
18 September 2024

University of Parma Research Repository

Contour-based next-best view planning from point cloud segmentation of unknown objects / Monica,
Riccardo; Aleotti, Jacopo. - In: AUTONOMOUS ROBOTS. - ISSN 0929-5593. - (2018), pp. 1-16.
[10.1007/s10514-017-9618-0]

Original

Contour-based next-best view planning from point cloud segmentation of unknown objects

Publisher:

Published
DOI:10.1007/s10514-017-9618-0

Terms of use:

Publisher copyright

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available

Availability:
This version is available at: 11381/2821273 since: 2021-10-11T10:53:57Z

Springer New York LLC

This is the peer reviewd version of the followng article:

note finali coverpage



Dear Author,

Here are the proofs of your article.

• You can submit your corrections online, via e-mail or by fax.

• For online submission please insert your corrections in the online correction form. Always
indicate the line number to which the correction refers.

• You can also insert your corrections in the proof PDF and email the annotated PDF.

• For fax submission, please ensure that your corrections are clearly legible. Use a fine black
pen and write the correction in the margin, not too close to the edge of the page.

• Remember to note the journal title, article number, and your name when sending your
response via e-mail or fax.

• Check the metadata sheet to make sure that the header information, especially author names
and the corresponding affiliations are correctly shown.

• Check the questions that may have arisen during copy editing and insert your answers/
corrections.

• Check that the text is complete and that all figures, tables and their legends are included. Also
check the accuracy of special characters, equations, and electronic supplementary material if
applicable. If necessary refer to the Edited manuscript.

• The publication of inaccurate data such as dosages and units can have serious consequences.
Please take particular care that all such details are correct.

• Please do not make changes that involve only matters of style. We have generally introduced
forms that follow the journal’s style.
Substantial changes in content, e.g., new results, corrected values, title and authorship are not
allowed without the approval of the responsible editor. In such a case, please contact the
Editorial Office and return his/her consent together with the proof.

• If we do not receive your corrections within 48 hours, we will send you a reminder.

• Your article will be published Online First approximately one week after receipt of your
corrected proofs. This is the official first publication citable with the DOI. Further changes
are, therefore, not possible.

• The printed version will follow in a forthcoming issue.

Please note
After online publication, subscribers (personal/institutional) to this journal will have access to the
complete article via the DOI using the URL: http://dx.doi.org/[DOI].
If you would like to know when your article has been published online, take advantage of our free
alert service. For registration and further information go to: http://www.link.springer.com.
Due to the electronic nature of the procedure, the manuscript and the original figures will only be
returned to you on special request. When you return your corrections, please inform us if you would
like to have these documents returned.

http://www.link.springer.com


Metadata of the article that will be visualized in
OnlineFirst

Please note: Images will appear in color online but will be printed in black and white.
ArticleTitle Contour-based next-best view planning from point cloud segmentation of unknown objects
Article Sub-Title

Article CopyRight Springer Science+Business Media New York
(This will be the copyright line in the final PDF)

Journal Name Autonomous Robots

Corresponding Author Family Name Aleotti
Particle

Given Name Jacopo
Suffix

Division Dipartimento di Ingegneria dell’Informazione

Organization University of Parma

Address Parma, Italy

Phone +39-0521-905727

Fax

Email aleotti@ce.unipr.it

URL

ORCID http://orcid.org/0000-0003-2498-932X

Author Family Name Monica
Particle

Given Name Riccardo
Suffix

Division Dipartimento di Ingegneria dell’Informazione

Organization University of Parma

Address Parma, Italy

Phone +39-0521-905702

Fax

Email rmonica@ce.unipr.it

URL

ORCID

Schedule

Received 26 February 2016

Revised

Accepted 11 January 2017

Abstract A novel strategy is presented to determine the next-best view for a robot arm, equipped with a depth
camera in eye-in-hand configuration, which is oriented to autonomous exploration of unknown objects.
Instead of maximizing the total size of the expected unknown volume that becomes visible, the next-best
view is chosen to observe the border of incomplete objects. Salient regions of space that belong to the
objects are detected, without any prior knowledge, by applying a point cloud segmentation algorithm. The
system uses a Kinect V2 sensor, which has not been considered in previous works on next-best view
planning, and it exploits KinectFusion to maintain a volumetric representation of the environment. A low-
level procedure to reduce Kinect V2 invalid points is also presented. The viability of the approach has been



demonstrated in a real setup where the robot is fully autonomous. Experiments indicate that the proposed
method enables the robot to actively explore the objects faster than a standard next-best view algorithm.

Keywords (separated by '-') Next-best view planning - KinectFusion - Point cloud segmentation

Footnote Information Electronic supplementary material The online version of this article (doi:10.1007/s10514-017-9618-0)
contains supplementary material, which is available to authorized users.
This is one of several papers published in Autonomous Robots comprising the Special Issue on Active
Perception.



u
n
co

rr
ec

te
d

p
ro

o
f

Auton Robot

DOI 10.1007/s10514-017-9618-0

Contour-based next-best view planning from point cloud

segmentation of unknown objects

Riccardo Monica1
· Jacopo Aleotti1

Received: 26 February 2016 / Accepted: 11 January 2017

© Springer Science+Business Media New York 2017

Abstract A novel strategy is presented to determine the1

next-best view for a robot arm, equipped with a depth1 2

camera in eye-in-hand configuration, which is oriented to3

autonomous exploration of unknown objects. Instead of max-2 4

imizing the total size of the expected unknown volume that5

becomes visible, the next-best view is chosen to observe the6

border of incomplete objects. Salient regions of space that7

belong to the objects are detected, without any prior knowl-8

edge, by applying a point cloud segmentation algorithm. The9

system uses a Kinect V2 sensor, which has not been consid-10

ered in previous works on next-best view planning, and it11

exploits KinectFusion to maintain a volumetric representa-12

tion of the environment. A low-level procedure to reduce13

Kinect V2 invalid points is also presented. The viability of14

the approach has been demonstrated in a real setup where15

the robot is fully autonomous. Experiments indicate that the16

proposed method enables the robot to actively explore the17

objects faster than a standard next-best view algorithm.18

Keywords Next-best view planning · KinectFusion · Point19

cloud segmentation20
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1 Introduction 21

Autonomous robot exploration and 3D reconstruction of a 22

scene may be very time consuming if not guided by active 23

perception, even in tabletop scenarios. An active perception 24

behavior usually drives the robot by computing the Next Best 25

View (NBV) to observe the most relevant areas of the envi- 26

ronment, given the data acquired so far. Traditional NBV 27

algorithms attempt to maximize the information gain by 28

exploring unknown or incomplete parts of the scene. How- 29

ever, a straightforward maximization of the volume of the 30

unknown space may not be the proper solution as the robot 31

may prioritize large occluded areas that do not contain any 32

interesting object. Moreover, NBV planning is usually per- 33

formed by constraining the viewpoint to lie on a viewing 34

sphere around the object, but the location of the objects may 35

be unknown in advance. 36

This paper proposes a novel approach for NBV plan- 37

ning of a robot arm equipped with an eye-in-hand range 38

sensor in a tabletop scenario. The robot gives precedence 39

to the exploration of the objects in the scene without any 40

prior knowledge about their shape and position. Such non- 41

model-based approach is achieved by applying a point cloud 42

segmentation algorithm to the sensor data and then by assign- 43

ing a saliency value to each segment. The NBV system 44

prioritizes viewpoints that observe the segment with the high- 45

est saliency. We show that after point cloud segmentation a 46

simple heuristic can be adopted to identify meaningful seg- 47

ments that belong to the objects. In particular, a method for 48

point cloud segmentation is adopted based on Locally Con- 49

vex Connected Patches (LCCP) by Stein et al. (2014), which 50

is available within the PCL library. The exploitation of point 51

cloud segmentation for active scene exploration has been 52

considered in few previous works. 53

123

Journal: 10514 MS: 9618 TYPESET DISK LE CP Disp.:2017/1/23 Pages: 16 Layout: Large

A
u

th
o

r
 P

r
o

o
f

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-017-9618-0&domain=pdf
http://orcid.org/0000-0003-2498-932X
http://dx.doi.org/10.1007/s10514-017-9618-0


u
n
co

rr
ec

te
d

p
ro

o
f

Auton Robot

A further contribution is the computation of the NBV on54

the GPU through a modified version of KinFu. The KinFu55

Large Scale (KinFu LS) project is an open source imple-56

mentation of KinectFusion (Newcombe et al. 2011) in the57

PCL library. The system exploits the GPU NBV algorithm58

developed in Monica et al. (2016) and the environment is59

modeled as a volumetric 3D voxel grid on the GPU using a60

Truncated Signed Distance Function (TSDF). It is also shown61

how viewpoint directions can be extracted directly from the62

KinFu TSDF volume, using a local contour extraction algo-63

rithm. The proposed approach is fully autonomous, it only64

requires an initial short scan of the environment, from one65

side, and it does not assume the existence of a dominant66

plane in the scene. In the experimental setup the robot arm is67

equipped with a Kinect V2 sensor. To the best of our knowl-68

edge, this is the first work that reports the use of Kinect V269

for NBV planning. Kinect V2 has a higher resolution and a70

higher field of view with respect to Kinect V1. Moreover,71

Kinect V2 has proven to be two times more accurate in the72

near range and it presents an increased robustness to artifi-73

cial illumination. A novel procedure has also been developed74

for Kinect V2 depth image pre-processing. Experiments in75

environments with multiple complex objects show that the76

system is able to reconstruct the scene around the objects77

faster than a traditional NBV planner which maximizes the78

volume of the unknown space.79

The paper is organized as follows. Section 2 provides80

an overview of the state of the art. Section 3 describes the81

proposed active perception system. Section 4 illustrates the82

experimental results. Section 5 concludes the paper and pro-83

vides suggestions for possible extensions.84

2 Related work85

The two closest works to ours that considered NBV planning86

from point cloud segmentation are Wu et al. (2015) and Kai87

et al. (2015). Both methods have been evaluated in scenes88

without or with few stacked objects. In Wu et al. (2015) an89

active object recognition system was proposed for a mobile90

robot. A feature-based model was used to compute the NBV91

in 2D space by predicting both visibility and likelihood of fea-92

ture matching. Experiments were reported with box-shaped93

objects where the mobile robot was not autonomous but it was94

manually placed as dictated by the NBV algorithm. Main dif-95

ferences are that this work focuses on an autonomous robot96

arm and that objects have more complex shapes. In Kai et al.97

(2015) a graphcut object segmentation is performed on an ini-98

tial robot scan, using Kinect V1, through KinectFusion. Then,99

the PR2 robot performs proactive exploration to validate100

the object-aware segmentation by combining next-best push101

planning and NBV planning. NBV planning is performed102

only on pushed objects for scan refinement. The procedure103

for robot motion planning is not described. Another differ- 104

ence is that in our work NBV is computed on the GPU. 105

The most common assumption for NBV planning is to 106

determine the optimal placement of the eye-in-hand sensor 107

on a viewing sphere around a target location. An objective 108

function is usually chosen which maximizes the unknown 109

volume as proposed by Connolly (1985) and Banta et al. 110

(2000). Pito (1999) used a turntable and ensured an over- 111

lap among consecutive views. In Reed and Allen (2000) 112

and Vasquez-Gomez et al. (2009) sensor constraints were 113

included to minimize the distance traveled by the robot, but 114

the methods were evaluated in simulation. In Yu and Gupta 115

(2004) NBV was aimed at reducing ignorance of the con- 116

figuration space of the robot. Potthast and Sukhatme (2014) 117

proposed a customizable framework for NBV planning in 118

cluttered environments where a PR2 robot estimates the vis- 119

ibility of occluded space using a probabilistic approach. Kahn 120

et al. (2015) presented a method to plan the motion of the sen- 121

sor to enable robot grasping by looking for object handles 122

lying within occluded regions of the environment. 123

Several NBV approaches assume that the location of the 124

target object is known and do not cope with the problem of 125

detecting the most relevant regions of the environment to be 126

explored. Indeed, in Torabi and Gupta (2010), Kriegel et al. 127

(2012), Foix et al. (2010), Morooka et al. (1998), Li and 128

Liu (2005) and Walck and Drouin (2010) a single object in 129

the environment was considered. Another less sophisticated 130

strategy is to adopt a turntable to rotate the object observed 131

from a fixed sensor. In Kriegel et al. (2012) a next-best scan 132

planner was proposed for a laser stripe profiler aimed at max- 133

imizing the quality of the reconstruction. In Kriegel et al. 134

(2011) a non model-based approach was introduced for NBV 135

using the boundaries of the scan and by estimating the sur- 136

face trend of the unknown area beside the boundaries. Some 137

authors have addressed the NBV problem assuming a simple 138

geometry of the objects to be scanned (Chen and Li 2005), 139

or adopting simple parametric models like superquadrics 140

(Whaite and Ferrie 1997). In Welke et al. (2010) and Tsuda 141

et al. (2012) approaches have been developed for humanoid 142

active perception of a grasped object. 143

In model based approaches the environment is actively 144

explored to discover the location of objects of interest whose 145

template or class is known in advance (Kriegel et al. 2013; 146

Atanasov et al. 2014; Stampfer et al. 2012; Patten et al. 147

2016). Kriegel et al. (2013) presented an exploration sys- 148

tem, combining different sensors, for tabletop scenes that 149

supports NBV planning and object recognition. In Atanasov 150

et al. (2014) an active hypothesis testing problem was solved 151

using a point-based approximate partially observable Markov 152

decision process algorithm. Stampfer et al. (2012) performed 153

active object recognition enriched with common features like 154

text and barcode labels. In Patten et al. (2016) a viewpoint 155

evaluation method was proposed for online active object clas- 156
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sification that predicts which points of an object would be157

visible from a particular viewpoint given the previous obser-158

vation of other nearby objects.159

As mentioned above active exploration strategies have160

also been proposed where the robot interacts with the envi-161

ronment by pushing the objects (van Hoof et al. 2014; Kai162

et al. 2015). In van Hoof et al. (2014) the robot autonomously163

touched the objects to resolve segmentation ambiguities164

using a probabilistic model. However, NBV planning was165

not considered. Beale et al. (2011) exploited the correlation166

between robot and objects motion data to improve segmen-167

tation.168

Several works have addressed the problem of change169

detection for scene reconstruction using attention-based170

approaches. Most attention based approaches do not con-171

sider active exploration using NBV sensor planning. Herbst172

et al. (2014) presented a method for online 3D object seg-173

mentation and mapping from recordings of the same scene at174

several times. Attention based systems have been proposed175

to direct gaze of humanoid robots or stereo-heads toward176

relevant locations. Bottom up saliency maps were used in177

Orabona et al. (2005) from blobs of uniform color. In mobile178

robotics attention driven methods have been investigated to179

maintain a consistent representation of the environment as180

the robot moves (Finman et al. 2013; Drews et al. 2013).181

In Finman et al. (2013) segmentations of objects were auto-182

matically learned from dense RGBD mapping. A method for183

novelty detection based on Gaussian mixture models from184

laser scan data was introduced in Drews et al. (2013).185

3 Proposed method for next-best view planning186

In traditional non-model based approaches next-best view187

planning is performed in two phases. In the first phase, can-188

didate view poses are generated. In the second phase, all the189

poses are evaluated according to a score function to find the190

next-best view pose. The proposed pipeline to compute the191

NBV, illustrated in Fig. 1, differs from traditional approaches192

as it introduces an intermediate phase between viewpoint193

generation and evaluation. In the intermediate phase the input194

point cloud is segmented into clusters and a saliency value is195

computed for each point cloud segment. The aim of the point196

cloud segmentation phase is to automatically detect segments197

that belong to the objects of the scene. In the evaluation phase198

potential view poses are associated to point cloud segments199

and the NBV is searched among view poses in decreasing200

order of segment saliency.201

A more detailed overview of the proposed view planning202

pipeline is reported in Algorithm 1. The view generation203

phase is performed by a contour extraction algorithm (line 1),204

detailed in Sect. 3.1, which extracts contour points, i.e. points205

at the border of incomplete surfaces. Contour extraction also206

Fig. 1 Pipeline of the view planning algorithm. The grey background

highlights the intermediate phase

Algorithm 1: View planning

Input: WS: 3D volumetric environment representation

Output: Next-best view

1: Contour ← ContourExtraction(W S)

2: ∀b∈Contour b.V iewpoints ← GetViewpoints(b)

3: PointCloud ← ExtractSurfacePts(W S)

4: Segments ← SegmentPointCloud(PointCloud)

5: Saliency ← SegmentSaliency(Segments)

6: Segments ← OrderBy(Segments,Saliency)

7: for i from 1 to size(Segments) do

8: SContour ← FindNear(Contour ,Segments[i])

9: SV iewpoints ←
⋃

b∈SContour b.V iewpoints

10: Scores ← EvaluateViewpoints(SV iewpoints)

11: SV iewpoints ← OrderBy(SV iewpoints,Scores)

12: for j from 1 to size(SV iewpoints) do

13: if Scores[ j] > ScoreT H then

14: return SV iewpoints[ j]

15: end if

16: end for

17: end for

18: return {no suitable viewpoint found}

produces a view direction for each contour point. Then, from 207

each view direction multiple view poses are generated, as 208

shown in Fig. 2, mainly to increase the probability of finding 3209

a reachable pose for the robot manipulator. In particular, for 210

each direction four additional view directions towards the 211

same contour point are sampled within a small solid angle 212

(15◦). To convert each view direction into a pose for the 213

sensor, a distance from the contour point must be selected, 214

compatible with the sensor minimum and maximum sensing 215

distance. Although view poses may be generated by select- 216

ing multiple distances, in this work a fixed distance of 80 cm 217

was adopted, which was empirically determined by evaluat- 218

ing the average maximum distance that the robot is able to 219

reach from the objects in the current experimental setup. In 220

addition, a rotation angle around the view direction must be 221

chosen. Eight samples for each view direction are generated 222

at 45◦ intervals, starting from an arbitrary initial orientation. 223

In line 3, a point cloud (PointCloud) is extracted from the 224

TSDF volume using the marching cubes algorithm, already 225

available in KinFu. Marching cubes generates a mesh from 226
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Fig. 2 Flowchart of viewpoint generation (line 2 in Algorithm 1). Each

candidate view direction generates 40 view poses for the sensor

the isosurface between positive (empty) and negative (occu-227

pied) TSDF voxels. The vertices of the mesh define the point228

cloud. In the segmentation phase (line 4) the point cloud is229

segmented using the LCCP algorithm. Then, a saliency value230

is computed for each segment (line 5), as described in Sect.231

3.2. Finally, the segments are ordered by decreasing saliency232

(line 6).233

In the viewpoint evaluation phase (lines 7–17) view poses234

are associated to segments and are processed by decreasing235

segment saliency. In particular, all contour points close to236

the current segment are determined (line 8). Given the set237

PC ≡ PointCloud of all points in all segments, a contour238

point p is close to the current segment S if the nearest point239

to p in PC belongs to S. All view poses generated by the con-240

tour points of the current segment are then retrieved (line 9).241

View poses associated to a segment are evaluated by assign-242

ing a score proportional to the expected information gain, as243

in traditional NBV approaches. Indeed, the expected infor-244

mation gain of each view pose is given by the amount of245

unknown voxels visible from that pose, which is available246

from the TSDF volume (Monica et al. 2016). A voxel con-247

tributes to the score only if it falls inside a sphere with radius248

20 cm larger than the bounding sphere of the segment.249

View poses associated to the current point cloud segment250

are then ranked and processed in decreasing order of score.251

If the expected information gain of a view pose exceeds a252

threshold value (line 13) that pose is considered the NBV.253

Otherwise, if the expected information gains of all the view254

poses of the current segment are below the threshold, the255

algorithm moves to evaluate the view poses of the next256

most salient segment. In summary, the proposed procedure257

is aimed at giving priority to active exploration of salient258

segments of unknown objects, not fully reconstructed, rather259

than favoring viewpoints that blindly try to minimize the size260

of the unknown space.261

3.1 Contour extraction from TSDF volume262

The TSDF volume is a volumetric representation of the envi-263

ronment used by the KinectFusion algorithm. The space is264

subdivided into a regular 3D grid of voxels and each voxel265

holds the sampled value v(x, y, z) of the Truncated Signed 266

Distance Function R3 → R, which describes the signed dis- 267

tance from the nearest surface, clamped between a minimum 268

and a maximum value. The TSDF is positive in empty space 269

and negative in occupied space. Each voxel also contains a 270

weight w, initialized to 0, that counts the number of times 271

the voxel has been observed, up to a maximum amount. The 272

TSDF value v and the weight can be used to distinguish 273

between empty, occupied and unknown voxels as follows: 274

⎧

⎪

⎨

⎪

⎩

w = 0 → unknown voxel

w > 0

{

v ≤ 0 → occupied voxel

v > 0 → empty voxel

(1) 275

Rarely observed voxels have a low weight, while completely 276

unknown voxels have 0 weight. In unexplored space, or deep 277

inside the surface of objects, voxels are unknown. 278

In NBV planning a frontier is defined as the region 279

between seen-empty voxels and unknown space. A frontier is 280

a region that can be explored, since the viewing sensor might 281

be placed in the empty space next to the frontier to observe 282

the unknown space. Occupied voxels do not belong to the 283

frontier, since the sensor can not see through them. However, 284

occupied voxels lying next to a frontier have implications for 285

NBV planning. Indeed, observation of the region of space 286

in close proximity to occupied voxels next to a frontier can 287

extend the perception of the surface of the object those occu- 288

pied voxels belong to. 289

In the context of this work a contour is defined as the 290

set of empty voxels that are near to occupied voxels next to 291

a frontier, i.e. a contour consists of voxels that are near to 292

both an occupied voxel and an unknown voxel. To exclude 293

false positive known voxels from being processed, due to 294

noise, a voxel is considered known if observed at least 5 295

times, i.e. w ≥ Wth , where Wth = 5 is a lower bound 296

threshold. Given the 6-connected neighborhood N 6
e and the 297

18-connected neighborhood N 18
e of a voxel at position e, the 298

voxel belongs to a contour if the following conditions hold: 299

⎧

⎪

⎨

⎪

⎩

w (e) ≥ Wth ∧ v (e) > 0

∃ u ∈ N 6
e | w (u) < Wth

∃ o ∈ N 18
e | w (o) ≥ Wth ∧ v (o) ≤ 0

(2) 300

A simplified 2D example is shown in Fig. 3, using the 4301

Von Neumann neighborhood (4-connected) and the Moore 302

neighborhood (8-connected) in place of the 6-connected 303

neighborhood N 6
e and the 18-connected neighborhood N 18

e 304

used in the 3D case. In the previous view the sensor observed 305

the object from the right side, thus the view was partially 306

obstructed and the cells in the lower left part of the image are 307

not observed and left unknown. The cross marks a computed 308

contour cell. 309
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Fig. 3 A simplified 2D example of the contour extraction algorithm

using Von Neumann neighborhood (4-connected) and Moore neighbor-

hood (8-connected). In the previous view the sensor observed the object

from the right side. A computed contour cell is marked with the cross.

The thicker square highlights the Moore neighborhood of the contour

cell. The green segment represents a frontier. Known and occupied cells

are displayed in red, known and empty cells are in white, unknown cells

are in dark grey

Given the previous definitions a method to compute a310

potential view direction from each contour voxel is described311

next. For optimal observation, the sensor should observe the312

object perpendicularly to its surface. Thus, the opposite of313

the surface normal computed on the occupied voxel next to314

the contour voxel can be used as potential view direction.315

The normal to the surface can be computed from the TSDF316

volume as the gradient ∇v (x, y, z) of v.317

Given a neighborhood Ne of a voxel at position e, the318

normal may be approximated as (normalization omitted):319

ne =
∑

c∈Ne

v (c) ·
c − e

‖c − e‖
(3)320

which, for a 6-connected neighborhood, reduces to321

ne =

⎡

⎣

v (x + 1, y, z) − v (x − 1, y, z)

v (x, y + 1, z) − v (x, y − 1, z)

v (x, y, z + 1) − v (x, y, z − 1)

⎤

⎦ (4)322

since (c − e) /‖c − e‖ are unary vectors of the coordinate323

system.324

The limitation of this approach is shown in Figs. 4 and 5.325

In both examples the sensor takes a first observation from the326

bottom, at position A. The observed volume is displayed in327

light grey. An object, marked with a dashed line, is partially328

observed in the red region. The volume behind the object329

remains unknown (black). The surface normal for the com-330

puted contour cell is displayed as a red arrow pointing outside331

the object. The generated potential viewing pose (B) from the332

surface normal is shown as the red triangle. In Fig. 4 for a333

rounded object surface the surface normal provides a good334

direction for the next view. However, for objects with sharp335

edges (like boxes), as illustrated in Fig. 5, the normal at the336

Fig. 4 Generation of the next potential viewpoint for a rounded object.

Viewpoints B (computed from the surface normal) and C (computed

from the frontier normal) are very similar

Fig. 5 Generation of the next potential viewpoint for an object with

sharp edges. Only viewpoint C computed from the frontier normal

allows the observation of the unknown volume behind the sharp edge

contour cell does not provide a suitable view direction since 337

it does not allow the observation of the region of the object in 338

the unknown space behind the edge. Indeed, in this second 339

example at location B the sensor can not acquire any new 340

information, since the lower plane of the box has already 341

been observed from the initial view. 342

To overcome this limitation, we propose a method that 343

computes the potential view directions using the normal to the 344

frontier, i.e. the normal to the unknown volume. The normal 345

to the frontier is indicated as view C . While in Fig. 4 for a 346

rounded object the viewing pose is rather similar to the one 347

computed by the surface normal, in Fig. 5 for a sharp edge 348

view C provides a much better view direction to observe the 349

object from the side. 350

In this work we use a fast local approach to approximate 351

the normal of the frontier using the gradient of the weight 352

function ∇w (x, y, z) which can be computed as 353

ne =
∑

c∈N 26
e

w′ (c) ·
c − e

‖c − e‖
(5) 354
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Fig. 6 Left a jug observed from the current sensor viewpoint. Center

the 3D mesh reconstructed by KinFu. Right the volumetric representa-

tion (rotated view), with occupied (white) and unknown (black) voxels

where the 26-connected neighborhood of a voxel is used to355

reduce noise and sampling effects.356

Since w (c) is a positive integer value, Eq. 5 uses a modi-357

fied weight function w′ defined as358

w′ (c) =

{

−Wth if c occupied

min (w (c) − Wth, Wth) otherwise
(6)359

For occupied voxels weight w is set to −Wth , since we want360

the normal to point away from them. Otherwise, w is first361

centered around 0 and then truncated to Wth .362

In practice, after extraction of all the contour voxels with363

their view directions (line 1 in Algorithm 1), similar contour364

voxels are reduced into a contour point by a region growing365

algorithm. Two contour voxels at position e1 and e2, with366

view direction n1 and n2 are considered similar if367

{

‖e1 − e2‖ < Dth

‖n1 · n2‖ < Ath

(7)368

Each group of similar voxels is reduced to a single contour369

point with an associated view direction by averaging the posi-370

tions and the view directions of the voxels.371

Figures 6 and 7 show an example of contour extraction372

and viewpoint computation. In Fig. 6 the sensor observes a373

jug from the current NBV and a partial 3D representation374

is produced by KinFu. As shown by the ternary volumetric375

representation, voxels behind the object remain unknown.376

Contour voxels are extracted and clustered as illustrated in377

Fig. 7. The normal vectors point outwards towards the empty378

space. Thus, from that directions the robot may be able to379

observe the unknown space behind the object.380

3.2 Saliency of point cloud segments381

This section illustrates how the segmentation of the point382

cloud, extracted from the TSDF volume, is performed and383

how the saliency value of each segment is computed (lines384

4–5 in Algorithm 1). The procedure is illustrated in Fig. 8.385

The point cloud is segmented by the LCCP (Stein et al.386

Fig. 7 Left contour voxels (black) and the contour points (red). Right

contour points with normals. A contour point represent a group of sim-

ilar contour voxels

Fig. 8 Proposed procedure for point cloud segmentation and compu-

tation of the saliency value of each segment

2014) algorithm, available in the PCL library. LCCP par- 387

titions the input point cloud into a set of Segments (line 4 388

in Algorithm 1) by merging patches, called supervoxels, of 389

an over-segmented point cloud. Supervoxels are generated 390

by the a Voxel Cloud Connectivity Segmentation algorithm 391

(VCCS) by Papon et al. (2013). 392

VCCS requires knowledge about the normals to the point 393

cloud, unless points are acquired from the same viewpoint, 394

which is not applicable in our system. Normal vectors could 395

be computed as the normals to the faces of the mesh extracted 396

by the marching cubes algorithm. However, we obtain the 397

vertex normals with minimal overhead by using the gradient 398

of the TSDF volume, as shown by Eq. 3 in Sect. 3.1, using a 399

6-connected neighborhood which is is already available for 400

marching cubes operations. 401

The saliency function is a heuristic model that should 402

provide an objectness measure, i.e. it should provide higher 403

values for segments that belong to real objects of the scene. 404

In this work the saliency of each segment is computed as 405

a function of two features: the segment roundness and the 406

degree of isolation. 407

The roundedness of a segment S is estimated as the ratio 408

of the minimum and maximum sizes of the Oriented Bound- 409

ing Box (OBB) of S. The sizes (d1, d2, d3) of the OBB are 410

defined in a local reference frame TO B B centered at the mean 411
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point of the segment whose axes are given by the eigenvec-412

tors of the covariance matrix of the points (principal axes of413

inertia). More formally,414

d1 = max
c∈S

(

c′
x

)

− min
c∈S

(

c′
x

)

d2 = max
c∈S

(

c′
y

)

− min
c∈S

(

c′
y

)

d3 = max
c∈S

(

c′
z

)

− min
c∈S

(

c′
z

)

(8)415

where c is a point of S in the world reference frame and c′ is416

the transformed point in the local reference frame417

c′ = T −1
O B B · c (9)418

The minimum and maximum sizes of the OBB of S are then419

dmax = max
i∈{1,2,3}

(di )

dmin = min
i∈{1,2,3}

(di )
(10)420

We define the degree of isolation of a segment as the421

fraction of points for which the distance to points belong-422

ing to other segments is at least Bth . Given a segment423

S ∈ Segments and the set Ŝ of all the points not in S, the424

degree of isolation of S is given by425

F(S) =

∥

∥

∥

{

c ∈ S | ∀ o ∈ Ŝ , |c − o| > Bth

}
∥

∥

∥

‖S‖
(11)426

where ‖S‖ is the total number of points in S. Equation 11427

can be efficiently computed using a KdTree radius search428

of size Bth . Feature F has three benefits. First, it is meant429

to reward isolated segments belonging to partially observed430

objects, since a large part of their boundary is not shared431

with any other segment. Second, this heuristic is helpful for432

noise rejection as noisy segments, not well separated from433

other segments, often have a large boundary. Third, Eq. 11434

penalizes small segments.435

Finally, the saliency value of a segment S is computed as436

Saliency(S) = F(S) ·
dmin

dmax

(12)437

so that saliency is proportional to the degree of segment iso-438

lation and it grows the more the maximum and the minimum439

sizes of the OBB are similar. An example of a segmented440

point cloud with saliency values is shown in Fig. 9. It can be441

noted that the segment isolation factor reduces the saliency442

value of noisy segments (inside the red ellipse).443

Figure 10 shows the effect of Bth on the saliency. As Bth444

increases, the saliency value of the noisy segments at the front445

decreases. However, when Bth is too high, all the points of446

the small segments are rejected and, therefore, small objects447

Fig. 9 Example of point cloud segmentation and saliency evaluation.

Brighter segments have higher saliency value. (1) a picture of the sce-

nario, (2) saliency evaluated by segment roundness alone, (3) saliency

evaluated by segment isolation alone, (4) saliency evaluated by both

segment roundness and isolation according to Eq. 12. The segment iso-

lation factor reduces the saliency of the noisy segments inside the red

ellipse

assume a zero saliency value (black color). Hence, for the 448

experimental evaluation reported in Sect. 4.2, the value Bth = 449

0.02 m was chosen. 450

3.3 Kinect V2 depth image pre-processing 451

This section describes a low-level pre-processing filter to 452

improve the quality of Kinect V2 depth data. The Kinect2 453

driver (Freenect2) provides two pre-processing filters: a bilat- 454

eral filter and an edge-aware filter. The proposed filter is 455

executed at the end of the standard filtering pipeline in place 456

of the edge-aware filter, which does not strongly contribute to 457

the removal of invalid points. It is a known issue that Kinect 458

V2 often produces incorrect measurements near the borders 459

of occluded surfaces, as shown in Fig. 11. We are concerned 460

about locating two types of invalid points and removing them 461

from the depth map. 462

Points visible by the camera but falling in the shadow of an 463

IR emitter have a low accuracy. We call these points shadow 464

points. Shadow points are due to the displacement between 465

the IR emitter and the camera (Fig. 12), which is approxi- 466

mately ∆ = 8 cm. In this work we are less concerned about 467

depth image restoration of the regions that are not directly 468

observed by the camera, as in Liu et al. (2013), because the 469

NBV system usually observes the same region of space from 470

multiple viewpoints and the measured data are merged by 471

KinFu. 472

To detect shadow points we look into the regions of occlu- 473

sion where a background object is observed only by the 474

camera, but that are not illuminated by the IR emitter (yel- 475

low areas). The geometry of the sensor field is illustrated in 476

Fig. 13. Let u and v be the horizontal and vertical image 477

123

Journal: 10514 MS: 9618 TYPESET DISK LE CP Disp.:2017/1/23 Pages: 16 Layout: Large

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Auton Robot

Fig. 10 Saliency computed after the initial scan in experiment 2 described in Sect. 4.2, using Bth ∈ {0.005, 0.01, 0.02, 0.05, 0.1(m)} (from left to

right)

Fig. 11 Top left a scene as seen from the sensor. Top right the image

from the depth camera. Lower left the point cloud acquired by the sensor,

filtered by the Freenect2 driver. Lower right the point cloud filtered by

our method; both shadow points and veil points are correctly removed

Fig. 12 The Kinect V2 sensor with IR camera, RGB camera and IR

emitters

coordinates of the sensor, starting from the upper left corner.478

Let also be the intrinsic parameters of the IR camera defined479

as follows: [ fu, fv] the focal lengths, [mu, mv] the princi-480

pal point, [umax , vmax ] the depth image size and [∆, 0] the481

displacement between the IR emitter from the IR camera,482

which are aligned horizontally. Given a measured distance483

zuv along the sensor axis z at image coordinates [u, v], the484

coordinates of the measured point referred to the IR camera485

are given by486

xuv = u−mu

fu
· zuv

yuv = v−mv

fv
· zuv

(13)487

Fig. 13 The Kinect V2 (on the left) observes a scene composed by an

object (in the center) and a background plane (on the right). The object

partially occludes the background plane. Three kinds of occlusions are

possible: camera only (yellow), IR emitter only (blue), both (red)

Fig. 14 Illustration of the horizontal angles α and β of the camera and

IR emitter with respect to the observed points

while the horizontal angle, shown in Fig. 14, referred to the 488

camera is 489

αuv = atan

(

xuv

zuv

)

+
π

2
= atan

(

u − cu

fu

)

+
π

2
(14) 490

which is monotonically increasing with respect to u. How- 491

ever, when referred to the leftmost IR emitter, the x coordi- 492

nate becomes 493

x ′
uv =

u − mu

fu

· zuv + ∆ (15) 494
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Algorithm 2: Kinect V2 shadow points removal

Input: v: vertical coordinate

Input: zuv : depth image

1: β ′
max ← −∞

2: for u from 0 to umax − 1 do

3: x ′ ← u−cu

fu
· zuv + ∆

4: β ′ ← x ′

zuv

5: if β ′ ≤ β ′
max then

6: RemovePoint(u,v)

7: else

8: β ′
max ← β ′

9: end if

10: end for

and the horizontal angle becomes495

βuv = atan

(

x ′
uv

zuv

)

+
π

2
(16)496

Unlike αuv , the value of βuv is not monotonically increasing497

with respect to u. It can be observed that an increase in u498

which causes a decrease in βuv means that the depth mea-499

surement zuv suddenly increased, i.e. the sensor is no longer500

observing an occluding object but the object behind it.501

Let p j be an observed point in the shadow of the IR emitter502

(yellow area in Fig. 14). Let also be α j the angle from the503

camera origin, computed using Eq. 14. There exists a point504

pi on the object along the illumination ray O ′ p j . There also505

exists a point pk inside angle Ô O ′ p j that belongs to the506

object. At most we can choose pk ≡ pi . Since pk belongs to507

Ô O ′ p j , then βk ≥ β j . Point pk also belongs to the interior of508

angle Ô ′Op j as the object does not intersect segment Op j .509

Then, αk < α j . Therefore, a necessary condition for a point510

p j being in shadow is the existence of a point pk that satisfies511

both βk ≥ β j and αk < α j . Thus, the depth measurements512

are removed if:513

β j ≤ max
k | αk<α j

βk (17)514

i.e., since α is monotonic with respect to u:515

atan

(

x ′
uv

zuv

)

≤ max
k ∈ {0..(u−1)}

atan

(

x ′
kv

zkv

)

(18)516

which can be efficiently computed in parallel for each v ∈517

{0.. (vmax − 1)} as shown in Algorithm 2.518

Although it is very likely that a point pk is observed by519

the sensor, since the object is near the sensor and the res-520

olution is very high, condition 17 is still heuristic. Indeed,521

in real scenarios an object may be closer to the sensor than522

the Kinect V2 minimum range, hence pk may not be really523

observed. Moreover, only a necessary condition was demon-524

Fig. 15 The experimental setup (left). Motion planning environment

based on Moveit! (top right). Screenshot of KinFu output during the

initial scan phase (bottom right)

strated. Indeed, some valid points may be misclassified as 525

shadow points. 526

In the pre-processing phase invalid points called veil 527

points are also removed as shown in Fig. 11. Veil points 528

are caused by the lidar technology, which tends to interpo- 529

late points near the object border with the background. Veil 530

points are removed if an angle higher than Θmax = 10◦ is 531

detected with respect to the observing ray. In particular, given 532

a point pi on the depth image, the point is removed if there 533

is a point pk in its Von Neumann neighborhood so that 534

∣

∣

∣

∣

(pk − pi ) · pi

‖pk − pi‖ · ‖pi‖

∣

∣

∣

∣

> cos (Θmax ) (19) 535

4 Experimental evaluation 536

4.1 Robot setup and experimental procedure 537

The experimental setup (Fig. 15) used for the evaluation of 538

the proposed NBV system consists of a robot arm (Comau 539

SMART SiX) with six degrees of freedom. The robot has a 540

maximum horizontal reach of about 1.4 m. A Kinect V2 sen- 541

sor is mounted on the end-effector and it has been calibrated 542

with respect to the robot wrist. The developed software runs 543

under the ROS framework on an Intel Core i7 4770 at 3.40 544

GHz, equipped with an NVidia GeForce GTX 670. Collision 545

free robot movements are planned using the MoveIt! ROS 546

stack. 547

Occupied and unknown voxels are considered as obsta- 548

cles in the motion planning environment. Experiments have 549

been performed on a workspace of size 2 m×1.32 m. The 550

volumetric representation of the environment within KinFu 551

uses voxels of size 5.8 mm. In the motion planning environ- 552

ment voxels are undersampled to 4 cm. KinFu is fed with 553

the robot forward kinematics as in Monica et al. (2016), 554

Newcombe et al. (2011), Roth and Vona (2012) and Wagner 555
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et al. (2013) to improve the accuracy of point cloud registra-556

tion with respect to the standard sensor ego-motion tracking557

approach.558

The experimental procedure consists of the following559

steps. At the beginning of each experiment the environment is560

completely unknown and the robot, starting from a collision-561

free configuration, takes a short initial scan of the scene, from562

one side, using KinFu. Then, the system iteratively computes563

the NBV as described in Algorithm 1. If the motion planner564

finds a collision-free path the robot is moved to the NBV.565

Otherwise, the NBV is skipped. KinFu is turned on when566

the robot reaches each planned next-best view configuration.567

Since Kinect needs to be moved for KinectFusion to oper-568

ate properly the sensor is slightly tilted around the NBV by569

rotating the robot wrist. The volumetric representation of570

the environment is, therefore, updated by KinFu after each571

observation. For the evaluation of the proposed approach for572

active exploration the experiments were concluded after the573

fifth NBV.574

4.2 Experiments575

Experiments have been performed in four different scenarios576

shown in Fig. 16. Each experiment contains multiple objects577

with complex geometry. In particular, in experiment 1 the578

environment comprises two stacks of objects, while exper-579

iment 2 has been performed in a cluttered scene with eight580

objects.581

The performance of the proposed method was compared582

to a standard approach where the NBV is chosen at each itera-583

tion as the viewpoint that maximizes the size of the expected584

unknown volume of the whole environment that becomes585

visible. The standard approach has been developed by skip-586

ping the point cloud segmentation phase and by assigning the587

same saliency value to all points. A video of experiment 4 is588

available for download (http://rimlab.ce.unipr.it/documents/589

RMonica-auro-2016.avi).590

Quantitative data about the average computational time591

for each phase are reported in Table 1. The average time592

for point cloud segmentation and saliency computation is593

about 23% of the total time. A first advantage of the pro-594

posed method is that it completes the five next-best views595

faster than the standard approach. The average times for596

motion planning and robot movement are rather similar, since597

these are fixed costs due to the experimental setup, as well598

as the running time for updating the collision map of the599

motion planning environment (planner map update). Also,600

the time required for viewpoint generation is very short (2.1601

seconds for five views), since the computation is performed602

on the GPU directly on the TSDF volume. The running time603

required for the computation of the NBV is reported as a604

subtotal. It can be noted that for the NBV computation phase605

our method is 3.9 times faster than the standard approach,606

Fig. 16 The experimental scenarios used for the evaluation

Table 1 Average total time (seconds) and standard deviation over the

four experiments for each phase

Phase Method

Proposed Standard

Segm. + saliency 46.1 ±2.5 –

Views generation 2.1 ±0.1 2.1 ±0.1

Views evaluation 26.0 ±4.1 288.5 ±39.0

Subtotal 74.2 ±4.8 290.6 ±39.0

Planner map update 46.0 ±1.6 44.6 ±0.4

Motion planning 88.1 ±17.9 78.3 ±13.8

Robot motion 110.5 ±3.9 108.5 ±7.7

Total 318.7 ±19.1 522.0 ±42.0

even though the standard approach does not require point 607

cloud segmentation and saliency evaluation. 608

The main difference between the two approaches in the 609

time required to compute a NBV lies in the viewpoint eval- 610

uation phase. The standard approach evaluates all candidate 611

viewpoints generated in the environment (on the order of 612

thousands), most of which are located on the edges of the 613

supporting table. On the contrary, being able to focus only on 614

the most salient segments, the proposed method rarely eval- 615

uates more than two hundreds candidate viewpoints at each 616

iteration. Indeed, the proposed method is strictly focused on 617

the exploration of the salient segments, whose extension is 618

smaller than the size of all the unknown regions of the envi- 619

ronment. 620

In Fig. 17, an example of the generated viewpoints is 621

shown. The total number of candidate viewpoints for all 622

segments is 91960. Using the standard approach all view- 623

points would be evaluated to find the optimal NBV. Instead, 624

our method focuses only on the most salient segment and, 625

therefore, only 960 viewpoints are evaluated. In this case, a 626

reachable pose for the robot was found among these view- 627
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Fig. 17 Candidate viewpoints (represented by arrows) for the pro-

posed approach (experiment 1, third NBV). Left candidate viewpoints

of all segments. Right candidate viewpoints for the most salient segment

only

Table 2 Saliency values and number of view poses for the point cloud

segments in Fig. 17 (in descending order of saliency) up to the first

segment not belonging to the objects (part of the supporting table)

Saliency No. of poses Description

0.589 960 Cork jug (top part)

0.565 3640 Cork jug (bottom part)

0.510 1680 Plastic jug (top part)

0.459 1560 Box under cork jug

0.424 600 Plastic jug (bottom part)

0.312 1080 Ball

0.300 400 Box under plastic jug

0.212 240 Box under plastic jug

0.177 320 Box under plastic jug

0.172 7720 Part of the table

points. If a reachable pose had not been found the system628

would have evaluated the second most salient segment, and629

so on. In Table 2 the saliency values of the point cloud630

segments are shown as well as the number of associated view-631

points. Had the algorithm tried other segments after the most632

salient one, the number of evaluated viewpoints would have633

increased up to 10,480, which is the total number of candi-634

date viewpoints actually pointing towards the objects. The635

proposed saliency function is working properly even with636

some degree of over-segmentation by the LCCP algorithm.637

Indeed, some of the objects are segmented in multiple parts.638

For example, both jugs are split into two segments and one639

of the boxes is segmented into three parts. Nonetheless, each640

of those parts received a high saliency.641

In Table 3 marks are reported that indicate whether each642

NBV points towards the objects or not. In the proposed643

approach all next-best views pointing towards the objects644

always occur before any other view, not focused on the645

objects. In the standard approach next-best views pointing646

towards the objects occur in an unpredictable order. There-647

fore, it is possible to conclude that a second and more648

important advantage of the proposed approach is that it allows649

a more rapid exploration of the objects thanks to point cloud650

segmentation and saliency evaluation at the segment level.651

Table 3 Marks showing NBVs pointing towards the objects (�) or not

(×), for all the experiments

Method Exp. NBV

1 2 3 4 5

Proposed 1 � � � � ×

2 � � � × ×

3 � � � × ×

4 � � � � �

Standard 1 × � × � ×

2 � × × × �

3 × × � × �

4 × × � × ×

This conclusion is also supported by the graphs in Fig. 18, 652

which show the number of unknown residual voxels near the 653

objects over the first five next-best views. 654

Images of the planned next-best views for experiment 1 655

are reported in Figs. 19 and 20. Images of the planned next- 656

best views for experiment 3 are reported in Figs. 21 and 22. In 657

experiment 1 the robot focuses on the objects for the first four 658

views. Afterwards, as there are no reachable viewing poses 659

to observe the right side of the objects, due to kinematic 660

constraints, the robot explores a region of space that does not 661

contain any object. In particular, the robot observes the space 662

on the supporting table in the front of the objects, which is 663

incomplete due to noise. A similar behavior is evident, for 664

the proposed approach, in experiment 3. Conversely, it can be 665

noted that the standard approach prioritizes exploration of the 666

unknown voxels occluded by the objects as shown, for exam- 667

ple, in the first two views of experiment 3. In the third view of 668

experiment 3 the standard approach takes a frontal observa- 669

tion of the objects, but in the fourth view the robot observes 670

again a region of the supporting plane without any object. 671

In some cases at the beginning of the exploration, after 672

one or two next-best views, the standard approach achieves a 673

lower number of unknown residual voxels. An example can 674

be seen in Fig. 18 for experiment 1, after the second NBV. 675

This is due to the fact that in the standard approach when the 676

robot observes the unknown voxels occluded by the objects 677

it also partially observes the back of the objects, since the 678

sensor has a large field of view (70◦ × 60◦). 679

The final voxel-based reconstruction is shown in Fig. 23 680

for all experiments. The reconstruction of the objects is 681

always more complete for the proposed method. Some 682

unknown voxels are still present, mostly due to unreachable 683

poses aimed at observing the back or below the objects, as 684

stated above. Also, it can be noted that most of the irrel- 685

evant voxels around the back panel of the scene remained 686

unknown for the proposed method, while these voxels have 687

been observed by the standard NBV approach. 688
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Fig. 18 The graphs show the

number of unknown voxels near

the objects in the scene for the

first five next-best views

Fig. 19 Images of experiment 1 using the proposed method (left to right). Top saliency map of point cloud segments; middle 3D volumetric

representation; bottom planned robot next-best views

4.3 Evaluation of depth image pre-processing689

The proposed Kinect V2 depth image pre-processing filter690

(Sect. 3.3) has been evaluated in the scenario shown in Fig. 24691

(top-left). The environment contains only planar surfaces692

to facilitate ground truth annotation. A bounding box was693

defined around the workspace to remove the background of694

the room. Thus, any point that does not belong to a plane can695

be considered as an outlier. Depth images were obtained by 696

averaging 30 frames (one second) acquired by the sensor to 697

simulate the noise-reduction effect of the KinFu algorithm. A 698

maximum distance threshold of 3 cm was defined to consider 699

a point as belonging to a plane. 700

In Fig. 24 it can be noted that our pre-processing method 701

successfully removes the shadow on the left of the box- 702

shaped object. The total number of false negatives, i.e. outlier 703
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Fig. 20 Images of experiment 1 using the standard NBV approach. Top 3D volumetric representation; bottom planned robot next-best views

Fig. 21 Images of experiment 3 using the proposed method (left to right). Top saliency map of point cloud segments; middle 3D volumetric

representation; bottom planned robot next-best views

Fig. 22 Images of experiment 3 using the standard NBV approach. Top 3D volumetric representation; bottom planned robot next-best views

points not belonging to any plane, are reported in Table 4 as704

well as the number of measurements, i.e. the number of valid705

points reported by the algorithms. Our algorithm reports a706

significantly lower number of outliers compared to the stan-707

dard filtering algorithms already available in the Freenect2 708

driver (a bilateral and an edge-aware filter). Being conserva- 709

tive, however, it also reports a slightly lower number of valid 710

measurements. 711
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Fig. 23 3D volumetric representation of the environment in the four experiments after five next-best views: proposed method (top), standard

approach (bottom)

Fig. 24 Top left the scenario used for testing the proposed depth image

pre-processing filter. Top right image preprocessed by the Freenect2

bilateral filter only. Bottom left image preprocessed by the Freenect2

bilateral and edge-aware filters. Bottom right image preprocessed by

the Freenect2 bilateral filter and our filter. The image is displayed in

color although the algorithm operates on the depth map only. Outliers

points are displayed in red

Table 4 Number of measurements and false measurements produced

by each algorithm

Method Measurements Outliers

Bilateral 83,125 1874

Bilateral + Edge-aware 81,611 849

Bilateral + Proposed filter 79,756 182

In Sect. 3.3 it was pointed out that the proposed filter for712

shadow points removal only provides a necessary condition713

and that false positives may still be present. Evaluation of714

false positives was carried out in a simulated environment715

shown in Fig. 25, which contains a ground plane, a wall,716

Fig. 25 The simulated environment, with object size 4 cm (top) and

16 cm (bottom). White area illuminated by the emitter only. Grey area

illuminated and properly acquired by the camera. Red shadow visible

by the camera. The vertical blue band in the bottom image is a region

of space that is neither illuminated by the emitter nor observed by the

camera

and an object (long box). The object is at a distance of 1.5 717

m from the wall and the Kinect V2 sensor is placed at 1 718

m from the object. The sensor view of the wall and ground 719

plane is partially occluded by the object. The IR emitter and 720

the camera were simulated as separate entities according to 721

the Kinect V2 technical specifications. The shadow points 722
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Table 5 False discovery rate of shadow points

Sensor angle (◦) −60 −30 0 30 60

Object width (cm) 4 41% 50% 50% 47% 42%

8 0% 1% 4% 5% 7%

16 1% 0% 0% 14% 5%

removal filter was tested by varying the width of the object723

and the observation angles of the sensor around the object.724

Table 5 reports the ratio between the incorrectly removed725

points and all the removed points (false discovery rate). For726

normal-sized object (8–16 cm width) the false discovery rate727

is low. However, for thin objects (4 cm width) as the one728

displayed in Fig. 25 (top) the false discovery rate is over729

40%. This is due to the fact that light from the emitter can pass730

behind a thin object and illuminate part of the background731

which could be correctly perceived by the real sensor, but it732

is actually removed by the proposed filter. It may be noted,733

however, that this negative result is quite rare as it happens734

only if a thin object is in front of a far background; moreover,735

in these cases only the background region is affected.736

5 Conclusions737

In this work a novel formulation of the next-best view prob-738

lem was presented that prioritizes active exploration of the739

objects without using any prior knowledge about the envi-740

ronment. The next-best view is selected among candidate741

viewpoints that observe the border of incomplete and salient742

regions of space. A point cloud segmentation algorithm was743

adopted to extract salient point cloud segments associated to744

the objects.745

The proposed approach has some limitations and, there-746

fore, a number of directions are open for future research.747

The heuristic for saliency evaluation has proven robust to748

detect common objects, however, thin objects or parts usually749

receive a low score. Hence, computation of segment saliency750

can be improved by considering more advance features. Fol-751

lowing the results achieved in Tateno et al. (2015) and Uck-752

ermann et al. (2012, 2014) the quality and robustness of the753

point cloud segmentation phase can also be improved by per-754

forming a real-time segmentation. Indeed, real-time segmen-755

tation computed on the TSDF volume is a promising research756

line. Technical limitations of the current robotic setup are757

mainly due to the small workspace of the robot arm and to758

the minimum sensing distance of the Kinect sensor. Finally,759

a natural extension of this work is the inclusion of object760

recognition techniques based on point cloud segmentation761

(Varadarajan and Vincze 2011) and the application of the762

active perception system for intelligent robot manipulation.763
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