (5.8) and with a constant c depending on n, ν, g1, χ.
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Proof. We rescale both the function as in Step 1 of the proof of Lemma 5.1. Having after
Step 2 estimate (5.12) at hand, we can estimate∫

B1

hχ
(
|Du−Dv|

)
dx = c(n)

∫
B1

[
g
(
|Du−Dv|

)
|Du−Dv|

]1+χ

dx

= c

∫
B1∩{|Du−Dv|≤1}

. . . dx+ c

∫
B1∩{|Du−Dv|>1}

. . . dx

≤ c(n, g1, χ) + c

∫
B1

[
g
(
|Du−Dv|

)
|Du−Dv|

]1+χ

|Du−Dv| dx ≤ c.

At this point performing a rescaling similar to that in (5.31) gives (5.32). �

Now another, albeit similar, proof of this kind:

Lemma 5.3. Let u ∈ W 1,G(Ω) be the solutions to the equation (1.8) and v ∈ u +

W 1,G
0 (BR) the solution to the problem (5.1) on BR. Then the following estimate holds

true: ∫
BR

[
g
(
|Du−Dv|

)]ξ
dx ≤ c

[
|µ|(BR)

Rn−1

]ξ
(5.32)

for

ξ ∈
[
1,min

{g1 + 1

g1
,

n

n− 1

})
(5.33)

and with a constant c depending on n, ν, g1, ξ.

Proof. Since the proof is very similar to that of Lemma 5.1, we will only highlight the
main points. First of all we perform a scaling as in (5.9) and subsequent lines; therefore
from now on we can suppose BR = B1 and moreover |µ|(B1) = 1. Introducing the
auxiliary function

fξ(t) := ξ

∫ t

0

[g(s)]ξ

s
ds;

for ξ as in (5.33) and noting that we have fξ(t) ≈ [g(t)]ξ (and fξ(1) ≤ 1, for later use), all
that we want to prove now is∫

B1

fξ
(
|Du−Dv|

)
dx ≤ c(n, ν, g1). (5.34)

Exactly as in Step 3 of the proof of Lemma 5.1, (5.32) will follow simply by coming back
to [g(Du−Dv)]ξ and using the scaling of the equation.

The slow growth case. We first consider the case where∫ ∞( s

G(s)

) 1
n−1

ds =∞. (5.35)

We moreover define

F :=

(∫
B1

fξ
(
|Du−Dv|

)
dx

) 1
n

.

We choose in (5.13) the test function

ϕ ≡ Tk
(

u− v
cS(n)F

)
∈W 1,G

0 (B1)
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for k ∈ N0, being cS(n) being the constant appearing in (3.17) and recalling the definition
of the truncation operator Tk in (5.16). Also here we can suppose F ≥ 1 and we have
Dϕ = D(u−v)

cS(n)F χCk ; this time Ck = B1 ∩ {|u− v|/(cS(n)F) ≤ k}. Therefore we deduce∫
Ck

G
(
|Du−Dv|

)
dx . c(n)

1

F

∫
B1

〈a(Du)− a(Dv), Dϕ〉 dx (5.36)

≤ cF
∣∣∣∣∫
B1

ϕdx

∣∣∣∣ ≤ c kF (5.37)

for k ∈ N0, with c ≡ c(n, ν, g1). Similarly∫
Dk

G
(
|Du−Dv|

)
dx ≤ cF ,

whereDk := B1∩{k < |u−v|/(cS(n)F) ≤ k+1}. Now we compute the first derivatives
of the function G

(
f−1
ξ (·)

)
: note that

f ′ξ(t) = ξ
[g(t)]ξ

t
and then

d

dt
fξ
(
G−1(t)

)
= ξ

[
g(τ)

]ξ−1

τ

with τ := G−1(t); moreover

d2

dt2
fξ
(
G−1(t)

)
= ξ

τ(ξ − 1)[g(τ)]ξ−2g′(τ)− [g(τ)]ξ−1

g(τ)τ2

= ξ

[
g(τ)

]ξ−2

τ2

[
(ξ − 1)

τg′(τ)

g(τ)
− 1
]
< 0

by (1.6) and since 1 ≤ ξ < (1 + g1)/g1. Hence here t 7→ fξ
(
G−1(t)

)
is increasing and

concave. Jensen’s inequality and (5.36) yield∫
Ck

fξ
(
|Du−Dv|

)
dx ≤ |Ck|

(
fξ ◦G−1

)(∫
Ck

G
(
|Du−Dv|

)
dx

)
(5.38)

. c |Ck|
(
fξ ◦G−1

)( kF
|Ck|

)
= c kFH−1

ξ

(
|Ck|
kF

)
,

where

H−1
ξ (t) := t1−ξ

[
G−1

(1

t

)]−ξ
≈ξ tfξ

(
G−1

(1

t

))
. (5.39)

Also here a computation of derivative shows that t 7→ H−1
ξ (t) is increasing: indeed using

(3.5)

d

dt
H−1
ξ (t) ≥

(
1− ξ +

ξ

1 + g1

)
t−ξ
[
G−1

(
1

t

)]−ξ
> 0

since ξ < (1 + g1)/g1. Moreover, one can verify that the properties true for Hχ and H−1
χ

derived in the beginning of this Section still hold true for Hξ and H−1
ξ .

We have for the integrals over DkHχ∫
Dk

fξ
(
|Du−Dv|

)
dx . FH−1

ξ

(
|Dk|
F

)
and as in (5.22)∫

B1

fξ
(
|Du−Dv|

)
dx ≤ cF

[
H−1
ξ

(
|B1|
F

)
+

∞∑
k=1

H−1
ξ

(
|Dk|
F

)]
.
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As in (5.15) we modify the function fξ linearly near zero in order to use Sobolev’s embed-
ding. Define

fξ(t) :=


0 t = 0,

fξ(1)t for t ∈ (0, 1),

fξ(t) for t ∈ [1,∞).

We denote also here the Sobolev’s conjugate function (fξ)n := fξ ◦ H−1
n , with Hn given

by (3.16)1 with the choice A ≡ fξ. We infer as in (5.25)

|Dk| ≤
1

(fξ)n(k)

∫
Dk

(fξ)n

(
|u− v|
cS(n)F

)
dx

Note that∫
0

(
s

fξ(s)

) 1
n−1

ds <∞ and
∫ ∞( s

fξ(s)

) 1
n−1

ds = +∞;

the first since fξ is linear near zero and the second by (5.35), since

fξ(s) . G(s)
[g(s)]

ξ−1

s
.χ G(s) sg1(ξ−1)−1 ≤ G(s)

when s ≥ 1, since ξ < (1 + g1)/g1. At this point, using Young’s inequality with conjugate
functions Hξ, H̃ξ and with ε ∈ (0, 1) to be chosen, estimating exactly as in (5.26)

∞∑
k=1

H−1
ξ

(
|Dk|
F

)
≤ ε

F

∫
B1

fξ
(
|Du−Dv|

)
dx+

c(g1)ε

F
|B1|

+ c(ε)

∞∑
k=1

H−1
ξ

(
H̃ξ

( 1

(fξ)n(k)

))
.

At this point in order to estimate the summation on the right-hand side we deduce the
following chain of up-to-constants equivalences: for α > 0[

H̃ξ

]−1
(

1

G(α)

)
≈ 1

G(α)

[
H−1
ξ

(
1

G(α)

)]−1

=
[
fξ(α)

]−1
;

for the first one we used (3.13) and for the second one just (5.39). At this point with α =
H−1
n (k), using again the definition of H−1

ξ and the fact that fξ(H−1
n (k)) = fξ(H

−1
n (k)),

for k ∈ N

H−1
ξ

(
H̃ξ

( 1

(fξ)n(k)

))
.ξ

[
g
(
H−1
n (k)

)]ξ−1

H−1
n (k)

. (5.40)

The convergence of the series is hence equivalent to the fact∫ ∞
1

[
g
(
H−1
n (σ)

)]ξ−1

H−1
n (σ)

dσ <∞

– again a calculation shows that the function in (5.40) is decreasing. Again the change of
variable s = H−1

n (σ) is allowed; estimating in a way completely similar to (5.28) we have∫ ∞
1

[
g
(
H−1
n (σ)

)]ξ−1

H−1
n (σ)

dσ .n,ξ

∫ ∞
H−1
n (1)

[
g(s)

]ξ(1− 1
n ) ds

sg(s)
.

and the integral is finite since the exponent of g(s) is negative, i.e. ξ(1 − 1/n) − 1 < 0,
since ξ < n/(n− 1). Coming then back to (5.26) and then to (5.22)∫

B1

fξ
(
|Du−Dv|

)
dx ≤ c̃FH−1

ξ

(
|B1|
F

)
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+ εc̃

∫
B1

fξ
(
|Du−Dv|

)
dx + c ε + c(n, g1, ε, χ)F .

After reabsorbing the second and the fourth term first by an appropriate choice of ε and
then by the use of Young’s inequality, we estimate

FH−1
ξ

(
|B1|
F

)
.n,ξ Fξ

[
G−1

(
F
)]−ξ

by the definition of H−1
ξ . Again using (3.7) and recalling that F ≥ 1 gives

FH−1
ξ

(
|B1|
F

)
.n,ξ Fξ(1−

1
1+g1

) = Fξ
g1

1+g1

and since the exponent is strictly smaller than one by ξ < (1 + g1)/g1, we use again
Young’s inequality to finally get (5.34).

The fast growth case. The case where∫ ∞( s

G(s)

) 1
n−1

ds <∞.

is again much simpler. Directly testing (5.13) with ϕ = u− v ∈W 1,G
0 (B1) ∩ L∞ yields∫

B1

G
(
|Du−Dv|

)
dx ≤ c(n, g1) ‖Du−Dv‖LG(B1)

≤ 1

2

∫
B1

G(|Du−Dv|) dx+ c(n, g1),

by the fact that |µ|(B1) = 1 and using Young’s inequality (5.30). Finally, using Jensen’s
inequality as in (5.38) and the monotonicity of t 7→

(
fχ ◦G−1

)
(t)∫

B1

fξ
(
|Du−Dv|

)
dx ≤ c

(
fξ ◦G−1

)(∫
B1

G
(
|Du−Dv|

)
dx

)
≤ c

and the proof is concluded. �

Lemma 5.4. Let u and v as above. Then there exists a constant c ≡ c(n, g1, ν) such that∫
BR

|Vg(Du)− Vg(Dv)|2(
α+ |u− v|

)ξ dx ≤ ξc α
1−ξ

ξ − 1

|µ|(BR)

Rn
(5.41)

holds whenever α > 0 and ξ > 1.

Proof. The proof is exactly the same given in [24] for the standard case, once we replace
the monotonicity condition therein considered with (2.5). Note that our monotonicity con-
dition (2.5) reads exactly as the one in [24], once we replace the standard Vs function with
the one defined in (2.2). �

Now a list of technical Lemmata. Their proof is only sketched, since they are very
similar to those in [24], which are already almost trivial once having at hand the previous
results. From now on, u and v will be the functions of Lemma 5.1 and BR the ball therein
appearing.

Lemma 5.5. Suppose that

g−1

(
|µ|(BR)

Rn−1

)
≤ λ and

∫
BR

|Du| dx ≤ λ

hold; then for a constant c2 depending on n, ν, L, g1 there holds

sup
BR/4

|Dv| ≤ c2λ. (5.42)
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Proof. Use Lemma 4.1 and then Lemma 5.1 with χ = −1 to estimate the left-hand side
of (5.42):

sup
BR/4

|Dv| ≤
∫
BR

|Du−Dv| dx+

∫
BR

|Du| dx

≤ c1g−1

(
|µ|(BR)

Rn−1

)
+

∫
BR

|Du| dx ≤ (c1 + 1)λ.

�

Lemma 5.6. Let η̃, ϑ ∈ (0, 1], and suppose that

g−1

(
|µ|(BR)

Rn−1

)
≤ η̃n

c1
ϑλ,

where c1 is the constant appearing in Lemma 5.1 for χ = −1. Then the lower bound∫
η̃BR

|Du| dx− ϑλ ≤
∫
η̃BR

|Dv| dx

holds.

Proof. Use triangle’s inequality and Lemma 5.1 for χ = −1. �

6. PROOF OF THEOREM 1.2

Define the scaling parameter η ∈ (0, 1
2 ) in the following way:

η :=

(
1

10 23α+10coc22ch

) 1
α

≤ min

{(
1

24ch

) 1
α

,

(
1

23α+2co (48c2)2

) 1
α
}
. (6.1)

Here α is the exponent and co, ch are the constants appearing in Lemma 4.1; c2 appears
in Lemma 5.5. All these quantities are a priori defined, depending only on n, ν, L, g1 and
therefore also η is a universal constant depending only on n, ν, L, g1.

For a fixed ball BR ≡ BR(x) such that B2R ⊂ Ω as in the statement of Theorem 1.2,
build the sequence of shrinking balls {Bi}i=0,1,... defined by

Bi := BRi(x) where Ri := ηiR, (6.2)

and subsequently the sequence of functions vi solutions to the homogeneous problem (5.1)
in the ball BR ≡ Bi:div a(Dvi) = 0 in Bi,

vi = u on ∂Bi.
(6.3)

Lemma 6.1. Suppose that for a certain index i ∈ N and for a number λ > 0 there holds

g−1

(
|µ|(Bi−1)

rn−1
i−1

)
+ g−1

(
|µ|(Bi)
rn−1
i

)
≤ λ (6.4)

and

λ

H
≤ |Dvi| ≤ Hλ in Bi+1,

λ

H
≤ |Dvi−1| ≤ Hλ in Bi (6.5)

for a constant H ≥ 1. Then there exists a constant cH ≡ cH(n, ν, L, g1, H) such that∫
Bi+1

|Du−Dvi| dx ≤ cH
λ

g(λ)

[
|µ|(Bi−1)

rn−1
i−1

]
. (6.6)
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Proof. Define the parameter χ > 0 in the following way:

2χ :=
1

2
min

{ 1

g1 − 1
,

g1

(g1 − 1)(n− 1)
,

1

n− 1

}
(6.7)

and let ξ := 1 + 2χ. Note that ξ < 1∗ = n/(n − 1) and χ, ξ ≡ χ, ξ(n, g1). By (2.3) and
by monotonicity (3.1) it follows that[

g(|Dvi|)
|Dvi|

]1+χ

|Du−Dvi| .
[
g(|Dvi|)
|Dvi|

] 1+2χ
2 ∣∣Vg(Du)− Vg(Dvi)

∣∣.
Recalling the definition of hχ, taking averages over Bi and using Schwarz-Hölder’s in-
equality yields, for α > 0:∫

Bi

hχ
(
|Dvi|

)
|Du−Dvi| dx (6.8)

.
∫
Bi

[∣∣Vg(Du)− Vg(Dvi)
∣∣2(

α+ |u− vi|
)ξ ] 1

2 [
h2χ

(
|Dvi|

)(
α+ |u− vi|

)ξ] 1
2

dx

.

[∫
Bi

∣∣Vg(Du)− Vg(Dvi)
∣∣2(

α+ |u− vi|
)ξ dx

] 1
2
[∫

Bi

h2χ

(
|Dvi|

)(
α+ |u− vi|

)ξ
dx

] 1
2

.

Now we use (5.41) to bound the first term of the right-hand side and we choose α such that∫
Bi

h2χ

(
|Dvi|

)
|u− vi|ξ dx = αξ

∫
Bi

h2χ

(
|Dvi|

)
dx.

Note that this definition of αmakes sense, see (6.11); moreover the integral on the left-hand
side is finite, see the calculations after (6.12). With these actions (6.8) takes the form∫

Bi

hχ
(
|Dvi|

)
|Du−Dvi| dx ≤ c

[
α1−ξ |µ|(Bi)

rni

] 1
2
[
αξ
∫
Bi

h2χ

(
|Dvi|

)
dx

] 1
2

= c

[
α

ri

|µ|(Bi)
rn−1
i

∫
Bi

h2χ

(
|Dvi|

)
dx

] 1
2

with c ≡ c(n, ν, g1). Note that since t 7→ g(t)/t is increasing and satisfies a doubling
property, then Remark 3.1 applies; therefore for hχ a subadditivity property similar to
(3.8), holds true, with a constant depending on n, g1. Hence∫

Bi

h2χ

(
|Dvi|

)
dx .n

∫
Bi

h2χ

(
|Du−Dvi−1|

)
dx

+

∫
Bi

h2χ

(
|Du−Dvi|

)
dx+

∫
Bi

h2χ

(
|Dvi−1|

)
dx =: I1 + I2 + I3.

Before estimating term by term, we introduce for ease of notation the following quantities:

Ai−1 := g−1

(
|µ|(Bi−1)

rn−1
i−1

)
, Ai := g−1

(
|µ|(Bi)
rn−1
i

)
; (6.9)

note that Ai + Ai−1 ≤ λ by (6.4) and therefore by monotonicity hχ(Ai) ≤ hχ(λ) and
analogously for Ai−1. Now by the pointwise estimate (6.5)2 and the definition of h2χ we
have I3 . c(n, g1, H)

[
g(λ)/λ

]ξ
. We estimate I1 using Corollary 5.2, due to (6.7):

I1 ≤ η−n
∫
Bi−1

h2χ

(
|Du−Dvi−1|

)
dx ≤ c h2χ(Ai−1) ≤ c h2χ(λ),

with c ≡ c(n, ν, L, g1, H). The estimate for I2 is analogous and even more direct. Hence
we have, using Young’s inequality with ε ∈ (0, 1) to be chosen and the definition of h2χ(λ)
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Bi

hχ
(
|Dvi|

)
|Du−Dvi| dx ≤ c

[
α

ri

|µ|(Bi)
rn−1
i

[
g(λ)

λ

]1+2χ] 1
2

≤ ε
α

ri

[
g(λ)

λ

]1+χ

+ c(ε)
|µ|(Bi)
rn−1
i

[
g(λ)

λ

]χ
. (6.10)

To conclude the proof, we need to estimate α. As a first step we bound from below∫
Bi

h2χ

(
|Dvi|

)
dx ≥ ηn

∫
Bi+1

h2χ

(
|Dvi|

)
dx ≥ c

[
g(λ)

λ

]1+2χ

(6.11)

and therefore

αξ ≤ c
[
λ

g(λ)

]ξ ∫
Bi

h2χ

(
|Dvi|

)
|u− vi|ξ dx, (6.12)

with c ≡ c(n, ν, L,H). We split the latter averaged integral in the following way∫
Bi

h2χ

(
|Dvi|

)
|u− vi|ξ dx ≤ c

∫
Bi

h2χ

(
|Dvi −Dvi−1|

)
|u− vi|ξ dx

+ c

∫
Bi

h2χ

(
|Dvi−1|

)
|u− vi|ξ dx =: c (II1) + c (II2).

We begin with the easier (II2): since we have the pointwise estimate h2χ(|Dvi−1|) ≈n,H
h2χ(λ) =

[
g(λ)/λ

]1+2χ
on Bi, using standard Sobolev’s embedding by (6.7), subadditiv-

ity for hχ and recalling that ξ = 1 + 2χ, we infer

(II2)
1
ξ

ri
≤ c g(λ)

λ

∫
Bi

|Du−Dvi| dx = c

[
λ

g(λ)

]χ
hχ(λ)

∫
Bi

|Du−Dvi| dx

≤ c
[
λ

g(λ)

]χ ∫
Bi

hχ
(
|Dvi−1|

)
|Du−Dvi| dx

≤ c
[
λ

g(λ)

]χ ∫
Bi

hχ
(
|Dvi|

)
|Du−Dvi| dx+ c

[
λ

g(λ)

]χ
(III) (6.13)

see next estimate for the definition of (III), with c ≡ c(n, g1, H). Moreover, again sub-
additivity for hχ gives

(III) :=

∫
Bi

hχ
(
|Dvi −Dvi−1|

)
|Du−Dvi| dx

.n

∫
Bi

gχ
(
|Du−Dvi|

)
dx+

∫
Bi

hχ
(
|Du−Dvi−1|

)
|Du−Dvi| dx (6.14)

While the first integral is less or equal than c1 gχ(Ai−1), with c1 depending on n, ν, L, g1

by (5.7), for the second one we need the pointwise estimate

g̃χ
(
hχ(t)

)
= g̃χ

(
gχ(t)

t

)
≤ gχ(t)

see (3.12). Therefore Young’s inequality with conjugate functions gχ and g̃χ gives∫
Bi

hχ
(
|Du−Dvi−1|

)
|Du−Dvi| dx ≤ c

∫
Bi

gχ
(
|Du−Dvi|

)
dx

+ c

∫
Bi

gχ
(
|Du −Dvi−1|

)
dx ≤ c gχ(Ai−1),

as for the first term in the second line of (6.14). Note that here we used gχ(Ai) +
gχ(Ai−1) ≤ c(n, ν, L, g1) gχ(Ai−1), following from (6.2) and the monotonicities of both
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the measure |µ| and gχ. We here have the following algebraic manipulation:[
λ

g(λ)

]χ
gχ
(
Ai−1

)
=

[
λ

g(λ)

]χ[g(Ai−1

)
Ai−1

]χ
g
(
Ai−1

)
≤ |µ|(Bi−1)

rn−1
i−1

, (6.15)

since t 7→ g(t)/t is monotone and Ai−1 ≤ λ by (6.4). The reader here may need to recall
also the definition of Ai−1 in (6.9). Therefore, taking into account (6.15), we have proved[

λ

g(λ)

]χ
(III) ≤ c

[
λ

g(λ)

]χ
gχ
(
Ai−1

)
≤ c |µ|(Bi−1)

rn−1
i−1

.

Hence, putting the last estimate into (6.13), all in all we have

(II2) ≤ c rξi
[
|µ|(Bi−1)

rn−1
i−1

]ξ
+ c rξi

[
λ

g(λ)

]χξ[∫
Bi

hχ
(
|Dvi|

)
|Du−Dvi| dx

]ξ
. (6.16)

Now we come to the estimate of (II1): we use Young’s inequality with k(t) := [2g(t
1
ξ )]ξ

and k̃(t) and then we estimate the first term with Hölder’s inequality and Proposition 3.5:

(II1) =

∫
Bi

[
g
(
|Dvi −Dvi−1|

)
|Dvi −Dvi−1|

]ξ
|u− vi|ξ dx (6.17)

≤ (2ri)
ξ

∫
Bi

[
g

(
|u− vi|
ri

)]ξ
dx+ rξi

∫
Bi

k̃

([
g
(
|Dvi −Dvi−1|

)
|Dvi −Dvi−1|

]ξ)
dx

≤ c rξi
[∫

Bi

g
(
|Du−Dvi|

)
dx

]ξ
+ rξi

∫
Bi

k̃

([
g
(
|Dvi −Dvi−1|

)
|Dvi −Dvi−1|

]ξ)
dx.

While for the first term we then have

rξi

[∫
Bi

g
(
|Du−Dvi|

)
dx

]ξ
≤ c rξi

[
g
(
Ai
)]ξ ≤ c rξi [ |µ|(Bi−1)

rn−1
i−1

]ξ
from Lemma 5.1 or 5.3, for the second one we need, for α ≥ 0, the following estimate:

k̃(αξ) = sup
s>0

{
αξs−

[
2g(s

1
ξ )
]ξ}

= sup
σ>0

{
αξσξ − 2ξ

[
g(σ)

]ξ}
≤ 2ξ

[
sup
σ>0

{
ασ − g(σ)

}]ξ
= c(n, g1)

[
g̃(α)

]ξ
since ξ ≥ 1. Therefore with α = g

(
|Dvi − Dvi−1|

)
/|Dvi − Dvi−1|, using (3.12) and

Lemma 5.3∫
Bi

k̃

([
g
(
|Dvi −Dvi−1|

)
|Dvi −Dvi−1|

]ξ)
dx ≤

∫
Bi

[
g̃

(
g
(
|Dvi −Dvi−1|

)
|Dvi −Dvi−1|

)]ξ
dx

≤
∫
Bi

[
g
(
|Dvi −Dvi−1|

)]ξ
dx

.n

∫
Bi

[
g
(
|Du−Dvi|

)]ξ
dx+ η−n

∫
Bi−1

[
g
(
|Du−Dvi−1|

)]ξ
dx

≤ c
[
|µ|(Bi−1)

rn−1
i−1

]ξ
.

Plugging these two estimates into (6.17) and also taking into account (6.16) yields

(II1)+(II2) ≤ c rξi
[
|µ|(Bi−1)

rn−1
i−1

]ξ
+c rξi

[
λ

g(λ)

]χξ[∫
Bi

hχ
(
|Dvi|

)
|Du−Dvi| dx

]ξ
;
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therefore finally we estimate α as follows: from (6.12)

α

ri
≤ c

ri

λ

g(λ)

[∫
Bi

h2χ

(
|Dvi|

)
|u− vi|ξ dx

] 1
ξ

≤ c λ

g(λ)

|µ|(Bi−1)

rn−1
i−1

+ c̃

[
λ

g(λ)

]1+χ ∫
Bi

hχ
(
|Dvi|

)
|Du−Dvi| dx.

Inserting this estimate into (6.10) and choosing ε ≡ ε(n, ν, L, g1, H) ∈ (0, 1) small
enough - i.e. ε = 1/(2c̃) leads to

1

2

∫
Bi

hχ
(
|Dvi|

)
|Du−Dvi| dx ≤ c

|µ|(Bi)
rn−1
i

[
g(λ)

λ

]χ
.

Now (6.6) plainly follows taking into account that∫
Bi

hχ
(
|Dvi|

)
|Du−Dvi| dx &n,H ηn

[
g(λ)

λ

]1+χ ∫
Bi+1

|Du−Dvi| dx.

�

Remark 6.2. The bounds in (6.4) and (6.5) are not essential for the proof of estimate (6.6),
in the sense that one could prove a comparison estimate as∫

Bi

|Du−Dvi| dx ≤ cH
λ

g(λ)

[
|µ|(Bi−1)

rn−1
i−1

]
just imposing similar pointwise bounds only on |µ|(Bi) and on |Dvi−1| on Bi, see [27,
Lemma 3]; this would require only minor changes in the rest of the paper. However, since
in the proof of Theorem 1.2 we will have both the informations (6.4)-(6.5) at hand (see
the forthcoming (6.24) and (6.34)), we prefer here to present Lemma 6.1 in a less general
form, in order to have a slightly simpler proof in our involved setting.

Let x ∈ Ω be a Lebesgue’s point of Du and let B2R(x) ⊂ Ω. Define the quantity

λ := g−1

(
H1 g

(∫
BR

|Du| dx
)

+H2 I
|µ|
1 (x, 2R)

)
, (6.18)

where the constants H1, H2 will be fixed in a few lines, in a way making them depending
only on n, ν, L, g1. We want to prove that

|Du(x)| ≤ λ, (6.19)

and (1.9) will follow simply taking c := max {H1, H2}. Without loss of generality we can
clearly assume λ > 0, whether this were not the case (6.19) would trivially follow by the
monotonicity of the vector field.

Step 1: the choice of the constants. With i ∈ N + 1 define the quantity

Ci :=

i∑
j=i−2

∫
Bj

|Du| dx+ η−nE(Du,Bi) ≤ 5η−3n

∫
Bi−2

|Du| dx. (6.20)

Note that the inclusions Bi+1 = ηBi ⊂ 1
4Bi ⊂ Bi hold. Take k ∈ N, k ≥ 3 as the

smallest integer such that

(8ηk)α ≤ ηn 1

128coc2
; (6.21)

here co, α appear in Lemma 4.1 and c2 is the constant appearing in Lemma 5.5. Once fixed
k ≡ k(n, ν, L, g1) in such way, fix the constant H1 and H2 as follows

H1 =
(
10η−4n

)g1
, H2 := 27g1cg1

1 η
−ng1(k+2)c200c2 .
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here c1 is the constant appearing in Lemma 5.1 for χ = −1 and c200c2 is the constant cH
appearing in Lemma 6.1 for the choice H = 200c2. Note that the dependences of k and η
yield that both H1 and H2 are a priori constants depending only on n, ν, L, g1; moreover
with this choice there holds – recall that k ≥ 3

η−nH
− 1
g1

2 ≤ 1

2
, η−nH

− 1
g1

2 ≤ ηnk

96c1
, c1η

−n(k+1)H
− 1
g1

2 ≤ ηn

128
,

4c200c2

η−2n

H2
≤ 1

4
, 8c200c2

η−3n

H2
≤ 1

4
, (6.22)

which we shall use in this order. Moreover the choice of H1 implies

C2 + C3 ≤ 10η−4n

∫
B0

|Du| dx ≤ 10η−4nH
− 1
g1

1 λ ≤ λ

8
≤ λ. (6.23)

We recall the dyadic decomposition

ηn
∞∑
j=0

|µ|(Bj)
Rn−1
j

≤
∫ 2R

0

|µ|(Bρ(x))

ρn−1

dρ

ρ
= I
|µ|
1 (x, 2R),

see [24]. Hence for every i ∈ N0 using (6.22) we have

g−1

(
|µ|(Bi)
Rn−1
i

)
≤ g−1

( ∞∑
j=0

|µ|(Bj)
Rn−1
j

)
≤ g−1

(
η−nI

|µ|
1 (x, 2R)

)
≤ η−nH

− 1
g1

2 λ ≤ λ

2
. (6.24)

Step 2: the exit time and after the exit time. Now we state that we can suppose that there
exists an “exit time” index ie ≥ 3, see (6.23), such that

Cie ≤
λ

8
but Cj >

λ

8
for every j > ie. (6.25)

Indeed, on the contrary, we would have Cih ≤ λ/8 for an increasing subsequence {ih}
and then, being x a Lebesgue point for Du,

|Du(x)| ≤ lim
h→∞

∫
Bih

|Du| dx ≤ λ

8

and the proof would be finished. Now an important Lemma which asserts that after the exit
time the gradient Dvi is far away from zero; this finally gives meaning to the assumption
(6.5) we imposed on the Dvis.

Lemma 6.3. Suppose that∫
Bi

|Du| dx ≤ λ (6.26)

holds for a certain index i ∈ N, i ≥ ie − 2, for λ > 0 defined in (6.18). Then

λ

200c2
≤ |Dvi| ≤ c2λ in Bi+1, (6.27)

where c2 is the constant appearing in Lemma 5.5.

Proof. The right-hand side estimate in (6.27) is a consequence of Lemma 5.5 applied with
BR ≡ Bi, which gives

sup
Bi/4

|Dvi| ≤ c2λ. (6.28)

Note that the assumptions of the Lemma are satisfied since (6.26) and (6.24) hold, and
moreover Bi+1 ⊂ Bi/4. In order to prove the left-hand side inequality we want to use
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Lemma 4.3 with σ ≡ η, B ≡ Bi so that σB = Bi+1; since we already have (6.28) we just
need to prove

λ

C
≤
∫
Bi+m

|Dvi| dx

for some m ∈ N and some C ≥ 1. We start by proving that

λ

16
≤

i+k∑
j=i−2+k

∫
Bj

|Dvi| dx, (6.29)

where k ≥ 3 is the number defined in (6.21). By (6.24) we can apply Lemma 5.6 three
times, with BR ≡ Bi, respectively η̃ ≡ ηk, ηk−1, ηk−2 and ϑ ≡ 1/96. Note indeed that
from (6.24) and condition (6.22) follows

g−1

(
|µ|(Bi)
Rn−1
i

)
≤ η−nH

− 1
g1

2 λ ≤ ηnk

c1

1

96
λ ≤ ηnj

c1
ϑλ

for j = k − 2, k − 1, k. Summing up the resulting inequalities gives

Ci+k − η−nE(Du,Bi+k)− 3λϑ =

i+k∑
j=i−2+k

∫
Bj

|Du| dx− 3λϑ

≤
i+k∑

j=i−2+k

∫
Bj

|Dvj | dx.

Since i ≥ ie − 2 and k ≥ 3, we have i + k > ie and subsequently by the definition of
the exit time index Ci+k ≥ λ/8. Using this fact and the value of ϑ in the inequality above
gives

λ

8
− η−nE(Du,Bi+k)− λ

32
≤

i+k∑
j=i−2+k

∫
Bj

|Dvj | dx. (6.30)

In order to estimate the excess term first we note that enlarging the domain of integration
from Bi+k to Bi and using (6.24) gives∫

Bi+k

|Du−Dvi| dx ≤
|Bi|
|Bi+k|

c1g
−1

(
|µ|(Bi)
Rn−1
i

)
≤ c1η

−kn−nH
− 1
g1

2 λ ≤ ηn
λ

128
(6.31)

where we used (5.7) with χ = −1. Lemma 4.1 applied with BR ≡ Bi/4, Br/2 ≡ Bi+k
using the just proved right-hand side inequality of (6.27) and the definition of k gives

2 osc
Bi+k

Dvi ≤ 2co(8η
k)αc2 λ ≤ ηn

λ

64

using (6.21), so that, with the help of (2.7) and then of (6.31) we infer

E(Du,Bi+k) ≤ 2

∫
Bi+k

∣∣Du− (Dvi)Bi+k
∣∣ dx

≤ 2

∫
Bi+k

∣∣Dvi − (Dvi)Bi+k
∣∣ dx+ 2

∫
Bi+k

|Du−Dvi| dx

≤ 2 osc
Bi+k

Dvi + 2ηn
λ

128
≤ ηn λ

32
. (6.32)

Inserting this last estimate into (6.30) gives (6.29), which in turn implies that there exists
an index m ∈ {k − 2, k − 1, k} such that∫

Bm

|Dvi| dx ≥
1

3

λ

16
≥ λ

48c2
.
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Now we can apply Lemma 4.3 with the choices listed just above and with C ≡ 48c2; note
that the condition on σ (4.19) holds true by (6.1) and therefore the choice σ = η is allowed.
We can thus conclude with

λ

200c2
≤ |Dvi| in Bi+1

and this completes the proof of (6.27). �

Step 3: Iteration.

Lemma 6.4. Suppose that for some i ∈ N, i ≥ ie − 1 there holds∫
Bi−1

|Du| dx ≤ λ and
∫
Bi

|Du| dx ≤ λ. (6.33)

Then there exists a constant c3 depending on n, ν, L, g1 such that

E(Du,Bi+2) ≤ 1

4
E(Du,Bi+1) + c3

λ

g(λ)

[
|µ|(Bi−1)

Rn−1
i−1

]
holds true. c3 has the expression 4η−nc200c2 , where c200c2 is the constant of Lemma 6.1
for H = 200c2.

Proof. We clearly want to apply Lemma 6.1. Assumption (6.4) is satisfied as a conse-
quence of (6.24), while for (6.5) we appeal to Lemma 6.3: since i ≥ ie − 1, obviously
i− 1 ≥ ie− 2 and then we can use estimate (6.27) both for Dvi in Bi+1 and Dvi−1 in Bi,
i.e.

λ

200c2
≤ |Dvi−1| ≤ c2λ in Bi,

λ

200c2
≤ |Dvi| ≤ c2λ in Bi+1. (6.34)

Hence assumptions (6.5) are satisfied with H ≡ 200c2, so we have∫
Bi+1

|Du−Dvi| dx ≤ c200c2

λ

g(λ)

[
|µ|(Bi−1)

Rn−1
i−1

]
, (6.35)

where c200c2 is a constant depending on n, ν, L, g1. Estimate (4.3) applied with Br, BR ≡
Bi+2, Bi+1 gives using (6.1)

E(Dvi, Bi+2) ≤ 2−4E(Dvi, Bi+1)

so we get the thesis performing a computation similar to (6.32):

E(Du,Bi+2) ≤ 2E(Dvi, Bi+2) + 2

∫
Bi+2

|Du−Dvi| dx

≤ 2−3E(Dvi, Bi+1) + 2η−n
∫
Bi+i

|Du−Dvi| dx

≤ 2−2E(Du,Bi+1) + 2(η−n + 1)

∫
Bi+i

|Du−Dvi| dx

≤ 2−2E(Du,Bi+1) + c3
λ

g(λ)

[
|µ|(Bi−1)

rn−1
i−1

]
, (6.36)

where we used (6.35). The proof is concluded. �

Now we proceed with the proof of Theorem 1.2 and we define

Ai := E(Du,Bi) and mi :=
∣∣(Du)Bi

∣∣.
Recalling the definition in (6.20) and (6.25), we have

ie∑
j=ie−2

mj + η−nAie ≤ Cie ≤
λ

8
. (6.37)
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Our goal is to prove by induction that

mj +Aj ≤ λ for all j ≥ ie. (6.38)

The case j = ie holds true from the definition of Cie and the exit time (6.25):

mie +Aie ≤ 3

∫
Bie

|Du| dx ≤ 3
λ

8
.

Assume now that (6.38) holds true for j = ie, . . . , i. By (6.37) for j = ie, . . . , i and
directly from the definition of Cie and from (6.25) for j = ie− 2, ie− 1 – indeed for these
two exponents Aj ≤ 2

∫
Bj
|Du| dx – we have in particular that∫

Bj

|Du| dx ≤ λ for j = ie − 2, . . . , i.

Since assumption (6.33) is satisfied, we can apply the excess decay Lemma 6.4 that gives

Aj+2 ≤
1

4
Aj+1 + c3

λ

g(λ)

[
|µ|(Bj−1)

Rn−1
j−1

]
for j = ie − 1, . . . , i. (6.39)

When j = i− 1 the previous inequality in particular gives

Ai+1 ≤
1

4
Ai + c3

λ

g(λ)

[
|µ|(Bi−2)

Rn−1
i−2

]
≤ λ

4
+

1

4

λ

g(λ)
g(λ) ≤ λ

2
. (6.40)

since by inductive hypothesis Ai ≤ λ and since the following inequality holds true for all
i (recall i ≥ ie ≥ 3):

c3
|µ|(Bi−2)

Rn−1
i−2

≤ c3η−nI|µ|1 (x, 2R) ≤ c3
η−n

H2
g(λ) ≤ 1

4
g(λ),

see (6.22) and recall that c3 = 4η−nc200c2 . Moreover, summing (6.39) for i ∈ {ie− 1, i−
2} and performing some algebraic manipulations leads to

i∑
j=ie

Aj ≤ Aie +
1

4

i−1∑
j=ie

Aj + c3
λ

g(λ)

∞∑
j=0

|µ|(Bj)
Rn−1
j

which gives, after reabsorption,
i∑

j=ie

Aj ≤ 2Aie + 2c3
λ

g(λ)

∞∑
j=0

|µ|(Bj)
Rn−1
j

. (6.41)

On the other hand,

mi+1 −mie =

i∑
j=ie

(
mj+1 −mj

)
≤

i∑
j=ie

∫
Bj+1

∣∣Du− (Du)Bj
∣∣ dx

≤
i∑

j=ie

|Bj |
|Bj+1|

E(Du,Bj)

and therefore, using (6.41), (6.37) and (6.22),

mi+1 ≤ mie + η−n
i∑

j=ie

Aj

≤ mie + 2η−nAie + 2η−nc3
λ

g(λ)

∞∑
j=0

|µ|(Bj)
rn−1
j

≤ 2
λ

8
+
λ

4
≤ λ

2
. (6.42)

Merging together (6.40) and (6.42) gives mi+1 + Ai+1 ≤ λ. Being x ∈ Ω a Lebesgue
point of Du then we have

|Du(x)| = lim
i→∞

mi ≤ λ.
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7. VERY WEAK SOLUTIONS & SKETCHES OF OTHER PROOFS

We recall here that Theorem 1.2 is stated as a priori estimate for solutions belonging
to the energy space, while we consider poorly regular data; this choice can be made more
clear by the following lines. Once considering measure data as we do, one of the customary
approaches to get existence (and usually, at the same time, regularity) results is to smoothen
the data by convolution, then to find regular solutions (together with properties stable when
passing to the limit) and finally prove convergence, see for instance the classics [2, 3, 32].

After this introduction, we hence quickly show how to extend the potential estimate
Theorem 1.2 to a certain class of the so-called very weak solutions. Being a the vector
field considered in (1.8), for Dirichlet problems of the type−div a(Du) = µ in Ω,

u = 0 on ∂Ω,
(7.1)

we give the following definition, recalling the meaning of the Orlicz-Sobolev spaceW 1,g
0 (Ω)

described in Paragraph 3.2:

Definition 7.1. A very weak solution to (7.1) is a function u ∈W 1,g
0 (Ω) such that∫

Ω

〈a(Du), Dϕ〉 dx =

∫
Ω

ϕdµ (7.2)

for every ϕ ∈ C∞c (Ω).

Note that the requirement u ∈ W 1,g(Ω) is the minimal assumption which gives mean-
ing to the distributional formulation (7.2), when the vector field a satisfies assumptions
(2.1). Existence of very weak solutions cannot clearly be obtained by using usual mono-
tonicity methods (which would require the right-hand side to belong to the dual of the
energy space), but can be deduced by an adaption of the method developed in [2, 3]; this
would lead to a particular class of very weak solutions, usually called SOLAs (Solutions
Obtained as Limit of Approximations). We briefly recall it; notice however that uniqueness
in general remains an open issue in this class of solutions.

Consider a sequence of approximating regular functions fk ∈ L∞(Ω) weakly-∗ con-
verging to µ and such that

|fk|(BR+1/k) =

∫
BR+1/k

|fk| dx ≤ |µ|(BR).

Solve the weak formulation (7.2) with datum fk, i.e with right-hand side
∫

Ω
fkϕdx, and

by monotonicity methods get regular solutions uk ∈ W 1,G
0 (Ω). By the compactness and

truncation arguments in [2, 3] we can get pointwise convergence of both uk and Duk to
a limit function belonging at least to W 1,g(Ω) (an approach following Lemma 5.3 should
give a priori estimates, and therefore existence, in W 1,gξ(Ω) with ξ as in (5.33)). There-
fore, also using fk ⇀ µ, we get that the limit function solves the distributional formulation
(7.2). Note that due to (1.6) Lg(Ω) turns out to be reflexive.

After this introduction we can state a variant of Theorem 1.2:

Theorem 7.2. Let u ∈ W 1,g(Ω) be a SOLA to the Dirichlet problem (7.1), with µ and a
as in Theorem 1.2. Then there exists a constant c, depending on n, ν, L, g1, such that the
pointwise estimate

g
(
|Du(x0)|

)
≤ c I|µ|1 (x0, 2R) + c g

(∫
BR(x0)

|Du| dx
)

holds for almost every x0 ∈ Ω and for every ball B2R(x0) ⊂ Ω.
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The proof of the previous Theorem is quite simple: it consists in passing to the limit
not in the final estimate, but in the proofs. One, indeed, has in particular to consider the
approximating solutions uk instead of the energy solution u and pass to the limit in the
comparison Lemmata (Lemma 5.1 and subsequent ones), using quite standard arguments
(as extraction of diagonal subsequences), in order to get that they hold also in the case u
just belongs to W 1,g(Ω). Note that one can also see that, if µ ∈ L∞, then actually (1.9)
holds at every point in Ω, since solutions with regular data have continuous gradient and
therefore every x0 ∈ Ω is a Lebesgue’s point of Du; for more details, see [25, Section 5]
and [27, Section 14].

Now we come to the proof of Theorem 1.4. More precisely, we will just sketch the proof
of the following Proposition, since once having the potential estimate (1.9), the Lemmata
proved in the previous sections and the Proposition 7.3 at hand, using simple tricks ex-
tensively used in the preceding pages, as, for example, subadditivity of Remark 3.1, this
proof is just an adaption of the one in [24]. Note that then Corollary 1.5 would follow in a
straightforward way, since the locally uniform convergence in (1.10) is obviously implied
by (2) and also by (1), see [12, Lemmata 1 & 3].

Proposition 7.3. Let u ∈ W 1,G(Ω) be as in Corollary 1.3. If x 7→ |µ|(x,R) is locally
bounded in Ω for some R > 0 and if

lim
R→0

|µ|
(
BR(x)

)
Rn−1

= 0 locally uniformly in Ω w.r.t. x, (7.3)

then Du is locally VMO-regular in Ω.

Again we recall that the stated regularity of Du means that for every Ω′ b Ω

lim
R→0

ω(R) = 0 where ω(R) ≡ ωΩ′(R) := sup
BrbΩ′
r≤R

∫
Br

∣∣Du− (Du)Br
∣∣ dx.

Proof. Consider an intermediate open set Ω′′ such that Ω′ b Ω′′ b Ω. Since by Corol-
lary (1.3) and by our assumptions Du is locally bounded, it makes sense to prove that
for every ε ∈ (0, 1), there exists a positive radius rε < dist(Ω′, ∂Ω′′), depending on
n, g1, ν, L, µ(·), ‖Du‖L∞(Ω′′), dist(Ω′, ∂Ω), ε, such that∫

Bρ(y)

∣∣Du− (Du)Bρ(y)

∣∣ dx ≤ ελ, λ := ‖Du‖L∞(Ω′′) (7.4)

holds whenever ρ ∈ (0, rε) and y ∈ Ω′. This would give the local VMO regularity of Du.
For ε given as in the statement and fixed, consider the quantity

η :=

(
ε2

23α+10coc22ch

) 1
α

≤ 1

(23ch)1/α

where the involved quantities are the ones appearing also in (6.1). This gives that η is a con-
stant depending only on n, ν, L, g1, ε. Then take the constant c16c2/ε as the constant cH ap-
pearing in Lemma 6.1 with the choice H = 16c2/ε. Then it also depends on n, ν, L, g1, ε.
Finally chose a radius R0 < dist(Ω′′, ∂Ω′) depending on n, ν, L, g1, µ(·), ‖Du‖L∞(Ω′′),
dist(Ω′, ∂Ω), ε such that

sup
0<ρ≤R0

sup
x∈Ω′

|µ|
(
Bρ(x)

)
ρn−1

≤ g
(
ε
η2n

4c1

ηn

16c1c16c2/ε
λ

)
; (7.5)

this is allowed by (7.3). Finally for x ∈ Ω′ fixed define for i ∈ N0 the chain of ball
Bi ≡ Bri as in (6.2), with radius ri := ηir and where r ∈ (ηR0, R0] is fixed. Define
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subsequently the comparison functions vi over Bi as in (6.3). Note that by the definition
of λ and the fact that Bi ⊂ Ω′′ then∫

Bi

|Du| dx ≤ λ (7.6)

for all i ∈ N0. What we want to prove is

E(Du,Bi+2) ≤ ελ i ∈ N. (7.7)

Fix hence an index i ∈ N and suppose without loss of generality∫
Bi+2

|Du| dx ≥ ελ
2

; (7.8)

if not so, (7.7) would plainly follow by triangle’s inequality. Now using an approach similar
to Lemmata 6.3 and 6.4 we will prove that

E(Du,Bi+2) ≤ ε

4
E(Du,Bi+1) + 4c16c2/εη

−n λ

g(λ)

[
|µ|(Bi−1)

Rn−1
i−1

]
≤ ε

4
E(Du,Bi+1) +

ε

4
λ (7.9)

by (7.5). This would be enough to get (7.7) by induction. First apply Lemma 5.6 with
BR ≡ Bi, η̃ ≡ η2, ϑ ≡ ε/4 which, together with (7.8) gives

ε
λ

4
≤
∫
Bi+2

|Du| dx− ελ
4
≤
∫
Bi+2

|Dvi| dx.

Note now that Lemma 5.5 with BR ≡ Bi yields in particular supBi/4 |Dvi| ≤ c2λ by
(7.6); therefore Lemma 4.3 with B ≡ Bi, σ ≡ η, m = 2 and C = 4c2/ε gives

ε
λ

16c2
≤ |Dvi| in Bi+1.

A similar reasoning yields ελ/16c2 ≤ |Dvi−1| ≤ c2λ in Bi. Then we apply Lemma 6.1
for H = 16c2/ε and we have∫

Bi+1

|Du−Dvi| dx ≤ c16c2/ε
λ

g(λ)

[
|µ|(Bi−1)

rn−1
i−1

]
At this point since the choice of η gives E(Dvi, Bi+2) ≤ 2−3E(Dvi, Bi+1) by (4.3),
performing a calculation completely similar to (6.36) brings us to (7.9).

A brief argument similar to the one in [24] concludes the proof. Since all these estimates
are uniform with respect the choice of x ∈ Ω′ and the radius r ∈ (ηR0, R0], then we
obtain (7.4) with rε := η3R0. Indeed let ρ ≤ η3R0: then exists an integer m ≥ 3 such
that ηm+1R0 < ρ ≤ ηmR0. Therefore ρ = ηmr for some r ∈ (ηR0, R0] and (7.4) follows
from (7.7). �
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[20] T. KILPELÄINEN, J. MALÝ: Degenerate elliptic equations with measure data and nonlinear potentials, Ann.

Scuola Norm. Sup. Pisa Cl. Sci. (IV) 19 (4): 591–613, 1992.
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