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11 Abstract Estimating consumer exposure to nanomaterials
12 (NMs) in food products and predicting their toxicological
13 properties are necessary steps in the assessment of the risks
14 of this technology. To this end, analytical methods have to be
15 available to detect, characterize and quantify NMs in food and
16 materials related to food, e.g. food packaging and biological
17 samples following metabolization of food. The challenge for
18 the analytical sciences is that the characterization of NMs
19 requires chemical as well as physical information. This article
20 offers a comprehensive analysis of methods available for the
21 detection and characterization of NMs in food and related
22 products. Special attention was paid to the crucial role of sam-
23 ple preparation methods since these have been partially
24 neglected in the scientific literature so far. The currently avail-
25 able instrumental methods are grouped as fractionation,
26 counting and ensemble methods, and their advantages and
27 limitations are discussed. We conclude that much progress
28 has been made over the last 5 years but that many challenges
29 still exist. Future perspectives and priority research needs are
30 pointed out.31

32Keywords Nanoparticles . Nanomaterials . Emerging
33contaminants . Food . Analytical methods . Risk assessment

34Introduction

35Nanotechnology is a rapidly developing field and
36nanomaterials (NMs) are of significant economic interest with
37a global market value over 2 trillion euros in 2016 [1] and
38having an impact on many industries including the food in-
39dustry [2]. In 2011, the European Commission (EC) released a
40specific recommendation on the definition of a nanomaterial:
41“a natural, incidental or manufacturedmaterial containing par-
42ticles in an unbound state or as an aggregate or as an agglom-
43erate and where, for 50 % or more of the particles in the
44number size distribution, one or more external dimensions is
45in the size range 1 nm–100 nm” [3]. The EC recommendation
46intends to harmonize different European regulations, includ-
47ing REACH (Registration, Evaluation, Authorization and re-
48striction of Chemicals) and CLP (Classification, Labelling and
49Packaging). In this context, analytical methods to detect, char-
50acterize and quantify NMs, as well as approaches for risk and
51exposure level assessment, will be required for the implemen-
52tation and enforcement of such regulations [4–6]. A number of
53EU-funded projects are tackling this issue, including
54NanoDefine (http://www.nanodefine.eu/) which aims to
55establish analytical tools and guidance to support the
56implementation of the EC recommendation.
57The current use of nanomaterials in the food sector can be
58related to three main areas: food structure, food additives and
59food packaging with various products for each category al-
60ready available on the market. NM applications are found in
61the development of better tastes, enhanced flavour, texture and
62consistency of foodstuffs, in improved bioavailability of nu-
63trients, in new food contact materials with particular barrier or
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64 mechanical properties, and in nano-sensor applications for
65 traceability and monitoring of food during transport and stor-
66 age. The current available information suggests that NMs used
67 in food and agriculture applications include both organic and
68 inorganic materials [7]. An application area of organic NMs is
69 the encapsulation of food additives. These so-called nutrition-
70 al delivery systems or nutraceuticals are generally micelles
71 composed of approved food-grade materials which are avail-
72 able as low-cost bulk ingredients [8]. The improved uptake
73 and bioavailability thanks to encapsulation of the active ingre-
74 dients has opened up a large area of applications in food and
75 animal feed products that incorporate nano-sized vitamins,
76 nutraceuticals, antimicrobials, antioxidants, etc. [9–12].
77 Inorganic NMs known to be used in food, food additives,
78 food supplements and food packaging applications are silver,
79 iron, calcium and magnesium, selenium, silicates and titanium
80 dioxide [7]. Several food-grade nanoparticle products are al-
81 ready present on the market and thus presence of NMs in some
82 alimentary products can be considered as being likely [13].
83 For instance, nanomaterials such as synthetic amorphous sil-
84 ica (SAS, or E551) are often added to foods that are in powder
85 form (e.g. salt, vegetable powder, egg powder, creamer, coffee
86 powder and so on) as an anticaking agent, thickener or carrier
87 of flavours. While E551 is one of the most important anticak-
88 ing agents, other manufactured anticaking agents include cal-
89 cium silicate (E552), sodium aluminosilicate (E554),
90 dicalcium phosphate (E341), sodium ferrocyanide (E535)
91 and microcrystalline cellulose (E460). Titanium dioxide
92 (TiO2) in bulk form is approved as a food additive with num-
93 ber E171. It is used on a large scale as a whitener and as a
94 colorant to impart brightness to food products, especially con-
95 fectionary products. Part of the “food-grade” TiO2 material
96 has been shown to be nano-sized [14, 15]. Nano-silver (Ag-
97 NM) is by volume not the most used material, but it is the
98 fastest growing NM application in food packaging owing to
99 its antimicrobial properties [16–19]. In the last few years there
100 has been increasing interest in the assessment of migration of
101 NMs from food contact materials (FCM) into food [20–22].
102 More recently, Ag-NMs have been studied as an alternative
103 for the antibiotics used in poultry production [23, 24]. Many
104 other metals in nano-sized particles are available as food or
105 health supplements. These include nano-selenium [25], nano-
106 calcium [26], nano-iron [27] and colloidal suspensions of met-
107 al particles, e.g. copper, gold, platinum, silver, molybdenum,
108 palladium, titanium and zinc [28]. As a result, it is likely that
109 consumers are exposed to such NMs on a daily basis [29, 30].
110 While the emerging nanotechnology holds many applica-
111 tions and benefits for the food sector, there are also concerns
112 about their safety. The main concerns stem from the lack of
113 knowledge regarding the interactions of NMs at the molecular
114 or physiological levels, and the fact that new NMs and appli-
115 cations thereof are constantly being produced [7, 31–33]. In
116 addition, the nanotechnology-derived foods are new to

117consumers and it remains unclear how public perception, at-
118titudes, choice and acceptance will impact the future of such
119applications [34, 35]. To ensure sustainable development and
120use of nanotechnology, especially in the food sector, requires
121control and monitoring of NMs and risk assessments of their
122application which in turn requires information about exposure
123and toxicity. Even though a number of analytical methods for
124the detection and characterization of NMs are available [4,
12536], it is clear that it is necessary to improve the analytical
126methods and strategies to enable risk assessments and imple-
127ment future regulations [37]. Currently, risk assessments for
128NMs are still very challenging, and complex issues and regu-
129lations for NMs are constantly evolving [7]. Both issues im-
130pose an urgent need to develop adequate analytical methodol-
131ogies for detecting and characterizing NMs. This review aims
132to summarize the current status of relevant analytical strate-
133gies for detection, identification and characterization of NPs in
134food products with particular attention to the crucial role of
135sample preparation strategies for achieving reliable results.

136Sample preparation

137In the analysis of NMs in a food sample, it has to be taken into
138account that these NMs are not common chemicals but highly
139reactive physical objects of nano-sized dimensions and char-
140acterized by a sometimes heterogeneous, evolving or vulner-
141able nature (i.e. in the case of core shell nanoparticles, or in the
142in vivo formation of a protein corona around inorganic parti-
143cles). The physico-chemical properties of NMs may depend
144on the surrounding matrix and can change over time in re-
145sponse to slight perturbations of their environment. Thus,
146the determination of NMs in food requires sample treatment
147techniques that are able to extract or isolate NMs from com-
148plex matrices which may contain many more particles of a
149similar composition. At the same time, sample manipulation
150should be minimized to guarantee analytical accuracy and
151reduce the risks of artefacts [38]. For these reasons, the objec-
152tive of sample preparation is to reduce sample complexity
153with good recovery rates and reproducibility, while preserving
154the original state and particle size distribution (PSD) of the
155NMs in the initial food sample [6]. The time between sample
156preparation and instrumental measurements and the extract
157storage conditions are other important parameters to be inves-
158tigated in order to prevent agglomeration, de-agglomeration,
159dissolution and disruption phenomena, or undesired interac-
160tions with other components in the matrix extract [39].
161Another point of consideration is the minimum size of the
162analytical sample that should be processed in order to be rep-
163resentative for the whole sample. Linsinger et al. concluded
164that the situation for NMs is comparable to that for molecules
165and that usually sample sizes are large enough to contain
166enough particles to allow approximation of the Poisson
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167 distribution of particles by the normal distribution, which sig-
168 nificantly reduces statistical complexity [40]. In addition, they
169 mention that the minimum number of NMs in the subsample
170 should be greater than 500 to limit the sampling error of the
171 particle size distribution. Another approach to determine min-
172 imum sample size is based onQ3 Gy’s equation for particle sam-
173 pling [41]. Although Gy’s sampling theory is hard to digest,
174 theoretical calculations show that a sample size of only 10 mg
175 of a sample containing 100 nm Ag nanoparticles with a parti-
176 cle mass concentration of 1 mg/kg is sufficient to achieve an
177 analytical accuracy better than 10 %. In addition, the number
178 of Ag nanoparticles in such a 10-mg sample is about 2×106,
179 far more than the minimum required number of 500 men-
180 tioned by Linsinger [40]. Up to now, most of the published
181 sample preparation procedures for nanoparticle analysis deal
182 with aqueous environmental samples or stabilization of pure
183 NMpowders dispersed in pure water [42, 43]. However, in the
184 last few years increasing efforts have been dedicated to more
185 challenging solid environmental matrices, as well as to bio-
186 logical and food matrices [4, 44].
187 In the progressive preparation steps going from subsam-
188 pling, particle extraction or matrix clean-up to final particle
189 quantification, a number of quality check criteria should be in
190 place to confirm (or at least to assess) particle size stability and
191 recovery. In principle, stepwise sample preparation for NMs is
192 not different from that required for classical analytes in food
193 and beverages (Fig. 1) [45]. At first homogenization of the
194 laboratory sample is required (step I), as is the actual extrac-
195 tion or isolation of NMs from the matrix (step II). Comparable
196 with classical contaminants or residues in food, a concentra-
197 tion step may be required (step III). Finally, and this is differ-
198 ent from other analytes, a stabilization of the NM suspension
199 is often required (step IV). Step I generally consists of homog-
200 enization of the laboratory sample, which may involve manual
201 mixing or agitation and even heating or sonication. For step II,
202 the isolation of NPs from complex food matrices, a simple
203 water extraction combined with sonication has often proven
204 inadequate, resulting in low recoveries and extracts containing

205semi-solidmatrix residues [39]. To overcome these limitations
206several methods are available and the choices often depend on
207the ruggedness of the NMs.
208For inorganic NMs, sometimes called “hard” NMs, isola-
209tion is usually carried out by chemical or enzymatic digestion
210of the matrix. Traditional chemical digestion involves the use
211of strong mineral acids, often in combination with hydrogen
212peroxide and high temperatures [15, 45–47]. This, however,
213can cause the dissolution of NMs or reactions with dissolved
214sulfide and/or chloride species, thus losing information about
215their presence, size and concentration in the sample [48–50].
216As a consequence, enzymatic and alkaline digestions have
217recently been proposed as valid alternatives for the analysis
218of reactive NMs in biological tissues and meat [24, 39,
21950–52]. Enzymatic digestion involves NM extraction and iso-
220lation by digestion of organic matrix constituents, such as
221proteins or carbohydrates. For this aim, broad spectrum en-
222zymes, as proteinase K and α-amylase have been used for the
223isolation of NMs in wheat, semolina, cookies, pasta [53] and
224ch icken mea t [24 , 39] . For a lka l ine d iges t ion ,
225tetramethylammonium hydroxide (TMAH) is used and is able
226to efficiently digest soft tissue and selectively extract dis-
227solved metals without causing the dissolution of NMs to free
228ions [52]. The development of an efficient matrix digestion
229and NM isolation procedure requires the identification and
230optimization of critical parameters. Parameters such as tem-
231perature and time have been demonstrated to be important for
232digestion efficiency and reducing the risk of NM dissolution,
233precipitation or aggregation [24, 39, 51]. The addition of bo-
234vine serum albumin (BSA) prior to alkaline digestion is useful
235to prevent NM agglomeration due to the high ionic strength of
236TMAH solutions [51, 54]. In addition, the material and shape
237of the vials and tubes, the nature and concentration of surfac-
238tants, the methods of sample agitation, i.e. vortexing, mixing,
239stirring or sonication, can all affect the extraction recovery
240[48].
241The literature describes only a few extraction procedures
242for the isolation of NMs from the matrix. Lopez-Lorente et al.

Fig. 1 Sample preparation for nanomaterials in food and consumer products. Step I sample homogenization (e.g. sonication). Step II extraction/isolation
of nanomaterials. Step III nanomaterial concentration. Step IV nanomaterial stabilization
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243 used a cationic surfactant in combination with an ionic liquid
244 in a micro liquid–liquid extraction to isolate gold nanoparti-
245 cles fromwater and liver [55]. In a more recent publication the
246 same author proposed to use nanomaterial-based sorbents for
247 the extraction of NMs of different nature [56]. The basic idea
248 is that nanomaterials or nanostructured matter can simulta-
249 neously act as an object (the analyte) in the sample and as a
250 (nano-)tool in different steps (sample preparation, separation
251 and detection) of the same analytical process. An example of
252 this is the extraction of AgNMs using a cationic surfactant in
253 combination with sulfonated nano-cellulose as an efficient
254 and environmental friendly dispersive micro solid-phase ex-
255 traction [57]. AgNMs extracted onto the nano-cellulose sor-
256 bent are desorbed into an aqueous solution containing thiotic
257 acid prior to capillary electrophoresis (CE) without the need
258 for any concentration or clean-up steps.
259 Besides matrix complexity and the nature of the nanopar-
260 ticle, the low concentration or heterogeneity of NMs in the
261 sample can be an additional issue to be addressed, requiring
262 prefractionation, purification and enrichment procedures such
263 as off-line settling, centrifugation or filtration [44].
264 Centrifugation and ultracentrifugation techniques depend on
265 the size, shape and density of the different sample compo-
266 nents, whereas in membrane filtration retention and elution
267 of an analyte depend on the size of membrane pores [58],
268 differentiating the size range of microfiltration (100 nm–
269 1 μm), ultrafiltration (1–100 nm) and nanofiltration (0.5–
270 1 nm) [4, 59]. Centrifugation permits one to reach enrichment
271 factors up to 10; however, it can also introduce the risk of
272 particle loss due to incomplete sedimentation, or even particle
273 alteration. Isolating nanoparticles by a filtration process is
274 called colloidal extraction. Filtration is the most common
275 prefractionation technique thanks to simplicity and low costs;
276 however, it is prone to artefacts caused by membrane clog-
277 ging, which decreases the effective pore size, by cake layer
278 formation on the membrane surface during filtration and by
279 membrane concentration polarization, thus modifying the size
280 distribution of the samples with respect to the centrifugation
281 [60–62]. For example, sequential filtrations of coffee creamer
282 extract through filters with decreasing pore sizes, i.e. 5, 0.45,
283 0.2 and 0.1 μm, have also been investigated to achieve selec-
284 tivity in the separation of the nano-silica fraction from the
285 matrix components [63]. However, this approach resulted in
286 losses of nano-silica during successive filtrations, probably
287 because of nanoparticle interactions with larger components
288 of the matrix and to poor quantitative performance of mem-
289 brane filtration [64]. Cross-flow (or tangential) filtration
290 (CFF) represents a valid alternative to dead-end filtration since
291 it gives the advantage of reduced clogging and concentration
292 polarization over the membrane, thanks to the tangential
293 movement of feed flow across membrane surface [44, 65,
294 66]. NM enrichment can also be achieved by cloud point
295 extraction, involving the addition of a surfactant to the sample

296at a concentration that exceeds the critical micelle concentra-
297tion. At a temperature higher than that for a specific cloud
298point, the surfactant forms micelles in which non-polar sub-
299stances are encapsulated. Since the density of the micelles is
300higher than that of water, they settle after some time, a process
301that is usually accelerated by centrifugation. Despite the high
302enrichment factors (up to 100) that can be achieved by this
303methodology, it is strongly influenced by matrix components
304and particle surface properties. Up to now, this methodology
305has been applied only for determination of silver NMs in
306water, thus allowing their separation from ionic silver [67].
307The final step of sample preparation often involves particle
308stabilization to avoid dissolution or aggregation phenomena,
309in order to minimize variability effects on the final measured
310particle size distribution due to the sample preparation proce-
311dure. If acid digestion has been used to remove the matrix, the
312acid-digested sample has to be stabilized by adjustment of the
313pH to a range compatible with the original particle suspension.
314Particles may also be diluted and stabilized in a suitable dilu-
315tion agent, for instance 0.01 mM sodium dodecyl sulfate
316(SDS) and 0.025% (v/v) FL-70TM as detergents, able to form
317complexes and/or micelles, or 0.25 mM ammonium carbonate
318as a buffer medium in order to adjust the ionic strength and pH
319value [45]. As a result of all these aspects, any analytical
320strategy is likely to be customized on the basis of the type
321and nature of the NPs, the sample matrix, the instrumental
322separation and detection techniques and the physico-
323chemical properties to be assessed. Further research on the
324optimization of sample preparation is currently being per-
325formed within the NanoDefine project that will produce vali-
326dated method and standard operating procedures (SOP) for
327sample preparation of certain food matrices.
328The compatibility of the prepared NM extracts and require-
329ments of the instrumental analysis must be tested beforehand.
330In some cases analyses of the extract with some separation
331and/or detection technique can be unsuccessful or even im-
332possible. As an example, the presence of digested or partially
333degraded matrix can cause unresolved peaks due to non-ideal
334elution or shifts of retention time in the asymmetric flow field-
335flow fractionation (AF4) separation [39, 51]. In addition,
336spike experiments of TiO2 NMs on fish tissues demonstrated
337that the extraction recovery depends on the type of tissue
338investigated (gill, liver, muscle, spleen or intestine) with low-
339est recovery for high-fat tissues such as liver [48]. For matrices
340with a high fat content, a defatting step with an organic solvent
341such as hexane could be included in the sample treatment
342procedure [53, 63]. Residues of the matrix components can
343be tolerated when they do not interfere with the instrumental
344analysis and do not change the properties and aggregation
345state of the particles.
346In case of organic, so-called soft NMs, the sample prepa-
347ration possibilities are limited since these types of nanoparti-
348cles essentially consist of micelle-like structures that break up
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349 easily [68]. Extraction procedures to isolate intact organic
350 NMs from a sample matrix are lacking, probably because
351 solvent extraction generally leads to a breakup of the NM
352 structure [69]. For instance, to isolate Coatsome A liposomes
353 from a beverage matrix, Helsper et al. used a combination of
354 ultrafiltration and hydrodynamic chromatography (HDC),
355 followed by mass spectrometry-based analysis for further
356 identification and characterization [70].

357 Analytical separation, detection and characterization
358 of NMs

359 Analytical methods for sizing and quantification of NMs in
360 food can be divided in three groups: fractionation, counting
361 and ensemble methods. In the fractionation group, the most
362 applied technique is probably AF4 which has been combined
363 with multi-angle light scattering (MALS) and inductively
364 coupled plasma mass spectrometry (ICP-MS) for sizing and
365 quantification of metal and metal oxide NMs (Fig. 2). Another
366 separation technique is hydrodynamic chromatography
367 (HDC) which has been combined with ultraviolet (UV) and
368 ICP-MS detectors for the detection of organic NMs and metal
369 and metal oxide NMs. The combination of a separation tech-
370 nique with ICP-MS is a configuration often used, especially
371 for metal and metal oxide NMs [71–74]. Another, less used
372 fractionation method that will be discussed briefly is differen-
373 tial centrifugal sedimentation (DCS). The applications of frac-
374 tionation–detection combinations for NMs in food are de-
375 scribed in more detail in the following sections.
376 The best example of the counting group is electron micros-
377 copy (EM) which is recommended by the European Food
378 Safety Agency (EFSA) for the size determination of NMs in
379 food [75]. Normally, a prerequisite for counting methods is
380 that the extracts need to be sufficiently clean to detect the NMs
381 sincematrix constituents that are still present in the extract will
382 complicate the measurement or even make it impossible.
383 Another counting technique is single particle ICP-MS

384(spICP-MS) (Fig. 2). Since this technique is extremely sensi-
385tive for mass (typically nanograms per litre), extract dilution
386before spICP-MS analysis is often required, and this dilution
387will contribute to the clean-up of matrix constituents [76].
388Moreover since spICP-MS is element-selective, the presence
389of particulate matter of different chemistry will not hamper the
390detection, unless a clogging of the sample introduction system
391or the nebuliser occurs. Two counting techniques that will be
392discussed briefly are nanoparticle tracking analysis (NTA) and
393gas-phase electrophoretic mobility molecular analysis
394(GEMMA). The application of counting techniques for NMs
395in food is described in more detail in the following sections.
396The third group is ensemble techniques where large num-
397bers of NMs are measured simultaneously. Examples of that
398group are dynamic light scattering (DLS), particle-induced X-
399ray emission (PIXE), surface plasmon resonance (SPR) and
400coherent anti-Stokes Raman (CARS). DLS and CARS have
401not been used for NMs in food (DLS only in-line with a
402fractionation method, CARS solely for NMs in biological
403samples) and are therefore not discussed here. PIXE and
404SPR are briefly discussed in the following sections.
405Table 1 lists applications of FFF and HDC in combination
406with UV–Vis, MALS and ICP-MS, and applications of EM
407and spICP-MS for the detection and characterization of NMs
408in food. Table 2 gives an overview of the strong and weak
409points of the aforementioned techniques in the detection and
410characterization of NMs in food.

411Fractionation methods

412Field-flow fractionation

413In AF4 a cross-flow perpendicular to the carrier liquid is used
414to separate particles on the basis of their diffusion coefficient
415and hydrodynamic diameter [98–103]. Another field-flow
416fractionation technique that is used sometimes is sedimenta-
417tion FFF (Sd-FFF) which uses a centrifugal field for size

Fig. 2 Two possible analytical strategies for the sizing and quantification
of NPs, indicated by grey spheres in the diagram, in food. Top AF4 with
multiple detectors allows the determination of true size and a mass-based

particle size distribution (PSD). Bottom spICP-MS allows the
determination of a spherical equivalent diameter of the particle and a
number-based particle size distribution
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418 separation of particles [73]. Note that FFF methods are per se
419 fractionation techniques able to achieve particle separation,
420 but not to independently determine particle size. Accurate
421 and independent size determination is only achieved by on-
422 line coupling to a DLS detector (hydrodynamic diameter)
423 [104], or better a multi-angle light scattering detector
424 (MALS) able to determine the radius of gyration [79, 98,
425 104]. Particle size can be estimated from AF4 theory by cal-
426 culating the hydrodynamic diameter based on retention time
427 and channel dimensions, or by calibrating the separation using
428 (certified) reference materials of known size [100]. Each ap-
429 proach has advantages and drawbacks. AF4 theory is based on
430 ideal running conditions and does not account for the particle
431 chemistry and surface charge properties that can cause large
432 shifts in elution time [39]. The use of size calibrants, mostly
433 polystyrene particles, is well established but also does not
434 account for particle chemistry and surface charge properties.
435 On-line coupling of a MALS detector allows for independent
436 determination of the radius of gyration but is relatively expen-
437 sive. Normally DLS is not suitable for samples of high com-
438 plexity, because the intensity of the scattered light in the nano-
439 range is proportional to the 6th power of the particle radius. As
440 a result, the presence of a few large particles will easily over-
441 shadow the presence of many small particles [105, 106]. On-
442 line coupling of FFF to a DLS detector is a convenient alter-
443 native, even if limited LOD (limit of detection) for size can
444 hamper the sizing of the smallest particles.
445 Carrier flow rates in AF4 are normally 0.5–1 mL/min mak-
446 ing AF4 compatible with MALS, US–Vis, DLS and ICP-MS
447 detectors. UV–Vis can be helpful for detection/quantification
448 of organic NMs and plasmonic NMs, such as nano-gold and
449 nano-silver [100]. While inductively coupled plasma atomic
450 emission spectroscopy (ICP-AES) [104] and atomic absorp-
451 tion spectroscopy (AAS) [80] have been used, on-line ICP-
452 MS is the method of choice for element-specific detection and
453 quantification of metal-containing NMs [79, 100]. The LOD
454 for mass for the combination of AF4 with ICP-MS is in the
455 order of 10 μg/L for gold and silver. For silica and titania,
456 LODs are higher since the detection of Si and Ti is hampered
457 by the presence of polyatomic interferences. LODs in the
458 range of 0.16–0.3 mg/L for aqueous suspensions of silica
459 [79] and 0.5 mg/L for titania [14] are reported. The use of
460 collision cell technology and an MS/MS detector in ICP-MS
461 has resulted in improved LODs for silica nanoparticles [79].
462 The configuration AF4-MALS-ICP-MS can be used for
463 nano-separation, nanoparticle sizing and multi-elemental
464 quantification. Since ICP-MS detection determines mass,
465 the size distribution that is determined is actually a mass-
466 based size determination. This is a drawback since the EU
467 recommendation for a nanomaterial requires number-based
468 size distributions; therefore, a mathematical conversion is
469 required to translate mass-based into a number-based data
470 [14, 73]. Although this looks straightforward, the

471uncertainty introduced by such a conversion results in a
472limitation of the lower side of the particle size distribution
473to 20 nm [14]. Other drawbacks of the AF4-MALS-ICP-
474MS combination is that it is time consuming (AF4 runtimes
475are typically 30–60 min), has poor dynamic size range
476within a run at fixed conditions and is not able to distin-
477guish constituent particles and aggregates/agglomerates. In
478addition, optimization of the separation is time consuming
479and it often has to be tuned for different NM/matrix com-
480binations, which means that a sound knowledge of AF4,
481the type of particle, its size and surface modification are
482required. As a consequence, AF4 is more suitable as a
483confirmatory technique and not as a screening technique.
484The multidetector FFF approach has been applied for the
485detection, sizing and quantification of NMs in food includ-
486ing silica [45] in soup, titania in food, chewing gum and
487toothpaste [14] and si lver in chicken meat [39].
488Sedimentation-FFF combined with off-line graphite fur-
489nace atomic absorption spectrometry (GFAAS) has been
490used for the character izat ion of s i l ica par t ic les
491(Aerosil300, Aerosil380, Tixosil43 and Tixosil73) used
492as food additives [80]. The effect of carrier pH, chemical
493composition and conductivity played an important role in
494the correct channel elution of silica. For these type of sam-
495ples, preliminary preparation steps can significantly alter
496the particle size distribution; moreover, elution conditions
497including centrifugal field and carrier selection have to be
498finely tuned to avoid fraction losses. Contado et al. [80]
499achieved the best results with 0.1 % FL70 for Aerosil and
500could confirm the presence of a fraction of primary parti-
501cles of about 10 nm and aggregates/agglomerates in the
502range 50–200 nm. The technique was also applied to a real
503cappuccino sample.
504Details of key studies are summarized in Table 1, highlight-
505ing the particle–matrix addressed, type of detectors and elu-
506ents used as well as key findings. This shows that great effort
507is currently being put into the development and validation of
508general methods for preparation and analysis of nanoparticles
509in food, such as SiO2 in tomato soup [45] or AgNPs in chicken
510meat [77] as developed in the NanoLyse project. More work is
511being carried out within the NanoDefine project on both prep-
512aration method and analysis bymultidetector FFF approaches:
513further development of a generic sample preparation approach
514to isolate nanomaterials from food and cosmetics using a ge-
515neric multistep sample preparation procedure was successful-
516ly demonstrated by Velimirovic et al. [107] for a powdered
517tomato soup which contains the anticaking agent SiO2 (E551)
518and a sunscreen which contains TiO2 as UV filter.
519In general, the absence of official standardized protocols
520for a more generic FFF separation, the lack of standards cer-
521tified for size and mass or number concentration, and the
522absence of fully inert membranes for AF4 currently represent
523important technical bottlenecks for the widespread use of
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524 multidetector field flow fractionation as a routine analysis of
525 NMs in food. Table 2 summarizes the pros and cons of AF4-
526 ICP-MS in comparison to other reported methods.

527 Hydrodynamic chromatography

528 Particle size in HDC is correlated with the retention time,
529 although interactions between the non-porous beads in the
530 column and the analyte particles cannot be excluded. In the
531 last few years HDC has become popular in environmental
532 analysis to understand the behaviour, occurrence and fate of
533 NMs [108–112]. The use of HDC for the analysis of complex
534 samples was recently summarized by Laborda et al. [113].
535 Although HDC can separate a broad particle size range and
536 can be applied in a standard liquid chromatography configu-
537 ration, HDC is not very popular in the analysis of food sam-
538 ples. The main reason is that particle size separation in HDC is
539 by far not as good as in AF4 [114]. Nevertheless, HDC has
540 been used to study SiO2 NMs in food products containing
541 E551 [85], to investigate the fate of SiO2 NMs after exposure
542 to a human digestion model [30] and to separate liposome-
543 based NMs [70]. The liposome-based NMs could not be sep-
544 arated with AF4 since the shear forces in the AF4 channel
545 broke up the micelle structure of the organic NM. Table 1
546 summarizes the studies in which HDC coupled to different
547 detectors was used in the analysis of food and environmental
548 samples. Studies on both inorganic particles (SiO2) and organ-
549 ic particles (liposomes and starch) have been performed;
550 moreover, the first on-line hyphenation between HDC and
551 spICP-MS was recently demonstrated for AuNPs, and it has
552 been included since its application has relevance for complex
553 matrices including food.

554 Differential centrifugal sedimentation

555 DCS, also called centrifugal liquid sedimentation (CLS), can
556 be used for particle size characterization of materials in the
557 range of 5 to >1000 nm. The sample is injected in the centre of
558 a rotating disk in which a gradient of sucrose is created and in
559 which the particles are separated before reaching the edge of
560 the disk where a detector is located. The actual particle size is
561 calculated from the time needed to sediment the particle and
562 the assumed material density. DCS can separate particles that
563 differ in diameter by as little as 5 %, including separations in
564 complex matrices such as plasma or cell culture media. The
565 runtime of the analysis depends on the range of sizes being
566 analysed and the density of the particles being measured [115,
567 116]. For nanomaterials, analysis times are typically in the
568 range of 15–30 min. The advantage of DCS is that in a rela-
569 tively short time a high resolution is reached, and multimodal
570 mixtures can be resolved [73]. DCS has been used for the
571 characterization of silica nanoparticles suitable for food [117].

572Counting methods

573Electron microscopy

574EM is the best technique to determine the shape, size and
575aggregation status of NPs. With a practical resolution of about
57610 nm in scanning electron microscopy (SEM) and 1 nm in
577transmission electron microscopy (TEM), the resolution is
578high enough to get detailed images of NMs in food [4, 6,
579118]. EM is recommended by the EFSA for the determination
580of particle size, shape and morphology of NMs in food, agro-
581chemicals and food packaging and for distinguishing them
582from other internal components such as liposomes, micelles
583or crystals [75]. EMs equipped with energy dispersive X-ray
584spectroscopy (EDS or EDX) become even more important
585tools for the determination of the elemental composition of
586the observed NMs. Dudkiewicz et al. presented an interesting
587overview of EM-based methods for the characterization of
588NMs in food, summarizing both sample preparation for EM
589and imaging approaches [118, 119]. In these reviews, the au-
590thors point out that the main challenge is the sample prepara-
591tion and that EM is best used as a complementary or confir-
592matory analysis to the analytical separation and detection
593techniques described in the text for these sections. In recent
594years, an increasing number of studies have been published
595concerning the determination of NMs in food matrices with
596EM and these are presented in Table 1. It shows that different
597approaches for sample preparation and different complemen-
598tary techniques and typical EM problems in the characteriza-
599tion of NMs have been investigated in these studies.
600An important aspect of EM is the limited sample volume
601that can be analysed. This is a consequence of the fact that
602SEM and TEM at high magnification are more or less surface-
603related analytical tools. In SEM the penetration of the X-ray
604beam is a few micrometres while in TEM it is only a few tens
605of nanometres. As a result, only a limited number of NMs can
606be detected or visualized in such a small volume and the limit
607of detection is therefore high. Random sampling and investi-
608gation of several samples are necessary to obtain representa-
609tive results [119]. Automated image analysis software can
610improve the measurement statistics by analysing a large num-
611ber of areas on the sample [53]. However, with particle con-
612centrations at trace and ultratrace levels even this possibility
613runs into problems.
614In conventional EM, samples are placed in a high vacuum
615and samples that are not electrically conductive must be coat-
616ed with a conductive layer to avoid charge accumulation.
617However, food samples may have a considerable amount of
618water which means that they have to be properly fixed and
619dried before the analysis. If the sample morphology is expect-
620ed to change as a result of the dehydration process, it is pos-
621sible to encapsulate hydrated samples in thin electron-
622transparent membranes, or to keep them in a solid form under
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623 cryogenic conditions. Zhang et al. demonstrated this when
624 they studied the contamination and penetration of AgNMs in
625 pears [89]. For the EM analysis the pear samples were initially
626 treated with a primary fixative solution and then subjected to
627 dehydration, followed by critical point drying using liquid
628 carbon dioxide. This allowed them to quantify the total con-
629 tamination expressed as a number-basedAgNMconcentration
630 and the penetration depth of AgNMs into the fruit. While 70-
631 nm AgNMs were stopped on the skin of the fruit, 20-nm
632 AgNMs penetrated the fruit and diffused into the pulp.
633 Nowadays a good alternative to the standard high vacuum
634 EM is low vacuum often called environmental EM (ESEM) or
635 atmospheric EM (ASEM) in which hydrated and even liquid
636 samples can be observed at pressures up to 6000–7000 Pa and
637 a relative humidity up to 100 % [108, 120]. Specific sample
638 treatments that may affect NM size and distribution in the
639 sample matrix can thus be avoided, although the resolution
640 of ESEM andQ6 ETEM is generally not as good as that of the
641 high vacuum equivalent. Using ESEM, Luo et al. [120]
642 showed that mean sizes of SiO2 ENP in tomato soup where
643 larger when measured with ESEM compared to TEM and
644 FEG-SEM. This provided useful additional knowledge on
645 the aggregation state of NMs in the food matrix. Johnston
646 et al. exposed fish to TiO2, CeO2 and ZnO NPs with sizes in
647 the 20–100 nm range [47]. Using ESEM-EDS they not only
648 observed that different kinds of NMs concentrated in different
649 ratios in organs but also that active mucus production in re-
650 sponse to irritation by the exposure to NMs produced large
651 aggregates and precipitates which increased the average size
652 of the NMs in water which in turn decreased the
653 bioavailability.
654 In most of cases, NM analysis in food by EM is used as a
655 qualitative, and not quantitative, analysis technique. This is
656 especially the case when it is used independently from other
657 measurements to confirm the presence of a certain NM or
658 when complex matrices or low particle concentrations are in-
659 volved. EM is then used to support other measurements, e.g.
660 FFF-ICP-MS [63] or AF4-ICP-MS [77], and to visually con-
661 firm the presence of NPs in the sample; however, there are
662 exceptions. Beltrami et al., for instance, described the prepa-
663 ration of thin SEM-ready layers of preconcentrated samples in
664 order to perform multiple measurements of different areas
665 [53]. In this way they collected statistically valid data on the
666 concentration of metal NPs in raw materials and food prod-
667 ucts, like common wheat, semolina, cookies and pasta.
668 Similarly, Verleysen et al. described a validation method for
669 the quantitative TEM measurement of Ag NPs in decoration
670 pastry [87].

671 Single particle ICP-MS

672 Single particle ICP-MS (spICP-MS) has become popular for
673 simultaneous sizing and quantifying of metal and metal oxide

674NMs [14, 121, 122]. In spICP-MS the number of spikes ob-
675served in the time scan is directly proportional to the particle
676concentration in the sample, whereas the peak height is pro-
677portional to the particle’s radius to the third power. This means
678that a number-based particle size distribution is determined
679which fits well with the EC definition of a nanomaterial [3].
680The particle size is calculated from the detected mass of the
681element that is measured assuming a certain composition and
682a spherical shape. However, without any a priori knowledge
683about a particle’s composition and shape, no conclusions can
684be drawn about the true particle size. It is for this reason that
685spICP-MS is a screening method, albeit a very useful one.
686An adequate time resolution and a low particle density in
687the sample are required to ensure that each signal originates
688from one particle only, hence the name single particle ICP-
689MS. While the runtime of a typical spICP-MS analysis is
6901 min, the time resolution used during the run is less than
69110 ms which can be handled by most standard ICP-MS sys-
692tems, and more recently less than 1 ms in specialized applica-
693tions on newer ICP-MS systems [123]. The short runtime
694makes spICP-MS analysis a much faster technique than any
695other for the detection of NMs. The limit of detection for mass
696is in the ng/L range which has the advantage that extracts can
697be diluted to minimize interferences from matric constituents
698that may be present in the extract. The size detection limit of
699spICP-MS depends on a number of factors including the sen-
700sitivity of the mass detector, the mass fraction of the analyte in
701the particles, and the background noise in the time scan [124].
702For standard quadrupole ICP-MS systems the size-LOD is
70310–20 nm for gold and silver, 50 nm for titania and 200 nm
704for silica. Calculated size-LODs for 40 elements can be found
705in the literature [124]. An alternative to achieve lower size-
706LODs is the use of a high-resolution sector-field ICP-MS
707which is about 10 times more sensitive than a quadrupole
708resulting in two times lower LODs.Table 1 lists applications
709of spICP-MS described in the literature for the detection of
710NMs in food. Of special interest is the study of silver NMs in
711chicken meat since it describes the validation of the complete
712method according to EU regulation 2002/657/EC [125]. Two
713inter-laboratory studies have been organised to test the perfor-
714mance of spICP-MS for the determination of gold and silver
715NMs in aqueous extracts and in digested chicken liver [94,
716126]. A data evaluation tool has been developed for the cal-
717culation of particle size, particle size distribution and particle
718concentration from the raw spICP-MS data and is on-line
719available. Finally, an ISO standard is in preparation for the
720application of spICP-MS in aqueous extracts [127].
721Recently spICP-MS has been used as a detector online with
722HDC as well as AF4 [83, 128]. Although data processing is
723still a challenge, the combination is an advantage because two
724independent particle sizes can be determined, one from the
725particle size separation (DHDC or DAF4), and a second from
726the spICP-MS analyses (DSP). DHDC and DAF4 are
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727 hydrodynamic radii independent of the composition of the
728 particle whileDSP is a spherical equivalent radius. If both radii
729 are equal, the measured particle consists completely out of the
730 measured element. If, however, DSP<DHDC the particle con-
731 sist only partly out of the measured element, as in the case of
732 TiO2, or the measured particle is actually an aggregate or
733 agglomerate of the measured element. In addition, both com-
734 binations can differentiate between nanoparticles and ions, an
735 important topic for toxicologists.

736 Nanoparticle tracking analysis

737 NTA, or nanoparticle tracking analysis is a method for sizing
738 particles in liquids by correlating the rate of the Brownian
739 motion to particle size [129]. The technique calculates particle
740 size on a particle-by particle basis and allows the determina-
741 tion of a size distribution profile of particles with a diameter of
742 approximately 30–1000 nm in liquid suspension. In relation to
743 food, NTA has been used for the characterization of E551 in
744 tomato soup [120] and the determination of Ag NMs in a
745 chicken digest [94], and to study gold NMs in orange juice
746 [130]. In all cases, particle size determination using NTAwas
747 reasonable (i.e. deviation less than 20 %), although the accu-
748 racy was not as good as that from EM and spICP-MS in the
749 same samples. As with dynamic light scattering, the presence

750of large particles in the measurement cell easily results in
751overestimation from the size. The accuracy of particle concen-
752trations determined with NTAwas poor compared to the other
753techniques and NTA gives no information of the chemical
754composition of the particle.

755Gas-phase electrophoretic mobility analysis

756GEMMA separates single charged analytes produced by a
757nano-electrospray process with subsequent drying of droplets
758and charge conditioning in a bipolar atmosphere by a 210Po α-
759particle source. Size separation occurs in the gas-phase
760employing a constant, high-laminar flow of compressed air
761and a tuneable electric field. By variation of the electric field
762strength only nanoparticles of a corresponding electrophoretic
763mobility diameter (EMD) are able to pass the differential mo-
764bility analyser (DMA) unit of the instrument [131].
765Depending on the DMA geometry, analytes in the size range
766of 10–500 nm can be analysed. Subsequent detection in a
767condensation particle counter (CPC) is number-, not mass-
768based allowing the analysis of nanoparticle samples without
769the bias of preferential detection of high molecular mass com-
770ponents [132]. Additionally, as detection occurs by scattering
771of a focused laser beam, even single particle detection is fea-
772sible. Correlation of obtained EMD values to molecular

t2:1 Table 2 Synopsis of features and crucial points of AF4-ICP-MS, HDC-ICP-MS, EM-EDS and spICP-MS in the instrumental analysis of
nanomaterials in food

t2:2 Performance characteristic AF4-ICP-MS HDC-ICP-MS EM-EDS sp-ICP-MS

t2:3 Determination of number-based particle size distribution
as in EU recommendation for definition of nanomaterial

± – + +

t2:4 Sensitivitya (size) + ± + ± (depends on element)

t2:5 Sensitivityb (mass) ± ± ± +

t2:6 Discriminate between constituent particles and aggregates or agglomerates – – + –

t2:7 Discriminate between particles and ions + ± + +

t2:8 Multi-elemental capability + + + ± (in development)

t2:9 Capacity to size non-spherical particles – – + –

t2:10 Software for automated data processing – ± + +

t2:11 Typical runtime per sample (min) 30–60 20 15 1

t2:12 Validated methods and standard operating procedures availablec ± – + ±

t2:13 Specificity + + –d +

t2:14 Dynamic size range ± + – +

– poor, ± moderate, + good
a Sensitivity for size to be considered within the prospective of the EU definition of nanomaterials, wherein the lowest detectable size for nanomaterials
has to be 1 nm. Both AF4-ICP-MS and EM-EDS can in certain conditions achieve such sensitivity; for spICP-MS the LOD for size depends on the
constituent element of the particles and the presence of interferences, with typically 10–20 nmLODs for Au and Ag, 50 nm for TiO2 and 200 nm for SiO2

b Sensitivity (for mass concentration) is considered in relation to the typical mass fraction (in weight) needed to clearly discriminate particles from the
background; in the case of AF4-ICP-MS, HDC-ICP-MS, EM-EDS, reported mass LODs for mass are in the range of mg/L (for SiO2 and TiO2) and μg/L
(for Au and Ag NPs); typical spICP-MS LODs for mass reported are in the ng/L range
c Some in-house validated methods have been published; refer to Table 1 for details
d If EDS is included in the EM analysis the –will change into +. Considering the limited resolution of EDS this is only expected for NPs with diameters
>20 nm
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773 weights (MWs) of respective standards, allows the mass de-
774 termination of analytes with unknown MW. Weiss et al. have
775 described the separation of protein-based, gelatine nanoparti-
776 cles [133].

777 Ensemble methods

778 Particle induced X-ray emission

779 PIXE is a technique that historically has been used to quantify
780 trace elements in materials, like traces of metal in archaeological
781 artefacts [134]. More recently it has been used for the detection
782 of nanomaterials [135]. PIXE is based on exciting electronic
783 levels of the atoms, by means of an ion beam, producing X-
784 rays that are characteristic and proportional to elements present
785 in the sample, thus allowing identification and quantification of
786 the elemental composition in a single measurement. The sensi-
787 tivity of PIXE is in the mg/L range and a typical runtime is 2–
788 5 min per sample. PIXE has been used to characterize nanopar-
789 ticles in rat lungs and faeces [136]. In another study Lozano et al.
790 used PIXE to quantify dispersions of silica and silver NMs in
791 coffee, milk and water. Since PIXE gives no information about
792 size, size analysis was performed using DCS [137].

793 Surface plasmon resonance

794 SPR has become a well-acknowledged screening tool in the
795 last decade that provides real-time and automated analysis
796 with relatively high capacity [138]. Incorporation of the bio-
797 logical recognition elements onto the sensor surface allows
798 detection of potentially biologically active compounds. For
799 instance, the detection of bioavailable heavy metals can be
800 achieved through the use of metal binding proteins such as
801 metallothioneins (MTs) [139]. Rebe-Raz et al. [97] showed
802 that AgNMs can be directly detected in their intact form using
803 hMT1A protein in combination with an SPR-based sensor.
804 The hMT1A sensor showed sensitivity in the parts per billion
805 range, displaying the highest sensitivity towards larger and
806 uncoated AgNMs. Potential applications of this sensor were
807 demonstrated by successfully detecting AgNMs in fresh veg-
808 etables and river water extracts within 10minwithout the need
809 for complex sample preparation steps [97].

810 Conclusions and outlook

811 The application of nanotechnologies in the agri-food sector is
812 expected to increase. Current and future applications involve,
813 among others, inorganic bulk materials with size fractions
814 below 100 nm, nano-formulated minerals, and also organic
815 nano-carrier systems for vitamins, antioxidants and other food
816 supplements. A number of analytical methods have been

817developed that can determine nanoparticles in a food matrix;
818however, currently only electron microscopy is expected to be
819suitable for classifying nanomaterials according to the EC
820recommendation. Challenges that remain are (i) the complex-
821ity of the matrix; (ii) the lack of certified reference materials
822(both for size and mass); (iii) the scarcity of specific validated
823methods for NPs in food and (iv) the development of new
824analytical techniques and strategies.
825The complexity of the food matrix, and with it the need for
826sample preparation procedures, is a major issue. Until now
827most research has been in the area of instrumental detection
828and characterization of nanomaterials and not in the area of
829sample preparation. Given the interactions between NMs and
830many substances in food that can alter the physico-chemical
831status of the NMs, more development in sample preparation
832methods is needed. Presently each NM/matrix combination
833requires its own method development and optimization; how-
834ever, for the near future and the detection of “unknown”NMs,
835generic sample preparation procedures are urgently needed.
836New initiatives, like the use of “nano-tools” to extract NMs
837are encouraging [56, 57]. In addition, the EFSA report about
838the use of NMs in agriculture and food identified a trend
839towards more organic NMs. At the moment methods for or-
840ganic NMs are virtually absent [7]. New methods to detect,
841characterize and quantify carbon-based NMs in food or to
842characterize organic coatings of inorganic NMs are needed.
843While aspects such as reproducibility and comparability of
844NP measurements are important, presently there are only a
845few validated methods [24]. A prerequisite for proper method
846validation is the availability of reference materials. While cur-
847rently only suspensions of the pure NMs are available as ref-
848erence materials, a few studies have been undertaken to pro-
849duce reference materials of Ag and SiO2 NMs in food [140,
850141], demonstrating that development and characterization of
851a reference material in a food matrix is possible and that it is
852feasible to assign reference values with acceptable uncer-
853tainties. More reference materials are needed urgently (at this
854stage certification is probably too difficult).
855While there is a need for standardized methods (standard-
856ized through ISO, CEN, etc.), these are not expected to be-
857come widely available for NP in matrices as complex as food.
858Therefore, a way forward would be the standardization of data
859quality by agreeing on minimum performance requirements
860for analytical methods and reference standards for method
861validation. Approaches for the validation of analytical
862methods for NMs in food have been proposed and applied
863[24, 40]. To determine the data quality of (new) analytical
864methods and harmonize their results, intercomparison studies
865are needed. Presently two international intercomparison stud-
866ies have been organized and executed, but more are needed
867[94, 126]. Recognized reference laboratories could have a
868prominent role in the organisation and implementation of the
869suggested measures.
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870 The currently most widespread techniques for the detection
871 and characterization of NPs in food are EM, AF4-ICP-MS and
872 spICP-MS. Among these spICP-MS appears to be closest to a
873 routine application owing to its relative robustness, lower re-
874 quirements for sample preparation, an increasing availability
875 of evaluation software and an ISO technical specification de-
876 scribing the spICP-MS procedure. AF4 still faces serious is-
877 sues in reproducibility and requires trained and experienced
878 operators. Improvements in membrane technology may dra-
879 matically improve the situation. One of the former drawbacks
880 of EM, high costs for operation and evaluation, are currently
881 being overcome by the development of automated operation
882 and image analysis techniques. In time this will render the
883 technique accessible for a broader application range, including
884 routine analysis. The enormous diversity of NMs with differ-
885 ent sizes, shapes, compositions and coatings easily exceeds
886 that of conventional chemicals. Therefore it is expected that
887 analysis of NMs is not a question of a single analytical tech-
888 nique but rather a combination of multiple procedures and
889 instrumentation, and confirmation of the measurement result
890 by a second technique which is based on a different physical
891 principle is recommendedQ7 .
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