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Abstract

The Newcomb-Benford law for digit sequences has recently attracted interest in anti-fraud
analysis. However, most of its applications rely either on diagnostic checks of the data, or
on informal decision rules. We suggest a new way of testing the Newcomb-Benford law that
turns out to be particularly attractive for the detection of frauds in customs data collected from
international trade. Our approach has two major advantages. The first one is that we control the
rate of false rejections at each stage of the procedure, as required in anti-fraud applications. The
second improvement is that our testing procedure leads to exact significance levels and does
not rely on large-sample approximations. Another contribution of our work is the derivation
of a simple expression for the digit distribution when the Newcomb-Benford law is violated,
and a bound for a chi-squared type of distance between the actual digit distribution and the
Newcomb-Benford one.
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1 Introduction

The Newcomb-Benford (NB) law is a fascinating phenomenon which rules the pattern of the lead-

ing digits in many types of numerical data and mathematical sequences. Informally speaking, the

law states that the digits are not uniformly scattered – as one may naively expect – but follow a

logarithmic-type distribution in which the leading digit 1 is more likely to occur than the leading

digit 2, the leading digit 2 is more likely than the leading digit 3, and so on. Indeed, the sim-

plest form of the NB law, dating back to the original discoveries by Newcomb (1881) and Benford

(1938), gives the probability that the first leading digit equalsd1 as

log10

(

1+
1
d1

)

, (1)

for d1 = 1, . . . , 9. This probability is clearly decreasing with the value ofd1, and it is higher than

30% ford1 = 1.

In spite of its long history, the mathematical and statistical challenges of the NB law have

been recognized only recently. From a mathematical perspective, appropriate versions of this law

appear in number theory, such as in the Weyl’s Equidistribution Theorem (Havil, 2008, p. 186), or

in integer sequences, such as the celebrated Fibonacci sequence or the factorial sequence (Diaconis,

1977). The NB law is considered as one of the 250 mathematical milestones by Pickover (2009)

and is described at length in a book of the monumental series “The art of computer programming”

(Knuth, 1997, p. 254). In a probabilistic setting, a deep analysis of the NB law was first carried out

by Hill (1995), who proved a limit theorem for the significant-digit distribution; see also Berger

and Hill (2011a,b, 2015) and Miller (2015).

Recently, scientists and practitioners have applied the NB law in diverse settings, fraud detec-

tion in business accounting being perhaps the most noticeable one (Nigrini, 2012). The anti-fraud

rationale behind the use of the NB law is that producing empirical distributions of digits that con-

form to the law is difficult for non-experts. Fraudsters may thus be biased towards simpler and more

intuitive distributions, such as the Uniform. However, most of the applications in this area rely ei-
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ther on diagnostic checks of the data, with compliance to the digit distribution implied by the NB

law evaluated through graphical displays, or on informal decision rules, when suitable statistics of

conformity are applied. For instance, Nigrini (2012) suggests conclusions of “Close conformity”,

“Acceptable conformity”, “Marginally acceptable conformity” and “Non conformity” to the law,

based on the observed value of the chosen test statistic.

We argue that one problematic issue in formal goodness-of-fit testing of the NB law for anti-

fraud purposes lies in the choice of an appropriate version of the null hypothesis. In fact, under a

careful statistical approach, the statement that the data are distributed according to the NB law ac-

tually involves the distribution of all the significant digits and is not restricted to that of the leading

ones. The global NB hypothesis is thus likely to be too stringent for practical use, also because of

rounding errors and other non-fraudulent anomalies in few of the reported digits. Another disad-

vantage of testing the global NB null hypothesis is that rejection does not shed light on how many

digits deviate from the law, nor on which digits are responsible for rejection. We are interested in

anti-fraud analysis of customs data arising from international trade, where the goal is to detect ille-

gal actions such as tax evasion and money laundering (Deng et al., 2009; Sudjianto et al., 2010). In

this context, multiple-digit deviation from the NB law may seem more suspicious than single-digit

non-conformity, as a signal of data fabrication. Similarly, non-conformities in the first significant

digits might correspond to trade frauds which are economically more relevant, while deviations in

the last digits may be likely attributed to the effect of rounding or to other market conditions under

which compliance to the law should not be expected (see, e.g., Tam Cho and Gaines, 2007).

At the opposite side of the goodness-of-fit panorama is the idea of testing conformity of

individual-digit frequencies to the one-dimensional marginal probabilities prescribed by the NB

law. For instance, Tam Cho and Gaines (2007) and Pericchi and Torres (2011) consider individual

tests for the first and for the first-two digits, respectively, while Diekmann (2007) suggests to ex-

tend scrutiny to later digits as well. Multiplicity issues may occur when several digits are involved,

thus increasing the chance of incurring in false alarms. Controlling the number of false discoveries

is a crucial problem in many anti-fraud exercises. This requirement is particularly compelling in

the study of international trade data, since hundreds of traders must be investigated over thousands

of markets and substantial inspection of possible frauds rapidly becomes impractical if the number
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of false signal increases. We refer to Cerioli and Perrotta (2014) and to Barabesi et al. (2015) for

a detailed description of the statistical challenges involved by such data, and for a precise state-

ment of the anti-fraud tasks afforded by the Joint Research Centre of the European Commission.

Simultaneous tests of conformity for many digits, although being less prone to liberality, are not

attractive in this context, since they share the same lack of sensitivity to different alternatives as

the global one. Furthermore, the corresponding number of degrees of freedom increases in powers

of ten with the number of digits under scrutiny and it may easily become large in comparison to

the available sample of transactions for each trader, thus invalidating the common confidence in

large-sample results.

The aim of our work is to address the issues sketched above and to suggest a new and effec-

tive way of testing the NB law. Although our procedure is general, it turns out to be particularly

attractive in the context of anti-fraud applications for international trade data. Our goal is reached

through a hierarchical procedure where different varying-dimensional marginals of the NB dis-

tribution are tested in sequence, starting from a reasonable simplification of the global null and

possibly ending with the one-digit marginals. Our approach has two major advantages. The first

one is that we explicitly take into account the hierarchical nature of the sequence of tests that

we implement and we base our inferences on the resulting conditional distributions. This leads

to proper control of the rate of false rejections at each stage of the analysis, as required in our

anti-fraud applications, without resorting to multiple-tests adjustments ofP-values. The second

improvement is that our testing procedure leads to exact significance levels and does not rely on

large-sample approximations to the conditional distribution of the test statistics. Instead, we adopt

a computationally efficient and easy-to-implement Monte Carlo approximation of the exact distri-

bution of these test statistics. Another contribution of our work is the derivation of a simple and

neat expression for the digit distribution under the alternative hypothesis that the NB law is vio-

lated. Correspondingly, we derive a bound for a chi-squared type of distance between the actual

digit distribution and the NB one. These findings can be useful for comparing the power of differ-

ent goodness-of-fit statistics under the alternative, and for the purpose of assessing the “degree” of

discrepancy between the empirical digit distribution and the NB law.
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Our approach is consistent with the view that in financial applications anomalous observations

may correspond to fraudulent transactions (Sudjianto et al., 2010, p. 16). Therefore, we see our

method as a statistically principled criterion for detecting possible fraudsters in international trade

on the basis of the digit distribution of their transactions. Available outlier identification techniques

cannot be applied in this context, since they assume that the “good” part of the data follows the

Normal distribution (Cerioli, 2010). However, we adopt the same philosophy and take the NB law

as our baseline model, to which each trader must be contrasted. The well-known masking and

swamping problems (Hubert et al., 2008) do not affect our tests, because we are in the fortunate

situation where no parameter has to be estimated under the NB model. We can thus base our

anomaly inference on the full sample of transactions for each trader.

Also our strategy towards false discoveries resembles the attitude of some outlier detection

tools that have proven to be effective in other anti-fraud exercises (Riani et al., 2009; Cerioli,

2010): we first test a simultaneous hypothesis of conformity in order to control the global test

size, and then we move to more detailed investigations on specific digits only when the upper level

test is rejected. Sequential multiple-testing techniques that follow related principles have received

extensive research interest and have proven to be effective in application fields where a compromise

between false discovery control and power enhancement is needed (see, e.g., Goeman and Solari,

2010; Finos and Farcomeni, 2011; Dmitrienko and Tamhane, 2013, and the references therein).

However, we emphasize that our procedure does not involveP-values adjustments at each step of

the testing hierarchy. These adjustments are not required since we are able to compute an arbitrarily

good approximation to the conditional distribution of our test statistics, given the decisions made

at the preceding steps. We argue that our improvements could make goodness-of-fit testing for the

NB law an appealing tool for the purpose of contrasting illegal financial activities.

The rest of the paper is structured as follows. In§2 we review some theoretical features of the

NB law which are important for the purpose of anti-fraud analysis. Our sequential testing proce-

dure is proposed in§3, with the simplest first-two digit case in§3.1 and the general first-k digit

situation in§3.2. In§4 we give Monte Carlo estimates of the exact quantiles of our test statistics

and we provide simulation comparison with other methods. Thek-digit distribution under the al-

ternative hypothesis is derived in§5, together with a bound on a discrepancy measure. The paper
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ends with an application to trade data in§6 and with some concluding remarks in§7. Technical

details are given in the Appendix.

2 Some theory of the NB law in view of anti-fraud applications

For eachx , 0, define the significand functions : R 7→ [1,10[ as

s(x) = 10log10 |x|−blog10 |x|c,

whereb∙c denotes the “floor function”, i.e. the largest integer less than or equal to the argument

value. Whenx = 0, we assume thats(0) := 0. Clearly, log10 s(x) represents the fractional part of

log10 |x|. In addition, the first significant digit ofx, sayD1(x), may be rephrased in terms of the

significand function, i.e.

D1(x) = bs(x)c,

while, for k = 2,3, . . ., thek-th significant digit ofx, sayDk(x), may be rewritten as

Dk(x) = b10k−1s(x)c − 10b10k−2s(x)c.

Let us consider the random variable (r.v.)X defined on the probability space (Ω,F ,P). This

r.v. follows the NB law (Berger and Hill, 2011a, p. 23) if

P(s(X) ≤ t) = log10 t (2)

for t ∈ [1,10[. Trivially, condition (2) is equivalent to assume thatP(log10 s(X) ≤ u) = u for

u ∈ [0,1[, i.e. that the fractional part of the r.v. log10 |X| is uniformly distributed in [0,1[. In the

following, X will always represent a NB r.v..

Equivalently, Berger and Hill (2011a) emphasize that condition (2) implies (and vice versa) the

following joint probability function (p.f.) for allk ∈ N:

P(D1(X) = d1, . . . ,Dk(X) = dk) = log10

(

1+
1

cd1,...,dk

)

, (3)

whered1 ∈ {1, . . . , 9}, dl ∈ {0, . . . , 9} for l = 2, . . . , k, while

cd1,...,dk =

k∑

l=1

10k−ldl .
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Obviously,cd1,...,dk ∈ N and 10k−1 ≤ cd1,...,dk < 10k. Fork = 2, expression (3) reduces to

P(D1(X) = d1,D2(X) = d2) = log10

(

1+
1

10d1 + d2

)

. (4)

In addition, the marginal p.f. ofD1(X) is given by

P(D1(X) = d1) = log10

(

1+
1
d1

)

, (5)

which represents the celebrated result originally obtained by Newcomb (1881) and subsequently

rediscovered by Benford (1938), already displayed in Equation (1). The marginal p.f. ofD2(X) is

given by

P(D2(X) = d2) =
∑

d1

log10

(

1+
1

10d1 + d2

)

. (6)

Similarly, the marginal p.f. of eachDl(X), as well as the joint p.f. of any choice ofm digits out of

the firstk, sayDl1(X), . . . ,Dlm(X), can be easily obtained on the basis of (3), even if they display

cumbersome expressions asm increases. In particular,

P(Dl1(X) = dl1, . . . ,Dlm(X) = dlm) =
∑

dj1 ,...,djk−m

log10

(

1+
1

cd1,...,dk

)

, (7)

where{ j1, . . . , jk−m} = {1, . . . , k} \ {l1, . . . , lm}.

The task of anti-fraud analysis is to check whether the observed sequences of digits conform to

the NB law. LetY be the r.v. under scrutiny. In this setting,Y typically represents the transaction

value for a specific good and a given trader. Our inferential target thus consists in assessing ifY is

NB. According to definition (2), this hypothesis can be written as

H0 : log10 s(Y)
L
= U, (8)

whereU denotes a r.v. uniformly distributed on [0,1[. We call (8) the global NB null hypothesis,

because it involves the distribution of anyk-ple of significant digits, as shown in (3). A goodness-

of-fit test of uniformity may be carried out to testH0 (see, e.g., Marhuenda et al., 2005, for a survey

of such testing procedures). Actually, the Mantissa Arc test illustrated by Nigrini (2012) falls in

this category.
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Rather than on the global NB null (8), anti-fraud applications have mainly focused on the

marginal null hypothesis

H{1}0 : D1(Y)
L
= D1(X), (9)

where the p.f. (5) is the basis for implementing a suitable test statistic. Nigrini (2012) provides

a detailed account of several popular tests ofH{1}0 . In order to improve the testing procedure,

Diekmann (2007) suggests to assess the four marginal null hypotheses

H{l}0 : Dl(Y)
L
= Dl(X)

for l = 1, . . . , 4. However, this proposal does not address simultaneity issues, which are instead

important in order to avoid an excess of falsely declared anomalies. Alternatively, Nigrini (2012)

proposes to test a joint null hypothesis on the first-two significant digits, i.e.

H{1,2}0 : (D1(Y),D2(Y))
L
= (D1(X),D2(X)),

based on the joint p.f. (4). Clearly, it does not suffice to assess anyH{l}0 , l = 1, . . . , k, nor H{1,2}0 in

order to show that the r.v.Y is NB, i.e. to accept the global null hypothesisH0.

In our opinion the implications of the probabilistic framework described in this section are often

not adequately considered in anti-fraud testing procedures for the NB law. One major drawback is

that the global null hypothesisH0 is likely to be too general to be interesting in most applications.

For example, owing to measurement limitations, the realizations of the r.v.Y are often recorded up

to few significant digits. Therefore, the global NB null (8) may be systematically rejected simply

because of these rounding errors. On the other hand, a simplified version ofH0 based on the

first-k significant digits, for a reasonable choice ofk > 1, appears to be more appealing. In this

case also the marginal null hypotheses on each significant digit (or on suitable choices ofm < k

significant digits) could be jointly assessed, thus adequately controlling the number of false alarms.

A testing procedure which accomplishes this task is considered in detail in the next section. Other

advantages of our proposal are both the ability to identify which digits are responsible for departure

from the NB law, and the possibility to rely on the exact distribution of the test statistics, by means

of (3).
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3 Testing the first-k significant digits

3.1 The case of two-digits

We start by illustrating our procedure in the simplest case of the first-two significant digits. Our

initial target consists in assessing the joint null hypothesisH{1,2}0 . Recall thatH{1,2}0 ⇒ H{1}0 , as

well asH{1,2}0 ⇒ H{2}0 . However, ifH{1,2}0 is rejected more insight on this decision may be achieved

on the basis of the assessment of the marginal hypothesesH{1}0 and H{2}0 . Inference is carried

out by assuming a random sample ofn copies obtained fromY, say Y1, . . . ,Yn, giving rise to

n copies of (D1(Y),D2(Y)), which are subsequently arranged as a frequency table given by the

matrix N = (Nd1,d2), where

Nd1,d2 =

n∑

i=1

I{(d1,d2)}(D1(Yi),D2(Yi)),

d1 ∈ {1, . . . , 9}, d2 ∈ {0, . . . , 9}, and IC is the indicator function of a given setC. Therefore,

Nd1,d2 represents the cardinality of pairs (d1,d2) in the digit sample. Obviously,n =
∑

d1,d2
Nd1,d2.

The sample space of such matrices, i.e. the matrices of order (9× 10) with non-negative integer

entries summing up ton, is denoted byΨ. This space is finite, even if potentially very large, since

Card(Ψ) = 90n.

The two marginal null hypothesesH{1}0 and H{2}0 are assessed by means of the test statistics

T{1} = T{1}(N) andT{2} = T{2}(N), respectively, where bothT{1} : Ψ → R andT{2} : Ψ → R. A

popular example is given by theχ2 test statistics

T{1} =
∑

d1

(N1(d1) − nπ1(d1))2

nπ1(d1)
, T{2} =

∑

d2

(N2(d2) − nπ2(d2))2

nπ2(d2)
, (10)

whereN1(d1) =
∑

d2
Nd1,d2, N2(d2) =

∑
d1

Nd1,d2, while πl(dl) := P(Dl(X) = dl), for l = 1,2, and

X a NB r.v.. Although we mainly base our applications on theseχ2 statistics, any test statistic

for conformity could be adopted in their place. For instance, Nigrini (2012) suggests the Mean

Absolute Deviation (MAD) as a suitable alternative, leading to

T{1} =
1
9

∑

d1

|N1(d1) − nπ1(d1)|, T{2} =
1
10

∑

d2

|N2(d2) − nπ2(d2)|. (11)

In a similar way, the joint null hypothesisH{1,2}0 is assessed by means of the test statisticT{1,2} =

9
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T{1,2}(N), whereT1,2 : Ψ→ R. Theχ2 option leads to

T{1,2} =
∑

d1,d2

(Nd1,d2 − nπ1,2(d1,d2))2

nπ1,2(d1,d2)
,

with π1,2(d1,d2) := P(D1(X) = d1,D2(X) = d2), but other choices are possible as in (11). In what

follows, we assume that, whatever test is considered, it rejects the null hypothesis for large values

of the test statistic, as it happens forχ2 and MAD above.

Subsequently, let us consider the random vectorT = T(N) = (TJ)J∈J , whereJ = {{1}, {2}, {1,2}}.

The joint survival function (s.f.) ofT is given by

ST(t) = P(T > t) =
1

Card(Ψ)

∑

M∈Ψ

ICt(T(M)), (12)

where t = (tJ)J∈J is a vector inR3, Ct =
⊗

J∈J ]tJ,∞[, the symbol
⊗

denotes the Cartesian

product and vector inequalities are to be interpreted in the lexicographical sense. The marginal

s.f.’s corresponding toT{1}, T{2} andT{1,2}, and to each couple of such r.v.’s, can readily be obtained

from (12). In the following, these marginal s.f.’s are indexed by the corresponding r.v.’s, e.g. we

write ST{1,2} , ST{l} andST{l},T{1,2} , for l = 1,2.

Our first inferential conclusion concerns the assessment ofH{1,2}0 . This choice is motivated by

the requirement to have more stringent control on the rate of false rejections than implied by in-

dividual tests ofH{1}0 andH{2}0 . In fact, it is crucial in our anti-fraud applications that the number

of false alarms is kept to the prescribed level, say 1%, over all the different-digit tests. We thus

require that the (two-digit) NB hypothesis is rejected only when there is enough evidence against it

in the joint distribution ofD1(Y) andD2(Y). H{1,2}0 is tested by means ofT{1,2}, yielding theP-value

ST{1,2}(t0{1,2}), wheret0{1,2} is the observed value of the test statistic. IfST{1,2}(t0{1,2}) suggests rejection,

it is then important to establish how many and which digits are responsible for the decision, since

anti-fraud actions may vary according to the answer. Clearly, the required information cannot be

provided byT{1,2}. We thus propose to testH{1}0 andH{2}0 individually after rejection ofH{1,2}0 , based

on the observed valuest0{1} andt0{2} of T{1} andT{2}, respectively. The individual tests should not

be based on the marginal distributions ofT{1} andT{2}, but on the corresponding conditional dis-

tributions given thatT{1,2} is larger than its observed realization. Hence we require the conditional
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P-values

ST{1},T{1,2}(t0{1}, t0{1,2})

ST{1,2}(t0{1,2})
,

ST{2},T{1,2}(t0{2}, t0{1,2})

ST{1,2}(t0{1,2})
(13)

from the joint s.f. (12), as our basis for inference onH{1}0 andH{2}0 . An empirical assessment of the

difference between the marginal distributions ofT{1} andT{2}, and those obtained after conditioning

on large values ofT{1,2}, is provided in§4. There, we also compare our conditional approach with

some multiple-testing adjustments for the marginal distributions ofT{1} andT{2}.

In principle, expression (12) could be computed exactly sinceΨ is finite. However, this task

is likely to be infeasible owing to the cardinality ofΨ. We thus suggest a Monte Carlo procedure

in order to approximate the relevant probabilities in (13). LetΠ = (π1,2(d1,d2)) be the matrix of

probabilities under the NB hypothesisH{1,2}0 , with d1 ∈ {1, . . . , 9} andd2 ∈ {0, . . . , 9}. We first

randomly generate a frequency tableN with probabilities provided byΠ , in such a way that the

total of the entries is fixed ton. Write q = (q1, . . . , q90)T = vec(Π) and Z = (Z1, . . . ,Z90)T =

vec(N). SinceZ is a Multinomial random vector with parametersn andq, its components can

be sequentially generated by means of the well-known properties of its conditional distributions.

In fact, if the distribution of the r.v.Z1 is Binomial with parametersn andq1, if the conditional

distribution of the r.v.Z2 givenZ1 = z1 is Binomial with parameters (n− z1) andq2/(1− q1), and

– generally – if the conditional distribution of the r.v.Zl givenZ1 = z1, . . . ,Zl−1 = zl−1 is Binomial

with parameters (n −
∑l−1

j=1 zj) andql/(1 −
∑l−1

j=1 qj), thenZ is a Multinomial random vector with

parametersn andq. Note that the generation of one realization ofZ with this algorithm requires

the generation of 89 Binomial random variates with different parameters values. Therefore, a

Binomial generator with a small set-up is suitable for our purpose; see, e.g., Hörmann et al. (2004)

and the discussion in Barabesi and Pratelli (2014, 2015). Finally, the frequency tableN is easily

obtained from its one-to-one correspondence withZ.

We run our Monte Carlo procedure by simulatingB frequency tables, sayN∗1, . . . ,N
∗
B, under the

matrix of probabilitiesΠ , and by computing the corresponding vectorsT(N∗b), with b = 1, . . . , B.

The Monte Carlo counterpart of (12) is then

S∗T(t) =
1
B

B∑

b=1

ICt(T(N∗b)). (14)

11
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 d

eg
li 

St
ud

i D
i P

ar
m

a]
 a

t 0
1:

26
 0

7 
A

pr
il 

20
16

 



ACCEPTED MANUSCRIPT

Obviously, on the basis of the standard Glivenko-Cantelli Theorem, uniform convergence of the

Monte Carlo s.f. holds, i.e.

‖S∗T(t) − ST(t)‖∞
a.s.
→ 0, (15)

asB → ∞. The Monte Carlo marginal s.f.’s are suitably indexed by the corresponding r.v.’s and

can be obtained from (14). Therefore, the Monte CarloP-value forH{1,2}0 is given byS∗T{1,2}(t0{1,2}),

while the conditional Monte CarloP-values forH{1}0 andH{2}0 are

S∗T{1},T{1,2}(t0{1}, t0{1,2})

S∗T{1,2}(t0{1,2})
,

S∗T{2},T{1,2}(t0{2}, t0{1,2})

S∗T{1,2}(t0{1,2})
,

respectively. Almost sure convergence of these Monte Carlo estimators to the conditionalP-values

is ensured by (15) and the continuous mapping theorem.

3.2 The general case

A plethora of null hypotheses could be potentially assessed when the first-k significant digits are

considered. Indeed, for eachm = 1, . . . , k and for each choice of indexes{l1, . . . , lm}, we could

state the
(

k
m

)
null hypotheses

H{l1,...,lm}0 : (Dl1(Y), . . . ,Dlm(Y))
L
= (Dl1(X), . . . ,Dlm(X)), (16)

ranging from the marginal nullsH{1}0 , . . . ,H
{k}
0 , to the joint test ofH{1,...,k}0 . The latter may be seen as

a practically sensible simplification of the global NB nullH0, which corresponds to the case where

(16) holds for allm= k ∈ N. A total of (2k−1) null hypotheses is thus available for a fixed value of

k, even if a small selection of them is likely to be interesting in practice. SinceH{1,...,k}0 ⇒ H{l1,...,lm}0 ,

we pursue the sequential scheme detailed in§3.1 and testH{l1,...,lm}0 , for m < k, only whenH{1,...,k}0

is rejected. In practice it will often suffice to test the marginal null hypothesesH{1}0 , . . . ,H
{k}
0 , after

rejection of the joint nullH{1,...,k}0 .

With straightforward extension of the notation in§3.1, our sample is now made ofn copies

of (D1(Y), . . . ,Dk(Y)), which are arranged as ak-way frequency tableN = (Nd1,...,dk), whered1 ∈

{1, . . . , 9} and dl ∈ {0, . . . , 9}, for l = 2, . . . , k. The sample space of such frequency tables is

again denoted byΨ, while thek-dimensional array of probabilities isΠ = (π1,...,k(d1, . . . , dk)). In

12
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order to assess the null hypothesis (16) we consider the test statisticT{l1,...,lm} = T{l1,...,lm}(N), where

T{l1,...,lm} : Ψ→ R. If we follow theχ2 option

T{l1,...,lm} =
∑

dl1 ,...,dlm

(Nl1,...,lm(dl1, . . . , dlm) − nπl1,...,lm(dl1, . . . , dlm))2

nπl1,...,lm(dl1, . . . , dlm)
,

whereπl1,...,lm(dl1, . . . , dlm) := P(Dl1(X) = dl1, . . . ,Dlm(X) = dlm), while

Nl1,...,lm(dl1, . . . , dlm) =
∑

dj1 ,...,djk−m

Nd1,...,dk.

As in§3.1, we consider the random vectorT = T(N) = (TJ)J∈J , where in this caseJ represents

the collection of the (2k − 1) index choices from{1, . . . , k}. The joint survival function (s.f.) ofT

has a similar expression as the one given in (12) and the marginal s.f.’s are suitably indexed by the

corresponding r.v.’s. LetN0 be the observed frequency table andt0 = T(N0) = (t0J)J∈J . We start

our assessment from the jointk-digit null H{1,...,k}0 , for which theP-value is given byST{1,...,k}(t0{1,...,k}).

The conditionalP-value
ST{l1,...,lm},T{1,...,k}

(t0{l1,...,lm}, t0{1,...,k})

ST{1,...,k}(t0{1,...,k})

is then considered in order to assess if rejection ofH{1,...,k}0 depends on them-ple of digitsl1, . . . , lm,

with m< k. The simplest casem= 1 corresponds to test thek marginal hypothesesH{1}0 , . . . ,H
{k}
0 ,

on the basis of their conditionalP-values.

SinceST(t) is not practically computable, the Monte Carlo procedure introduced in§3.1 is

generalized to thek-digit setting. Now the order ofq = vec(Π) andZ = vec(N) is 9× 10k, so

that even this procedure might become computationally expensive whenk is large. Our approach

produces a set of simulated frequency tablesN∗1, . . . ,N
∗
B, from which the Monte Carlo s.f.S∗T(t) is

computed and the relevant conditionalP-values are estimated.

We can also exploit our simulation framework to obtain Monte Carlo estimates of the quantiles

of the chosen conformity measure under the NB model. Form= 1, . . . , k and 0< α < 1, let

qT{l1,...,lm}
(α) = inf

t∈R





1
Card(Ψ)

∑

M∈Ψ

I]−∞,t] (T{l1,...,lm}(M)) ≥ α





(17)

be theα-quantile ofT{l1,...,lm}. In our sequential testing procedure we also require the conditional

version of thisα-quantile, given the event

Ψ{1,...,k}(β) = {M ∈ Ψ : T{1,...,k}(M) ≥ qT{1,...,k}(β)}. (18)
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In (18), 0 < β < 1 andqT{1,...,k}(β) is defined as in (17). Form = 1, . . . , k − 1, the conditional

α-quantile is thus

qT{l1,...,lm}|Ψ{1,...,k}(β)
(α) = inf

t∈R





1
Card(Ψ{1,...,k}(β))

∑

M∈Ψ{1,...,k}(β)

I]−∞,t] (T{l1,...,lm}(M)) ≥ α




. (19)

The Monte Carlo estimators of (17) and (19) turn out to be, respectively,

q∗T{l1,...,lm}(α) = inf
t∈R





1
B

B∑

b=1

I ]−∞,t[ (T{l1,...,lm}(N
∗
b)) ≥ α





(20)

and

q∗T{l1,...,lm}|Ψ{1,...,k}(β)(α) = inf
t∈R





∑B
b=1 I]−∞,t]×[q∗T{1,...,k}

(β),∞[ (T{l1,...,lm}(N
∗
b),T{1,...,k}(N∗b))

∑B
b=1 I[q∗T{1,...,k}

(β),∞[ (T{1,...,k}(N∗b))
≥ α




. (21)

Again, almost sure convergence of these estimators follows by (15) and the continuous mapping

theorem.

4 Experimental results for theχ2 test statistic

Our first experiment aims at providing empirical estimates of the quantiles of the main conformity

measures under the NB model, following the Monte Carlo approach described in§3 for a selection

of different sample sizes. Extension to other values ofn can be easily performed, thanks to the

computational efficiency of our algorithm. For instance, even in the case of our largest sample size

n = 500, full quantile computation withk = 4 takes less than 3 hours on a 2.80 GHz Dual Core

Processor, using our Matlab routine (which is available upon request). A simple alternative would

be interpolation of the estimated quantiles for the closest available values ofn. Here we focus

on theχ2 test statistic, while the results for the MAD statistic are reported in the Supplementary

Material. Any other suitable measure can be dealt with under the same approach. We takeB =

1,000,000 in all the simulations that follow, although larger values may be required ifβ in (18) is

chosen to be very close to 1.

We start our experimental analysis by computing estimates (20) and (21) of the quantiles of

the χ2 test statistic, forα = β = 0.99, k = 1,2,3,4 and all possible index selectionsl1, . . . , lm

(m = 1, . . . , k). Table 1 displays our results and compares them to theirχ2 counterpart, which
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provides the standard large-sample approximation to (17). We first note the importance of relying

on the exact p.f. (3) if more than one digit is involved. Even in the simple two-digit case, we obtain

that replacing the exact 0.99-quantileqT{1,2}(0.99) with its large-sample versionχ2
89(0.99)= 122.94

leads to increased Type I errors when testingH{1,2}0 . Indeed, we find that the error rate is 0.02 with

n = 100 and becomes as large as 0.048 whenn = 20. The error rate grows even further when more

digits are considered and the number of degrees of freedom increases, in spite of the fact that no

parameter has to be estimated.

Wheneverl1 = 1, i.e. the first digit is involved in (16), the quantiles of the conditional distri-

bution ofT{l1,...,lm} are markedly different from those computed under the unconditional p.f. (7). In

such a case the statistics for testingH{l1,...,lm}0 andH{1,...,k}0 are strongly dependent and neglecting the

stochastic outcome of the uppermost comparison may considerably inflate the Type I error rate of

the lower-level tests. A quantitative measure of this effect is provided in Table 2, which reports

the proportion of false rejections made by theχ2 goodness-of-fit statistic for testingH{l1,...,lm}0 , given

previous rejection ofH{1,...,k}0 , whenq∗T{l1,...,lm}
(0.99) is used instead ofq∗T{l1,...,lm}|Ψ{1,...,k}(0.99)(0.99). It is

clearly seen that the Type I error rates of tests involving the first digit are always much larger than

the nominal value 1− α = 0.01, thus providing erroneous evidence in favor of falsification of the

first digit. Furthermore, the empirical size of the test of the marginal null hypothesis (9) does not

appear to depend crucially on the chosen value ofk. We conclude that the naive approach which

ignores the sequentiality of tests when scrutinizing the first-digit distribution can lead to a plethora

of false signals and can thus have very harmful consequences for anti-fraud purposes. On the other

hand, the NB law implies that the distribution ofDl(X) approaches the Uniform asl increases. Our

results show that the effect of this convergence on test statistics is very fast and already appreciable

when l1 = 2. In some sense, it is the first digit which “dominates” the decision on the joint null

H{1,...,k}0 . Nevertheless, marginally inspecting the subsequent digits might still be useful, since there

is no guarantee that fraudsters will fabricate their data following the Uniform distribution.

We conclude this section by comparing our approach with the results obtained through some

popular multiple-testing adjustments for the critical values of the test statisticsT{l1,...,lm}. These

methods may be used when the hypotheses under scrutiny are not exchangeable and must be tested

in a specified order, as in our context. In particular, we consider a sequential multiple-testing

15
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 d

eg
li 

St
ud

i D
i P

ar
m

a]
 a

t 0
1:

26
 0

7 
A

pr
il 

20
16

 



ACCEPTED MANUSCRIPT

procedure which is known as serial gatekeeping (see, e.g., Goeman and Solari, 2010,§6.1). It

amounts to testing all the possible hypotheses (16), starting from the highest-level nullH{1,...,k}0 and

moving to the set of hypothesesH{l1,...,lm−1}
0 only when all the nullsH{l1,...,lm}0 have been rejected.

At every step the required tests are based on the corresponding unconditional survival functions

obtained fromST(t), with appropriate adjustments for multiplicity. We also implement the basic

Bonferroni adjustment (1−α)/k when testing the marginal hypothesesH{1}0 , . . . ,H
{k}
0 at level (1−α).

This adjustment also turns out to be the appropriate correction in a single step of a tree-structured

testing procedure (Goeman and Solari, 2010,§6.3).

For simplicity, we restrict our experimental analysis to the simplest two-digit case, but similar

findings have been obtained also whenk > 2. We takeα = 0.99, as before, and we run a new

set ofB = 1,000,000 independent simulations, on which the empirical test sizes for theχ2 test of

H{1}0 andH{2}0 are computed. These test sizes are obtained by conditioning on rejection ofH{1,2}0 ,

based on the estimated quantileq∗T{1,2}(0.99). The results are displayed in Table 3. It is apparent

that multiple-testing adjustments are not able to provide proper control of Type I error rates of

the one-digit hypotheses given that the joint nullH{1,2}0 has been rejected, even if our Monte Carlo

estimate of the exact s.f. (12) is adopted. As expected, the effect is larger for the first digit and

whenn is small, but it is still present in all the reported instances. This behavior is not a fault

of multiple-testing procedures, which are constructed to control the familywise error rate over all

the hypotheses under testing, but which are not designed to obtain the same performance in the

tail of the distribution ofT{1,2}. We conclude that exploiting the hierarchical nature of successive

tests of the NB law, through our conditional quantiles (19) and our conditionalP-values (13), is

to be recommended when the goal is to control the proportion of false detections at every step of

the sequential testing procedure. This is precisely the framework of the anti-fraud applications

of §6, where rejection ofH{1}0 is likely to have different consequences from rejection ofH{l}0 , for

l = 2, . . . , k, given that the NB law has been judged to be invalid by the test of the joint hypothesis

H{1,...,k}0 .
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5 The significant digit distribution under the alternative hy-

pothesis

We extend the distributional results for thek-digit p.f. to the case where the NB law does not hold.

Our simple and neat expressions can be useful both to implement simulation studies under the

alternative, in order to compare the power of different procedures, and to assess the discrepancy

of a given r.v. Y from the NB r.v. X. Actually, some results on the global discrepancy – i.e. in

terms of the Kolmogorov and Kuiper distances for the r.v.’ss(Y) ands(X) – are given by D̈umbgen

and Leuenberger (2008), but they do not involve the marginal discrepancies. Instead, through our

results it is possible to construct a suitable and simple distance for the r.v.’sD1(Y) andD1(X).

Let FY denote the distribution function (d.f.) of the r.v.Y. Hence the d.f. of|Y| is given by

F|Y|(x) = FY(x) − FY(−x) + P(Y = x), for x ∈ R+. We first give a result which provides the joint

distribution ofD1(Y), . . . ,Dk(Y).

Proposition 1 For all k ∈ N it holds that

P(D1(Y) = d1, . . . ,Dk(Y) = dk) =

=
∑

m∈Z

(F|Y|(10m−k+1(cd1,...,dk + 1))− F|Y|(10m−k+1cd1,...,dk)) ,

where d1 ∈ {1, . . . , 9} and dl ∈ {0, . . . , 9} for l = 2, . . . , k.

Proof. See the Appendix. �

It follows from Proposition 1 that

P(D1(Y) = d1,D2(Y) = d2) =

=
∑

m∈Z

(F|Y|(10m−1(10d1 + d2 + 1))− F|Y|(10m−1(10d1 + d2))),

while

P(D1(Y) = d1) =
∑

m∈Z

(F|Y|(10m(d1 + 1))− F|Y|(10md1))

and

P(D2(Y) = d2) =
∑

d1

∑

m∈Z

(F|Y|(10m−1(10d1 + d2 + 1))− F|Y|(10m−1(10d1 + d2))).
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Similar, even if more cumbersome, expressions can be obtained in general. Indeed, for eachm =

1, . . . , k and for each choice of indexes{l1, . . . , lm}, we have

P(Dl1(Y) = dl1, . . . ,Dlm(Y) = dlm) =

=
∑

dj1 ,...,djk−m

∑

m∈Z

(F|Y|(10m−k+1(cd1,...,dk + 1))− F|Y|(10m−k+1cd1,...,dk)),

where{ j1, . . . , jk−m} is defined as in§3.2, whiledl ∈ {1, . . . , 9} if l = 1 anddl ∈ {0, . . . , 9} otherwise.

Leemis et al. (2000) and Fewster (2009) considered aχ2-type index for measuring the distance

between the distributions ofD1(X) andD1(Y), i.e.

ρ2
{1} =

9∑

d1=1

(P(D1(Y) = d1) − π1(d1))2

π1(d1)
.

This distance may be generalized to each choice of indexes, yielding

ρ2
{l1,...,lm} =

∑

dl1 ,...,dlm

(P(Dl1(Y) = dl1, . . . ,Dlm(Y) = dlm) − πl1,...,lm(dl1, . . . , dlm))2

πl1,...,lm(dl1, . . . , dlm)
.

Let TV(g) be the total variation of a given functiong, i.e.

TV(g) = sup





K∑

i=1

|g(ai+1) − g(ai)| : (a1, . . . , aK+1) ∈ P




,

whereP is the collection of ordered (K + 1)-ples (a1, . . . , aK+1) such thatai ∈ I ⊂ R for each

interval I , andK ∈ N is arbitrary. It follows thatTV(g) =
∫
|g′(x)|dx wheng is differentiable a.e.,

while TV(g) = 2 maxg(x) wheng is increasing and then decreasing. The following result provides

a bound onρ2
{l1,...,lm}

, by assuming that the r.v.Y is absolutely continuous with probability density

function (p.d.f.) fY with respect to the Lebesgue measure. In such a case, letflog10 |Y| be the p.d.f.

of the r.v. log10 |Y|, i.e.

flog10 |Y|(x) = ( fY(10x) + fY(−10x))10x ln 10.

Proposition 2 Let the r.v. Y defined on the probability space(Ω,F ,P) be absolutely continuous.

If fY ∈ Cp(R), then for each{l1, . . . , lm} ⊂ {1, . . . , k}

ρ2
{l1,...,lm} ≤

γl1,...,lmTV( f (p)
log10 |Y|

)2

4 ∙ 62p
,
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where

γl1,...,lm =
∑

dl1 ,...,dlm

(
∑

dj1 ,...,djk−m
π1,...,k(d1, . . . , dk)(1− π1,...,k(d1, . . . , dk)))2

πl1,...,lm(dl1, . . . , dlm)
.

Proof. See the Appendix. �

Note thatγl1,...,lm is a fixed constant which may be easily computed for the selected index choice.

Therefore, the tightness of the inequality in Proposition 2 crucially depends onTV( f (p)
log10 |Y|

), i.e.

loosely speaking on the regularity offlog10 |Y|. Hence, similarly to the case of the global discrepancy

measure, small values ofρ2
{l1,...,lm}

are expected, e.g., ifY is a Log-Normal or a Weibull r.v.; see

Dümbgen and Leuenberger (2008) for the evaluation ofTV( f (p)
log10 |Y|

) in such settings.

For the special caseρ2
{1}, we have maxρ2

{1} = log10 9/(1 − log10 9) ' 20.85 whenP(D1(Y) =

9) = 1. Moreover,γ1 =
∑9

d1=1 π1(d1)(1− π1(d1))2 ' 0.7059 and Proposition 2 shows that

ρ2
{1} ≤

γ1TV( f (p)
log10 |Y|

)2

4 ∙ 62p
' 0.1765

TV( f (p)
log10 |Y|

)2

62p
.

As an example, if the r.v.Y is distributed according a Log-Normal law with scale parameterσ, it

holds thatTV( f (p)
log10 |Y|

) ≤
√

(p+ 1)!/(σ/ ln 10)p+1 and hence

ρ2
{1} ≤

9γ1(p+ 1)!

(36σ2/ ln2 10)p+1
.

The bound is minimal whenp + 1 = b36σ2/ ln2 10c. As an example, forσ = 1 it holds that

ρ2
{1} ≤ 0.0245, while forσ = 2 it holds thatρ2

{1} ≤ 3.9× 10−11, i.e. ρ2
{1} decreases exponentially as

σ→ ∞, similarly to the results in D̈umbgen and Leuenberger (2008).

6 Application to international trade data

The EU legislation regulates the collection of customs declarations by the EU Member States

authorities and imposes a common customs form for international trade, which is called Single

Administrative Document (SAD). Traders use the SAD to declare their trade operations. SAD data

are thus used by Customs authorities to monitor all goods arriving from third countries into the EU

(imports), those exported outside the EU (exports) and the movement of non-EU goods within the
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EU (transits). The collected SAD data contain detailed information on the goods commodity code,

the movement of the goods, the customs procedure code that specifies how the Customs authority

treats the entry, and of course the traded quantities and values. Many customs duties and the Value

Added Tax (VAT) are calculated as a percentage of the declared values. Therefore, misdeclaring

the value almost certainly implies fraud. For example, undervaluation is usually attempted to pay

less duties or excises, or to evade import restrictions and certain anti-dumping measures. On the

overvaluation side, there are money laundering schemes, attempts to obtain higher export refunds

or duty compensations, to avoid anti-dumping duties and even to evade internal taxes (FATF-

OECD, 2008, 2013).

Our benchmark data set is formed by about 7.5 million SAD import records collected in 2011

by the Italian Customs. Transactions involved more than 200,000 traders. In order to restrict the

scope of our test to a set of traders of major operational interest for the Customs auditors, we have

considered only traders with more than 10 SAD declarations. This reduced the focus to around

50,000 traders, which made on average 134 import transactions. In this subset of traders, the most

interesting are those who operated on a certain variety of product types. We have thus additionally

restricted the focus to importers of more than 10 different products, whose trade operations should

comply with the assumptions of the NB law under the assumption of fair trade. The average

number of traded products for this set of importers is 30. In the following, we illustrate our NB

tests on SAD import values obtained from two representatives of these traders, labelled for obvious

confidentiality reasons as Trader 1 and Trader 2, respectively.

The marginal distributions of the first-four digits for Trader 1 are presented in Figure 1. They

refer to the traded values ofn = 100 transactions, ranging from approximately 38 to 131,213 euros.

Consideration of the first digit would suggest non-conformity to the NB law. The same conclusion

is reached by comparing the observedχ2 test statistic,T1 = 28.71, to the unconditional quantile

given in Table 1 for the corresponding sample size. Instead, very different findings are obtained

from our hierarchical testing procedure, for which a selection of steps are reported in Table 4.

It is clearly seen that no suitable simplification of the global NB hypothesis can be rejected at the

selected nominal size. This result holds for the joint four-digit nullH{1,2,3,4}0 and also for all possible

index selections, up to the marginal hypothesesH{1}0 , . . . ,H
{4}
0 . We thus conclude that rejection of
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H{1}0 based on the marginal unconditional distribution ofT{1} provides only very weak evidence of

data fabrication and might be seen as an instance of false discovery, perhaps due to the somewhat

limited range of traded values for this trader. Indeed, further investigation on Trader 1 reveals that

its transactions are well in line with the market, from the point of view of both traded quantities

and prices, thus supporting the idea of non-fraudulent behavior.

The picture that we present in our second example is somewhat different. Figure 2 displays

the marginal distributions of the first-four digits in the traded values for Trader 2, a company with

n = 103 transactions ranging from 5.49 to 231,963 euros. Again, both visual inspection and

goodness-of-fit testing on the marginal distributions (Table 5) would suggest non-conformity in

the first digit, using the quantiles obtained for the casen = 100 as a slight approximation to the

required values. In this example, however, the evidence against the NB law is considerably stronger

than for Trader 1 and leads to rejection of the joint nullH{1,2,3,4}0 . One advantage of our approach

is that we can safely conclude, at the specified nominal level 1− α = 0.01, both that the 4-digit

NB hypothesis (16) is not likely to hold and that rejection of this hypothesis must be attributed to

non-compliance in the first digit, which is the most harmful deviation from the point of view of tax

evasion. Further inspection shows that indeed a few of the traded values and prices for Trader 2

might have suspicious features. Our analysis might thus open the door to more detailed substantive

investigation.

7 Concluding remarks

Testing the Newcomb-Benford law for the first significant digits is often seen as a useful instru-

ment for detecting frauds in financial data. However, most of the applications in this area rely

either on diagnostic checks of the data, or on informal decision rules. Formal goodness-of-fit test-

ing of the law poses some challenging statistical problems that include both the choice of the most

appropriate version of the null hypothesis, and derivation of the exact distribution of the test statis-

tic. Non-trivial solutions to these issues are required in order to satisfy a crucial requirement for

many anti-fraud exercises, i.e. to ensure adequate control over the number of falsely discovered

anomalies.
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In this work we propose a hierarchical testing procedure where different varying-dimensional

marginals of the Newcomb-Benford distribution are tested in sequence, starting from thek-digit

distribution and possibly ending with the one-digit marginals. By explicitly taking into account

the hierarchical nature of the sequence of tests that we implement, we base our inferences on the

resulting conditional distributions and reach proper control of the rate of false rejections at each

stage of the analysis. Furthermore, our testing procedure leads to exact significance levels and does

not rely on possibly misleading large-sample approximations.

Although our approach is general, it turns out to be particularly attractive for the detection

of frauds in customs data collected from international trade. We have seen two instances where

our methodology could help to discriminate between false signals and potential frauds requiring

further substantive investigation. This information is not provided at the same accuracy level by

other existing techniques.

We emphasize that, for investigation purposes, Customs authorities must concentrate their hu-

man resources on a restricted number of potential signals of fraud. Therefore, a test of compliance

to the NB law can become a practical working tool only if the number of false alarms is carefully

controlled at a prescribed (low) level. We have used some supplementary information to corrob-

orate our findings in the two reported empirical examples, where the true behavior of traders was

unknown. However, this supplementary information requires complex data queries and is not avail-

able in routine analysis on thousands of traders, for which signals can be obtained in an automatic

way only through a formal testing procedure. This is the reason why we see the availability of an

accurate test of the NB law, like the one that we propose, as a pre-requisite for concrete application

of the NB methodology in anti-fraud analysis.

We have not investigated the power of the suggested testing procedure, which is the subject of

ongoing research. Nevertheless, we can anticipate that our strict control of the false alarm rate will

considerably affect power only when the degree of deviation from the NB law is small or moder-

ate, an instance of minor relevance for anti-fraud purposes. We instead expect to detect “serial”

fraudsters with a probability which is almost as high as the one ensured by standard methods that

evaluate each digit separately, without allowing for multiplicity of tests. A related issue concerns

the conditions under which the NB law can be expected to provide a reliable approximation to
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the digit distribution of regular non-fraudulent transactions in the specific context of international

trade. Our preliminary simulation results seem to point to wide applicability conditions. Again,

this is the subject of ongoing research and details will be reported elesewhere.

Appendix

Proof of Proposition 1

By the definition ofs, the following equivalence of events holds

{s(Y) ≤ t} = {|Y| ∈
⋃

m∈Z

]10m,10mt]} (22)

for t ∈ [1,10[. Hence, since the intervals in (22) are disjoint, we have

P(s(Y) ≤ t) =
∑

m∈Z

(F|Y|(10mt) − F|Y|(10m))

for t ∈ [1,10[. In addition, since

s(x) =
∑

j∈N

10− j+1Dj(x),

the following equivalence holds

{D1(Y) = d1, . . . ,Dk(Y) = dk} = {s(Y) ∈]10−k+1cd1,...,dk,10−k+1(cd1,...,dk + 1)]}.

Therefore,

P(D1(Y) = d1, . . . ,Dk(Y) = dk) =

= P(s(Y) ≤ 10−k+1(cd1,...,dk + 1))− P(s(Y) ≤ 10−k+1cd1,...,dk),

which concludes the proof.
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Proof of Proposition 2

Proof. First, note that

|P(Dl1(Y) = dl1, . . . ,Dlm(Y) = dlm) − πl1,...,lm(dl1, . . . , dlm)| =

= |
∑

dj1 ,...,djk−m

(P(D1(Y) = d1, . . . ,Dk(Y) = dk) − π1,...,k(d1, . . . , dk))|

≤
∑

dj1 ,...,djk−m

|P(D1(Y) = d1, . . . ,Dk(Y) = dk) − π1,...,k(d1, . . . , dk)|.

By Corollary 4 by D̈umbgen and Leuenberger (2008), the following inequality holds foru < v

|P(s(Y) ≤ 10v) − P(s(Y) ≤ 10u) − (v− u)| ≤
TV( f (p)

log10 |Y|
)

2 ∙ 6p
(v− u)(1− (v− u)).

By choosingv = −k + 1+ log10(cd1,...,dk + 1) andu = −k + 1+ log10 cd1,...,dk, we find (see the proof

of Proposition 1)

P(s(Y) ≤ 10v) − P(s(Y) ≤ 10u) = P(D1(Y) = d1, . . . ,Dk(Y) = dk)

and (see expression (3))

v− u = π1,...,k(d1, . . . , dk).

Therefore, the previous inequality provides

|P(D1(Y) = d1, . . . ,Dk(Y) = dk) − π1,...,k(d1, . . . , dk)| ≤

≤
TV( f (p)

log10 |Y|
)

2 ∙ 6p
π1,...,k(d1, . . . , dk)(1− π1,...,k(d1, . . . , dk)).

The result then follows from the definition ofρ2
{l1,...,lm}

.

SUPPLEMENTARY MATERIAL

In the Supplementary Material we provide experimental results for the MAD conformity mea-

sure that complement those for theχ2 goodness-of fit statistic given in§4.
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Table 1: Monte Carlo estimatesq∗T{l1,...,lm}
(0.99) (left) andq∗T{l1,...,lm}|Ψ{1,...,k}(0.99)(0.99) (right), as given

in Equations (20) and (21), of the quantiles of theχ2 goodness-of-fit test statistics under the NB
model, fork = 1,2,3,4 and all possible index selectionsl1, . . . , lm. B = 1,000,000 independent
replications for each sample size. The last column gives the large-sampleχ2 approximation to
qT{l1,...,lm}

(0.99).

n = 20 n = 100 n = 500
k {l1, . . . , lm} (20) (21) (20) (21) (20) (21) χ2(0.99)
2 {1} 21.52; 37.27 20.44; 31.09 20.13; 28.93 20.09

{2} 21.73; 29.04 21.70; 29.23 21.68; 29.69 21.67
{1,2} 143.82; – 128.82; – 124.34; – 122.94

3 {1} 21.52; 37.27 20.44; 30.40 20.13; 26.17 20.09
{2} 21.73; 23.78 21.70; 23.68 21.68; 23.99 21.67
{3} 21.73; 23.39 21.62; 23.42 21.63; 23.92 21.67
{1,2} 143.82; 198.28 128.82; 158.52 124.34; 142.26 122.94
{1,3} 143.92; 197.55 128.70; 159.31 124.11; 141.11 122.94
{2,3} 140.87; 158.87 136.06; 148.88 134.90; 147.88 134.64
{1,2,3} 1249.76; – 1083.71; – 1022.62; – 1000.57

4 {1} 21.52; 37.61 20.44; 31.84 20.13; 28.17 20.09
{2} 21.73; 22.61 21.70; 22.73 21.68; 22.29 21.67
{3} 21.73; 22.18 21.62; 22.22 21.63; 22.15 21.67
{4} 21.98; 21.98 21.66; 21.66 21.66; 21.89 21.67
{1,2} 143.82; 196.67 128.82; 155.82 124.34; 139.77 122.94
{1,3} 143.92; 194.52 128.70; 155.97 124.11; 138.55 122.94
{1,4} 143.79; 196.34 128.65; 155.48 124.16; 138.94 122.94
{2,3} 140.87; 145.03 136.06; 141.32 134.90; 138.42 134.64
{2,4} 140.60; 146.14 136.12; 139.42 134.95; 138.37 134.64
{3,4] 140.17; 140.37 135.99; 137.51 134.88; 136.78 134.64
{1,2,3} 1249.76; 1537.64 1083.71; 1223.95 1022.61; 1098.15 1000.58
{1,2,4} 1249.41; 1541.06 1083.60; 1224.99 1022.83; 1096.64 1000.58
{1,3,4} 1250.48; 1550.01 1082.92; 1217.56 1022.58; 1093.62 1000.58
{2,3,4} 1162.62; 1219.30 1123.10; 1150.01 1109.28; 1134.71 1105.92
{1,2,3,4} 12164.36; – 10422.04; – 9698.41; – 9314.03
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Table 2: Monte Carlo estimates of the proportion of false rejections in testingH{l1,...,lm}0 through
the χ2 goodness-of-fit statistic whenq∗T{l1,...,lm}

(0.99) is used instead ofq∗T{l1,...,lm}|Ψ{1,...,k}(0.99)(0.99), for
k = 1,2,3,4 and all possible index selectionsl1, . . . , lm (m = 1, . . . , k − 1). For each sample size,
B = 1,000,000 independent replications are run under the NB model and only those in which
H{1,...,k}0 is rejected at level 0.01 are retained.k {l1, . . . , lm} n = 20 n = 100 n = 500

2 {1} 0.201 0.121 0.085
{2} 0.056 0.067 0.076

3 {1} 0.200 0.112 0.052
{2} 0.017 0.019 0.021
{3} 0.017 0.016 0.020
{1,2} 0.268 0.169 0.098
{1,3} 0.266 0.171 0.099
{2,3} 0.041 0.047 0.055

4 {1} 0.242 0.158 0.098
{2} 0.014 0.014 0.012
{3} 0.012 0.012 0.011
{4} 0.010 0.010 0.011
{1,2} 0.235 0.143 0.071
{1,3} 0.235 0.135 0.068
{1,4} 0.233 0.134 0.070
{2,3} 0.014 0.016 0.016
{2,4} 0.016 0.014 0.016
{3,4] 0.011 0.014 0.013
{1,2,3} 0.468 0.357 0.186
{1,2,4} 0.473 0.351 0.185
{1,3,4} 0.464 0.341 0.188
{2,3,4} 0.025 0.027 0.031

Table 3: Monte Carlo estimates of the empirical sizes of our test using the conditional quantile
(21), of the serial gatekeeping (Gate) and the Bonferroni-adjusted (Bonf) tests ofT{1} and T{2}.
Theχ2 statistic is adopted and the nominal test size is 0.01. The empirical sizes are computed by
conditioning on rejection ofH{1,2}0 , based on the estimated quantileq∗T{1,2}(0.99). B = 1,000,000
independent replications are taken for each value ofn.

n = 20 n = 100 n = 500
(21) Gate Bonf (21) Gate Bonf (21) Gate Bonf

H{1}0 0.010 0.127 0.126 0.010 0.086 0.085 0.011 0.057 0.055
H{2}0 0.009 0.034 0.032 0.009 0.041 0.040 0.010 0.0490.048

29
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 d

eg
li 

St
ud

i D
i P

ar
m

a]
 a

t 0
1:

26
 0

7 
A

pr
il 

20
16

 



ACCEPTED MANUSCRIPT

Table 4: Trader 1: Chi-squared statisticsT{l1,...,lm} for testing (16), the corresponding unconditional
quantiles (20) and conditional quantiles (21) from Table 1, withα = β = 0.99. A selection of null
hypotheses is displayed for the casek = 4. The instances where the test would lead to rejection are
reported in bold.

{l1, ..., lm} T{l1,...,lm} (20) (21)
{1,2,3,4} 8010.37 10422.04 10422.04
{1,2,3} 837.68 1083.71 1223.95
{1,2} 89.50 128.82 155.81
{1} 28.71 20.44 31.84
{2} 11.54 21.70 22.73
{3} 12.29 21.62 22.22
{4} 7.41 21.66 21.66

Table 5: Trader 2: Outcome of the hierarchical chi-squared testing procedure as in Table 4. The
approximated sample sizen = 100 is used for quantile computation.

{l1, ..., lm} T{l1,...,lm} (20) (21)
{1,2,3,4} 11404.48 10422.04 10422.04
{1,2,3} 1184.40 1083.71 1223.95
{1,2} 149.98 128.82 155.81
{1} 37.91 20.44 31.84
{2} 7.19 21.70 22.73
{3} 14.77 21.62 22.22
{4} 12.86 21.66 21.66
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Figure 1: Trader 1: Empirical distribution of the first-four digits in the traded values and theoretical
proportions (solid line) under the NB law.
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Figure 2: Trader 2: Empirical distribution of the first-four digits in the traded values and theoretical
proportions (solid line) under the NB law.
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