
16 April 2024

University of Parma Research Repository

Both vision-for-perception and vision-for-action follow Weber's law at small object sizes, but violate it at
larger sizes / Bruno, Nicola; Uccelli, Stefano; Viviani, Eva; de Sperati, Claudio. - In: NEUROPSYCHOLOGIA. -
ISSN 0028-3932. - 91:(2016), pp. 327-334. [10.1016/j.neuropsychologia.2016.08.022]

Original

Both vision-for-perception and vision-for-action follow Weber's law at small object sizes, but violate it at larger
sizes

Publisher:

Published
DOI:10.1016/j.neuropsychologia.2016.08.022

Terms of use:

Publisher copyright

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available

Availability:
This version is available at: 11381/2826630 since: 2018-02-01T09:20:20Z

Elsevier Ltd

This is the peer reviewd version of the followng article:

note finali coverpage



 

 

Both vision-for-perception and vision-for-action follow Weber's law at small 

object sizes, but violate it at larger sizes 

 

Nicola Bruno, Università di Parma 

Stefano Uccelli, Università di Parma 

Eva Viviani, Università di Parma 

Claudio de’Sperati, Università Vita-Salute San Raffaele, Milano 

 

 

                     (in press, Neuropsychologia, 2016) 

 

Running head: action, perception, and precision 

 

Keywords: action, perception, Weber’s law, precision grip, manual estimation, accuracy, 

precision 

 

 

 

 

corresponding author: 
N. Bruno 
Dipartimento di Neuroscienze, Università di Parma 
via Volturno 39, 43125 Parma, Italy 
nicola.bruno@unipr.it 



 

 

Abstract 

 

According to a previous report, the visual coding of size does not obey Weber’s law 

when aimed at guiding a grasp (Ganel et al, 2008, Current Biology, 18, R599-601). This 

result has been interpreted as evidence for a fundamental difference between sensory 

processing in vision-for-perception, which needs to compress a wide range of physical 

objects to a restricted range of percepts, and vision-for-action when applied to the much 

narrower range of graspable and reachable objects. We compared finger aperture in a 

motor task (precision grip) and perceptual task (cross modal matching or "manual 

estimation" of the object's size). Crucially, we tested the whole range of graspable 

objects. We report that both grips and estimations clearly violate Weber's law with 

medium-to-large objects, but are essentially consistent with Weber's law with smaller 

objects. These results differ from previous characterizations of perception-action 

dissociations in the precision of representations of object size. Implications for current 

functional interpretations of the dorsal and ventral processing streams in the human 

visual system are discussed. 



 

Introduction 

 

Hands can be used to operate or they can be used to inform. For instance, we can 

reach for a small object and pick it up with two fingers. This is a performative action, and 

its goal is to change the state of the environment with respect to us. Alternatively, we 

might want to tell a friend about the object -- for instance, we might want to report its 

size. One way to do that would be to shape our two fingers to match the size of the 

object, and show the friend. This a communicative action, and its goal is to provide 

information about what we saw to someone who did not see what we saw. The 

distinction between performative and communicative actions was first introduced by 

Gibson (1966), who also discussed a third broad category, exploratory actions, which 

are beyond the scope of this paper.  

 

Performative and communicative actions correspond to different motor functions. For 

this reason, it is natural to speculate that their brain basis might involve different forms 

of processing. This speculation was turned into a full-fledged model of the visual brain 

by Milner & Goodale (Milner and Goodale, 1995). In this paper, we investigate one 

specific prediction of this model, namely, that performative manual actions should not 

obey Weber's law  (the psychophysical principle dictating that sensory precision 

decreases as stimulus intensity increases; see Gescheider, 1997), whereas 

communicative actions should. To this aim, we compared two actions that are both 

visually guided, use two fingers (the index and the thumb), and involve reaching out and 

opening the fingers. These correspond to the movements that were described in the 

previous paragraphs, and to the tasks that are commonly referred to as precision grip 

and manual estimation. Crucially, and in contrast with previous work, we examine the 

full range of potentially graspable objects from very small to close to the graspability 

limit. In both tasks, we observe non-Weber behavior with medium-to-large objects, but 

Weber-compatible behavior with smaller objects. These results have implications for the 

current debate on Milner & Goodale’s model.  

 

Rationale for the current study 



 

A large and controversial literature has been published on behavioral dissociations 

between vision-for-action and vision-for-perception over the last twenty years (see 

Bruno, 2001; Cardoso-Leite & Gorea, 2010; de’Sperati & Baud-Bovy 2008; Franz and 

Gegenfurtner, 2008; Schenk and Mcintosh, 2010; Schenk, Franz and Bruno, 2011; 

Smeets and Brenner, 2006). One especially provoking claim has been that the precision 

of vision-for-action remains essentially constant over changes in the size of stimuli 

(Ganel, Chajut and Algom, 2008), whereas the precision of vision-for-perception does 

not. Because this claim is the focus of the current paper, we start by analyzing it in 

detail. 

 

Ganel and his colleagues presented objects of different sizes in two tasks. The first was 

a cross-modal match (“match the size of the object by the aperture of your index and 

thumb”), often called “manual estimation” (see Haffenden and Goodale, 1998). The 

second was a precision grip (“pick up the object by its length using the thumb and index 

fingers”). In both tasks, a measure of finger aperture was collected as the dependent 

variable of interest. In the estimation task, this was simply the matched finger aperture, 

which was assumed to reflect a "readout" of the internal representation of perceived 

size. In the grip task, it was the maximum in-flight grip aperture between the thumb and 

the finger. This is a much-studied kinematic marker of reach-to-grasp actions, and it is 

generally believed to reflect the representation of size that was computed from visual 

information before beginning the movement (Jeannerod, 1981; Marteniuk et al, 1987; 

Jeannerod, Arbib, Rizzolatti and Sakata, 1995). Ganel and colleagues reported that 

their observed pattern of variable errors (inverse of precision, as measured by the 

standard deviation of the distributions of the finger aperture data) was markedly different 

in the two tasks. In manual estimations, variable error grew with object size as one 

would expect from Weber's law. In precision grips, conversely, it remained constant 

over the tested range of sizes. Thus, Ganel and colleagues reported a striking 

dissociation between vision-for-action and vision-for-perception. They proposed that 

visual coding for a performative action violates Weber’s law, a fundamental 

psychophysical principle, whereas visual coding for a communicative action adheres to 

this principle as is commonly observed in perception.  



 

Ganel and colleagues proposed that their observed result reflects a key difference 

between visual functional modules. Because vision-for-perception operates over a wide 

range of physical distances and sizes, scaling is needed to compress such wide range 

into a narrower range of percepts. Thus, scaling laws apply as they do in many other 

cognitive tasks (Chater & Brown, 1999, Kello, 2010). Conversely, vision-for-action 

operates on restricted ranges that are defined by the action possibilities of effectors. For 

instance, grasping actions can be performed only on graspable objects in near space. 

Therefore, there is no need for a compressing mechanism and scaling laws do not 

apply. This interpretation is very much in accord with the functional characterization of 

the higher-level primate visual system proposed by Milner & Goodale (Milner and 

Goodale, 1995; for recent reviews, see Goodale and Westwood, 2004; Goodale, 2008; 

2010; Goodale and Milner, 2008). Milner & Goodale’s model, which identifies 

vision-for-action with the dorsal stream from primary visual (V1) to posterior parietal 

(PPT) cortex, and vision-for-perception with the ventral stream from V1 to the 

inferotemporal (IT) cortex , indeed proposes that the visual codings of spatial properties 

in the two functional modules obey different principles, resulting in context-sensitive, 

object-relative representations in perception but in context-blind, effector-relative 

representations in action. Such different spatial coding might well result in different 

patterns of precision, and for this reason Ganel’s result has been often cited as key 

evidence in support of Milner & Goodale’s model (see Westwood and Goodale, 2011).  

 

Although Ganel’s findings are in accord with Milner and Goodale’s model, other 

explanations are possible. For instance, it is possible to model grasping as 

coarticulation of two pointing movements (one for each finger) aimed at the chosen 

contact points on the object (Smeets & Brenner, 1999). Within this model, no internal 

representation of size is used to control the grasp. Therefore, there is no reason to 

expect effects on the variability of the finger aperture. In a reanalysis of Ganel’s initially 

reported data, Smeets & Brenner (2008) argued that the grasping-as-double-pointing 

model can predict Ganel’s data. In a rebuttal paper, however, Ganel, Chajut, Tanzer 

and Algom (2008) argued that Smeets & Brenner’s alternative model only applies to 

closed-loop grasping, namely, to an action performed with full visual information during 



execution. Ganel’s original data were based on a closed-loop grasping task. In their 

rebuttal paper, however, Ganel and colleagues used an open-loop grasping procedure, 

and showed that even in these conditions the variable error was constant over a range 

object sizes. The open-loop procedure involved removing visual information as soon as 

the action started, thereby preventing any on-line adjustment of the finger trajectories 

during the grasp and forcing participants to use the visual information that had been 

acquired before beginning the movement.  

 

We stress that only open-loop data can provide evidence supporting a perception-action 

dissociation between perception and action visual modules. Under closed-loop 

conditions, on-line adjustments can be performed on the basis of visual and motor 

feedback, modifying earlier spatial representations that were computed before starting 

to move. The influence of these adjustments will depend on the speed of the movement, 

with more ballistic movements being less affected in comparison to slow movements. 

Other things being equal, it could be argued that violations of Weber’s law might occurr 

in these conditions because of these on-line adjustments, which are based on feedback 

loops. This argument has received some empirical support (Heath et al, 2011; but see 

Foster & Franz, 2013). For this reason, it is critical to examine visuomotor and 

perceptual precisions under similar open-loop conditions. 

 

Yet another possible explanation has been advanced in a recent paper by Utz et al 

(2015). In a series of open-loop grasping experiments, Utz and colleagues observed 

that variable errors did not remain constant as observed by Ganel but decreased as the 

size of the target object increased. They interpreted this finding as evidence that a 

biomechanical factor, in addition to sensory factors, affects finger aperture in grasping. 

Suppose the desired maximum finger aperture as a function of object size depends on 

the size of the object, plus a random error that can be more or less than the “true” 

desired finger aperture. As objects get bigger and approach the maximum graspable 

object for a given participant, a random error in excess of the true value will become 

increasingly unlikely, whereas a random error in defect of the true value will remain 

unaffected. Thus, this sort of ceiling effect will increasingly reduce the variability of 

finger apertures as object size increases, and this is exactly what was observed by Utz 



and collaborators. This interpretation deserves to be taken seriously. However, the data 

provided by Utz et al (2015) leave several issues unresolved.  

 

Firstly, Utz et al observed a “reverse Weber law” pattern when using interquartile ranges 

to estimate variable error, but this was less clear (although qualitatively in accord with 

reverse Weber) when using standard deviations. A plausible explanation for this is that 

standard deviations are not robust estimators; they are affected by the presence of 

outliers and by distributional asymmetries. This might explain why Ganel and colleagues 

observed more-or-less constant variable errors (measured as standard deviations) as a 

function of object size. Interquartile ranges instead are robust estimators which are less 

affected by outliers and distributional asymmetries, and this is presumably a reason why 

the interquartile ranges of Utz and colleagues showed a clearer pattern. 

 

Second, the open-loop procedure used by Utz and colleagues involved a mirror 

apparatus that allowed participants to see the target object continuously but did not 

allow them to see their hands. This is different from the procedure employed by Ganel 

et al, which involved occluding spectacles to remove vision of both target and hand at 

movement initiation (for a discussion of the effects of these subtle differences in visual 

feedback during reaching and grasping, see Bruno, Bernardis & Gentilucci, 2008; Bruno 

& Franz, 2009). To validate the proposed interpretation of Ganel’s data, it is necessary 

to collect precision data using a fully comparable open-loop procedure. 

 

Third, Utz et al (2015) performed several elegant manipulations of the conditions for 

performing precision grips but did not include a condition tapping into explicit visual 

processing as comparison. This comparison would be especially informative as the key 

theoretical prediction is a dissociation between two tasks.   

 

Fourth, we note that the studies of Utz et al, Ganel et al, and indeed most studies of 

precision grips (see for instance the meta-analysis in Smeets & Brenner, 1999) 

collected data for object widths in the range between 20 and 70 mm: We are aware of 

only two experiments (Marteniuk et al, 1990; Hesse & Franz, 2009) that included 10 mm 

widths. The choice of this range is justified by the fact that this appears to be, under 



informal observation, a range of sizes that allows for natural, comfortable grasping by 

most participants. However, most of us (depending on the size of one’s hand) can 

perform a two-finger grip with objects as wide as 120 - 150 mm, although with 

increasing difficulty. And even more notably, we can readily grasp objects smaller than 

a 20mm width. In animal studies, recordings of “precision grip” motor neurons are 

typically performed in monkeys that pick up and bring to the mouth quite small food 

items, such as raisins or pine nuts. Although this is probably not a serious limitation 

when interested in the actual magnitude of the finger apertures, it becomes relevant 

when interested in studying errors, because very small objects, being farther away from 

graspability limits, should provide data that are most free from ceiling effects.  

 

Specific objectives and predictions 

 

The above-listed considerations motivate our study. Specifically, we seek to do three 

things. First, we are interested in evaluating how vision-for-action might violate Weber's 

law. In particular, we want to determine whether the precision of maximum grip aperture 

is constant over different object sizes, as suggested by Ganel and collaborators, or 

rather increases with object size as suggested by Utz and collaborators. Second, we 

are interested in comparing the pattern of precision in the action task with that observed 

in a perception task, the manual estimation task that was also studied by Ganel and 

collaborators. Third, we seek to evaluate to what extent violations of Weber’s law, if 

applicable, depend on biomechanical constraints as opposed to properties of the visual 

coding of size.  

 

Methods 

 

Participants 

We recruited 14 volunteers (7 females, age range 21- 46) from the University of Parma 

community. All were right-handed, had normal or corrected-to-normal eyesight, no 

history of neurological disease, and were unaware of the purpose of the study.  

 

Tasks 



We compared two tasks. The first task (open loop precision grip, OLPG) consisted in 

grasping disks of variable diameters with the thumb and finger of the right hand. Visual 

information was removed as soon as the grasping movement started, such that the 

grasp was completed based on what had been visually processed before the initiation of 

the movement. Once the participant had grasped the disk, he or she was required to lift 

it, move the hand sideways to the right by approximately 10 cm, and then rest the disk 

again on the table. The second task (open loop manual estimation, OLME) consisted in 

matching the visible size of the disks by opening the thumb and index fingers, while 

keeping the hand near to the body. As for the OLPG task, visual information was 

removed as soon as the matching movement began. After recording the match, the 

participant was also similarly required to reach for the disk, grasp it and move it 

sideways. This insured that participants received equal amounts of information from 

actually touching the object with the hand in both conditions. 

 

Apparatus 

The target disks were a series of six custom-made wooden disk, each 1 cm high, having 

diameters ranging from very small to very large: 5, 10, 20, 40, 80, and 120 mm. 

Participants sat on an adjustable chair in front of the short side of a small (45 x 100 cm) 

rectangular table. A button box was placed on the table in front of the participant. A faint 

cross-mark drawn on the table marked the position for the target disks. The center of 

the cross mark was placed at exactly 23 cm from the edge of the table (approximately 

20 cm from the starting button, corresponding to a viewing distance of approximately 50 

cm). Visual feedback was removed using PLATO visual occlusion spectacles 

(Translucent Technologies Inc.) which have a transparent-to-opaque latency of 3-4ms. 

Response kinematics were recorded using a Qualysis ProReflex MCU1000 (sampling 

rate 240 Hz, spatial precision at least 0.4 mm with four cameras at distances of 1 to 2 m 

from the participant hand) using three markers (one on the wrist, one on the tip of index 

finger, and one on the tip of the thumb). A personal computer running MatLab R2011b 

under Windows 7 was used to control stimulus presentation and to manage trigger 

signals to the Plato spectacles and the Qualysis motion tracking system.  

 

Design 



The design resulted from crossing two within-participant independent variables: disk 

diameter (six levels, see previous section) and task (OLPG and OLME). Tasks were 

performed in two separate blocks which were randomized between participants. Order 

was counterbalanced across participants. Disk diameters were randomized within each 

block. The presentation of each diameter was repeated 20 times, resulting in a total of 

240 (120/block) trials. In each trial, the dependent variable consisted in a measure of 

the index-thumb aperture, taken in the manner appropriate to the task. In the OLPG 

task, this was the maximum in-flight grip aperture (MGA) between the thumb and index. 

In the OLME, this was simply the aperture of the thumb and index as shown by the 

participant to match the disk diameter. 

 

Procedure 

Each block began with a brief verbal and motor explanation of the task, followed by five 

practice trials using randomly chosen diameters. Practice trials were not recorded. The 

structure of each trial in the two tasks is schematized in Figure 1. Up to a point the 

procedure was the same for the two tasks. At the beginning of each trial, the shutter 

spectacles were turned off (opaque). The experimenter read off the MatLab on-screen 

console the disk diameter for the current trial, placed the appropriate disk on a preset 

mark in front of the participant, and verbally gave a go signal. At this point, the 

participant pressed a key on a button box to turn on the shutter spectacles 

(transparent), observed the target disk as long as needed (typical preview periods were 

of the order of 500ms), and then released the button by lifting the hand to initiate the 

response. The button release turned off again the shutter spectacles (opaque). From 

now on, there were some slight differences in the procedure according to task. In the 

OLPG task, the button release also triggered the kinematic recording. The system 

recorded for 3 seconds, giving the participant ample time to grasp the disk and 

complete the trial. In the OLME task, the button release did not trigger recording but 

merely turned off the goggles. The participant performed the match by opening the 

fingers as deemed appropriate, then pressed a second button with the left hand to 

record the response. It was this second button press that triggered the system, which in 

this case recorded for only 0.1 seconds. Once recording was complete, a 

computer-generated beep informed the participant that he or she could bring the hand 



back to the starting position on the button box. If an error occurred for whatever reason, 

the experimenter recorded the conditions of the relevant trial. All trials classified as 

errors were repeated in random order at the end of the block. 

 

< insert figure 1 about here > 

 

Data validation and analysis 

Recordings from all trials of all participants were analyzed off-line firstly to check for 

errors that may have escaped the experimenters’ attention during runs. Given that no 

obvious mistakes were identified in this first stage, all recordings were further analyzed 

to compute maximum grip aperture, in the OLPG condition, and manual estimation, in 

the OLME condition. This analysis was performed by means of R scripts which allowed 

visualizing finger trajectories, velocity profiles, and thumb-index apertures as a function 

of time to double-check computations. In the OLPG condition, the maximum grip 

aperture could be reliably found by computing MAX(finger aperture) within the initial 

1000 ms of the response. In the OLME condition, finger aperture was computed as the 

average aperture within the recorded 100 ms. Finally, the aperture data for each 

participant in each task as a function of disk diameter were screened individually for 

outliers. Outliers were defined as observations larger (smaller) than the third (first) 

quartile plus (minus) 3 times the interquartile range. These values correspond to 

datapoints depicted as "extreme" in a Tukey box plot (Tukey, 1977; McGill, Tukey & 

Larsen, 1978). All responses identified as such were removed from that individual set. 

This resulted in the exclusion of 24/1680 grips and of 9/1680 manual estimations in 

total. All statistics used in further analyses were therefore computed on these 

outlier-free individual sets (for further details see Appendix).  

 

Results 

 

Figure 2 presents finger aperture data in the OLPG (grip) and OLME (estimation) tasks. 

In OLPG, these correspond to the maximum in-flight index-thumb aperture before 

grasping each disk; in OLME, to the index-thumb aperture matching the perceived size 

of each disk. We display arithmetic mean apertures for each participant in each task at 



each level of disk diameter, as well as group arithmetic means at each level of disk 

diameter. 

  

< insert figure 2 about here > 

 

In both tasks, finger aperture was an approximately linear function of disk size. Given 

the within-participant design of our study, we measured the average trend by first fitting 

linear regressions individually to each participant in each condition, computing the 

average slope and intercept from the individual fits, and then plotting line with these 

average slope and intercept. Interval estimates (confidence level = 0.95) of slopes and 

intercept were 0.75 +-  0.05 mm/mm and 37.8 +- 5 mm in the OLPG task; 0.88 +- 0.04 

mm/mm and 9.1 +- 3.2 mm in the OLME task. One sample t-tests indicated that both 

parameters were significantly different from zero in both tasks, OLPG slope: t(13) = 

33.6, p < 0.001; OLPG intercept: t(13) =16.4, p < 0.001; OLME slope: t(13) = 41.8, p < 

0.001; OLME intercept: t(13) = 6, p < 0.001. A paired t-test indicated that the OLME 

slope was significantly larger than the OLPG slope, t(13) = 5.7, p < 0.001.  

 

Figure 3 presents the variable error data, based on robust estimates of each 

participant’s standard deviation (see Appendix) in each task at each level of disk 

diameter.  

 
< insert figure 3 about here > 

 

To subject the variable error data to statistical analysis, we did two things. First, the 

OLPG and OLME datasets were entered jointly into a 2 (task) x 6 (size) 

repeated-measures ANOVA. This analysis revealed a significant main effect of size, 

F(5, 65) = 13.7, p < 0.001, and a significant task X size interaction, F(5, 65) = 31.4, p < 

0.001, whereas the main effect of the task failed to reach statistical significance, F(1, 

13) = 3.6, p = 0.080. As a second step in the analysis, we noted that in both conditions 

the pattern of variable errors may be characterized as an initial increase at small disk 

sizes, followed by a reduction or tapering off. To model this behavior, we applied 

two-component piecewise linear spline regressions (see Lundgren, 2007) to the OLPG 



and OLME data. This is equivalent to fitting a multiple regression model with three 

parameters (one intercept and two slopes), constrained such that a change of slope 

occurs at a predetermined value (the “knot”) of the independent variable. The knot is 

chosen, before performing the analysis, on the basis of the apparent structure of the 

data and the model’s residuals at different plausible values (see Harrell, 2015). Our 

chosen knot values were 20 mm for the OLPG dataset and 40 mm for the OLME 

dataset. The model was fitted individually to the data from each participant. Group 

average parameters were then used to plot the model results in Figure 3. One-sample 

t-tests confirmed that initial slopes were statistically different from zero in both 

conditions (OLPG: initial slope = 0.064, t(13) = 2.544, p = 0.024; OLME: initial slope = 

0.136, t(13) = 9.861, p < 0.001) and that the second slope was different from zero in the 

OLPG group (second slope = -0.025, t(13) = -7.012, p < 0.001) but not in the OLME 

group (second slope = 0.004, t(13) = 0.295, p = 0.772). Thus, these analyses confirmed 

that at small object sizes variable errors increased in both groups. In addition, paired 

t-tests comparing initial parameters across the two conditions failed to provide evidence 

for a difference in the initial slope (t(13) = 2.159, p = 0.050) or in the second slope (t(13) 

= 2.082, p = 0.058) in the OLME condition relative to the OLPG condition.  

 

< insert Figure 4 about here > 

 

Figure 4, finally, presents measures of distributional asymmetry (skewness), again in 

the individual data as well as condition averages. In the OLPG task, the effect of object 

diameter on skewness failed to reach significance, F(5, 65) = 1.9, p = 0.090. In the 

OLME task, conversely, there was evidence for a significant effect, F(5, 65) = 3.138, p = 

0.013. 

 

After submission of the present paper, one reviewer suggested that we compare our 

results with previous estimates of variable error. Estimates of variable error in grasps 

were reported in three earlier papers (Ganel, Chajut & Algom, 2008; Ganel, Chajut, 

Tanzer & Algom, 2008; Utz et al, 2015). Of these, the first reported data from a 

closed-loop grasping task (vision remained available during movement) which is 

fundamentally different from our open-loop task (see Introduction). The second and third 



did report data from open-loop tasks and these are compared with ours in Figure 5. The 

comparison requires additional caution. While the apparatus and procedure employed 

by Ganel et al (2014) were similar to ours, those employed by Utz et (2015) involved a 

mirror apparatus that was markedly different from Ganel’s or ours. In addition, Ganel's 

reported data are averages of non-robust estimates (ordinary standard deviations), 

whereas Utz’s data included both robust nonparametric estimates (interquartile ranges) 

and non-robust estimates (ordinary standard deviations). Given these differences, the 

absolute values of the variable error are likely to be not completely comparable across 

the three studies. Absolute values aside, inspecting the patterns of variable error 

displayed in Figure 5 suggests that our observed decrease in variable error is similar, 

within comparable ranges of object sizes, to those observed by Utz et al. The pattern 

reported by Ganel et al, on the other hand, does not show a similar negative trend.  

 

Discussion 

 

We compared a perception and an action task using a standard open-loop procedure, 

testing the whole range of graspable objects from very small (5 mm) to almost beyond 

the graspability limit for most of us (120 mm). Observed finger apertures in both tasks 

were nicely consistent with previous estimates (for a meta-analysis on precision grips, 

see Smeets & Brenner, 1999; for a discussion of differences with manual estimates, see 

Schenk, Franz & Bruno, 2011). In contrast with previous reports, however, in our action 

task we did not observe constant (Ganel, Chajut & Algom, 2008), or constantly 

decreasing variable errors (Utz et al, 2015). Rather, our results suggest that variable 

errors in both perception and action increase as a function of object size with relatively 

small objects, and then decrease or taper off. We will first review our evidence for these 

two claims, and then move on to a proposed interpretation. 

 

Support for the idea that in both tasks variable errors increase at small sizes  is 

provided by the qualitative pattern in Figure 3, as well by tests revealing that in both 

conditions slopes fitted to the first half of the data are significantly different from zero. 

While this trend seems evident, it remains less clear whether OLPG and OLME slopes, 

in addition to being both different from zero, also differ from each other. Although we did 



measure somewhat different average trends in Figure 3, this difference failed to reach 

statistical significance. Technically, therefore, it seems correct to interpret the current 

results as i) evidence that there is a Weber-like effect on variable errors at smaller 

object sizes, and ii) lack of evidence that this effect is different in perception and action. 

However, this interpretation requires caution, as statistical tests may suffer from 

insufficient power to detect a small difference between OLPG and OLME. Either way, it 

seems justifiable to claim that our results are consistent with similar or at least 

not-too-dissimilar Weber-like effects at small object sizes. We note further that, even if 

the two slopes were indeed slightly different, this would not necessarily damage our key 

claim that variable errors at small sizes follow Weber's law in both perception and 

action. There can be many reasons why errors might increase at different rates in the 

OLPG and OLME data as the tasks were not completely equivalent in terms of hand 

movement. Lacking evidence that one of the slopes might be zero or negative, our 

conclusion still stands. 

 

Support for the idea that variable errors decrease or taper off once size reaches a 

certain value is also provided by the qualitative pattern in Figure 3, as well as by 

statistical analyses suggesting that both changes in slopes after the critical size value 

are statistically different from zero, but cannot be distinguished statistically from each 

other. Although a caveat about statistical power is appropriate also regarding this last 

claim, it seems nonetheless appropriate to conclude that the second half of our data 

demonstrate that the Weber-like effect at small sizes is counteracted, at medium and 

larger sizes, by some other factor that tends to reduce variable error.  

 

A likely candidate factor accounting for the reduction of variable error at medium to 

large sizes is hand biomechanics. As the physical size of an object approaches the limit 

size that one’s hand can grasp, a ceiling is effectively placed on variable errors in 

excess of the targeted finger aperture. Thus, variable error is increasingly reduced as 

size increases. This hypothesis was first advanced by Utz et al (2015) who measured 

variable errors over the 20 -70 mm range and observed a regular decrease. Our data 

are nicely consistent with Utz’s observations in that they also suggest a progressive 

reduction of variable error starting at 20mm and extending to the 80 and 120mm 



objects, where the reduction is maximum as one would expect. Our results however 

also go beyond Utz’s data in that they show that hand biomechanics may have an effect 

also on manual estimations, although in this case, at least in our data, a tapering off of 

variable error appears to occurr after size reaches 40mm rather than 20mm.  

 

An important difference between the two tasks is related to the motor strategies 

involved in emitting the manual response. In a precision grip, absolute values of 

maximum in-flight apertures are always much larger than the physical size of the target 

object (see, for instance, Smeets & Brenner, 1999). It is generally agreed that this 

feature of precision grips reflects a key component of grasping actions. Grasps are 

typically performed in two stages: in the initial, fast stage, the hand accelerates and the 

fingers open progressively until the peak velocity is reached somewhere near the target. 

At this point, the hand slows down and a second, control stage begins whereby the 

fingers close to make contact on the object. Given random noise, if the maximum 

aperture were programmed to approximately equate the size of the object, in many trials 

the maximum aperture would be insufficient to initiate the closing stage and the fingers 

would have to be opened again, such that the resulting movement would be inefficient 

and cumbersome. A more efficient strategy, therefore, is to open the fingers much more 

than the target size, allowing a “safety margin”. Thus constant error in grips are the sum 

of two components: a constant safety margin (the intercept in the linear fit) and a scaling 

component that depends on size (the slope of the linear fit). Because of the safety 

margin, the physical limit of the hand is not too far even when responding to medium 

sizes. In a manual estimation, conversely, constant error depends solely on a scaling 

component (the intercept of the linear fit is expected to be close to zero). For this 

reason, the physical limit is approached more slowly as size increases, but apparently 

becomes relevant even in manual estimations once size is large enough.  

 

A plausible interpretation of our results is that, in both perception and action, the 

representation of size that drives the response behaves in accord with Weber’s law, 

yielding approximately linear increases of variable error at small sizes. As size grows 

due to hand biomechanics variable errors are then increasingly reduced, causing the 

pattern to turn downward. There is however a final feature of our data suggesting that 



hand biomechanics may not be the only factor at play, especially in precision grips. 

Given that the biomechanical explanation entails an upper ceiling on variable errors, a 

key prediction of this proposal is that variable error distributions should be increasingly 

compressed on the high end of the distribution; i.e., they should “morph” from 

approximately symmetrical to left-tailed, such that their skewness becomes increasingly 

negative as size increases. In our final analysis, however, we failed to observe a clear 

trend of distributional skewnesses from zero to negative. Instead (Figure 4), in both 

tasks skewness remained essentially zero at small to medium sizes, and became only 

very slightly negative at larger sizes. In the action task, this pattern failed to reach 

statistical significance, suggesting that the skewness data are not actually consistent 

with a biomechanical explanation. In the perception task, conversely, we found 

statistical support for a change in skewness between responses to large and small 

objects. This suggests that biomechanics might affect manual estimations more clearly 

than they do grips. 

 

Thus, the current results suggest that, in the action task, the pattern observed with 

larger sizes may not be completely ascribable to biomechanics. We propose that an 

additional factor may involve a motor strategy relating to the selection of a 

precision-accuracy tradeoff. Recall that, in grips, the role of adopting a safety margin is 

to free the system from having to compute a very precise maximum aperture. The task 

of precisely guiding the fingers near the appropriate contact points can be left to the 

slower second phase that can be controlled online based on sensory feedback or on 

feedforward predictive models (Desmurget & Grafton, 2000; Wolpert, 1997). As objects 

get larger, however, possible safety margins become inadequate. To avoid 

undershooting the target size and therefore preserve the efficiency of the movement, 

the system might now opt to compute a more precise maximum aperture. If this were 

the case, one would expect to observe a reduction of variable error with larger objects, 

but not necessarily a change in skewness as the reduction is strategic and not merely a 

byproduct of an upper ceiling on random variations. While this hypothesis remains 

speculative (and post-hoc) at present, empirical tests are possible by manipulations 

enforcing accuracy-precision tradeoffs. Such tests may well be worth performing in 

future studies. 



 

Conclusions 

 

Our results have implications for current functional models of vision-for-action and 

vision-for-perception. According to an earlier proposal (Ganel et al, 2008), the precision 

of the internal representation of object size which is utilized by vision-for-action does not 

obey Weber's law. Our results with larger target objects do support this conclusion, but 

our results with smaller target objects do not. Instead, it seems that precision grips do 

obey Weber’s law, but the Weber effect is increasingly counteracted by biomechanics 

or, possibly, by task-related changes in motor strategic programming, as object size 

increases. The combination of these two effects produces an increasing pattern in 

variable errors at small sizes, but a decreasing or tapering pattern at larger sizes.  In 

this, vision-for-action tasks appear to differ from otherwise comparable 

vision-for-perception tasks, which may reflect a similar strategic change. Thus, we 

report a dissociation between perception and action. However, we suggest that this is 

not related to differences in the sensory coding of size (as predicted by the model of 

Milner & Goodale, 1995) but to different effects of biomechanical or possibly strategic 

factors.  
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Appendix 

 

To estimate variable errors in our data, we used standard deviations that were 

computed after removing extreme outliers. Extreme outliers were defined as 

observations less or more than 3 times the interquartile range from the first or third 

quartile (that is, as the datapoints marked as asterisks in a Tukey box plot; see Tukey, 

1977; McGill, Tukey & Larsen, 1978). This procedure provides a method for computing 

robust estimates of standard deviations. The advantage lies in the possibility of applying 

parametric methods for statistical inference as we do in the present paper. This 

procedure however might be questioned on two grounds: i) the criterion for identifying 

outliers could be questioned; ii) other methods for computing robust estimates could be 

used; for instance, Utz et al (2015) compared standard deviations to interquartile 

ranges.  

 

To verify how our suggested method compares with other possibilities, we computed 

alternative robust measures of spread and compared them with standard deviations 

computed on the full dataset (that is, before removing outliers). The robust measures 

we considered are the interquartile range (IQR), the median absolute deviation (MAD), 

and the standard deviation after removing outliers (the measure of variable error plotted 

in Figure 2). Although the IQR is more resistant than a simple standard deviation to 

outliers as it is based on the central 50% of the data, it is unclear whether it provides the 

best estimate of variable error. Furthermore, parametric methods for statistical inference 

may not be fully applicable (Huber, 1981). The MAD is generally considered the most 

robust estimator of spread (Tukey, 1977). As for the IQR, however, it is not clear how 

parametric methods could be applied for statistical inference. 

 

< insert Figure A1 about here > 

 

The results of the comparison are presented in Figure A1. The pattern, as well as the 

absolute values, of the standard deviations once outliers are removed is very similar to 

that of the MAD’s. The IQR’s also show the same pattern but tend to yield larger 

estimates. Standard deviations computed on all the data, conversely, fail to fully capture 



the pattern exhibited by robust estimators, especially at very large disk diameters, 

although they remain roughly consistent with it. 

 

 



Figure Captions 

 

 

Figure 1. Trial structure in the two tasks that were compared in the study: Open-Loop 

Precision Grip (OLPG) and Open-Loop Manual Estimation (OLME). 

 

Figure 2. Average finger aperture as a function of disk diameter in the OLPG (left) and 

OLME (right) tasks. Dotted light grey lines: individual averages. Solid black line: line 

obtained by fitting linear regressions individually to each of the 14 participants, and then 

plotting the line with the average slope and average intercept from the 14 fits. Filled 

black circles: averages of individual data at each of the 6 diameter levels. Error bars: 

sem. Dashed black line: y = x baseline.  

 

Figure 3. Average variable error (standard deviations) as a function of disk diameter in 

the OLPG and OLME tasks. All plotting conventions as in Figure 2. The solid black lines 

were obtained by applying linear spline regression individually to each of the 14 

participants, and then plotting the two lines using the averages of the spline parameters 

from the 14 fits. 

 

Figure 4. Average skewness as a function of disk diameter in the OLPG and OLME 

tasks. All plotting conventions as in Figure 2. 

 

Figure 5. Variable error estimates in our study (solid black line) and in the two previous 

studies that reported comparable assessments. Blue line: average standard deviations 

from Ganel, Chajut, Tanzer & Algom (2008), Figure 1. Red dotted line: average 

standard deviations from Utz et al (2015), Figure 3, Task 1. Red dashed line: average 

interquartile ranges from Utz et al (2015), Figure 3, Task 1. 

 

Figure A1.  Comparing four estimators of variable error. Dotted lines refer to the OLPG 

data, whereas solid lines refer to the OLME data. Ordinary standard deviations are 

plotted in blue as a thick line for reference. The three robust estimators are plotted as 

thin lines and are labelled by color: the red thin lines are the IQR’s; the green lines are 



the MAD’s; the black lines, finally, are the standard deviations computed after removing 

extreme outliers (that is, the variable errors plotted in Figure 3). 


