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 ��

ABSTRACT ��

The influenza virus PA endonuclease is an attractive target for the development of novel anti-��

influenza virus therapeutics, which are urgently needed because of the emergence of drug-resistant ��

viral strains. Reported PA inhibitors are assumed to chelate the divalent metal ion(s) (Mg2+ or ��

Mn2+) in the enzyme’s catalytic site, which is located in the N-terminal part of PA (PA-Nter). In the ��

present work, a series of salicylaldehyde thiosemicarbazone derivatives have been synthesized and ��

evaluated for their ability to inhibit the PA-Nter catalytic activity.  	�

Compounds 1-6 have been evaluated against influenza virus, both in enzymatic assays with 
�

influenza virus PA-Nter and in virus yield assays in MDCK cells. In order to establish a structure-���

activity relationship, the hydrazone analogue of the most active thiosemicarbazone has also been ���

evaluated. ���

Since chelation may represent a mode of action of such class of molecules, we studied the ���

interaction of two of them, one with and one without biological activity versus the PA enzyme, ���

towards Mg2+, the ion that is probably involved in the endonuclease activity of the heterotrimeric ���

influenza polymerase complex. The crystal structure of the magnesium complex of the o-vanillin ���

thiosemicarbazone ligand 1 is also described. ���

 �	�

Keywords: influenza virus�thiosemicarbazones�endonuclease�magnesium complexes�metal �
�

chelation�antiviral. ���

 ���

INTRODUCTION ���

 ���

Currently available antiviral drugs to treat or prevent influenza infections comprise two classes of ���

agents: those targeting the viral M2 ion-channel (amantadine and rimantadine) and those targeting ���

the viral neuraminidase (NA) (zanamivir and oseltamivir). The M2 inhibitors have limited clinical ���

Page 4 of 42Journal of Biological Inorganic Chemistry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

��

�

utility because of worldwide spread of drug-resistant mutant viruses among almost all influenza A ��

virus subtypes, including the 2009 pandemic H1N1 virus (1-3). Resistance is also a growing ��

concern for oseltamivir (4). Therefore, there is an urgent need for entirely novel antiviral ��

compounds with a different mode of action and targeting a critical step in the viral replication ��

process (5). The influenza virus genome consists of eight single-stranded (-)RNA segments, which ��

are transcribed and replicated by the viral RNA-dependent RNA polymerase (RdRp) (6,7). This ��

RdRp is widely recognized as a superior target for the development of new antivirals, since it is ��

highly conserved among influenza A, B, and C viruses, and its functions are essential for viral 	�

genome replication (8). It is composed of three subunits: PA, PB1, and PB2. The endonuclease 
�

activity, which resides in the N-terminal part of PA (PA-Nter) (9, 10), is required to cleave host cell ���

pre-mRNAs and produce the 5’-capped primers for transcription of the viral genomic RNA into ���

mRNA (cap-snatching) (11). Cap-snatching is an important event in the life cycle of all members of ���

the Orthomyxoviridae family of viruses, including influenza A, B and C viruses. The host cell has ���

no analogous activity, therefore inhibitors of cap-snatching may be active against all influenza virus ���

(sub)types and strains, including oseltamivir-resistant influenza viruses, without interfering with ���

normal host cell functions. ���

Several X-ray crystallographic studies have been performed on PA-Nter, revealing the presence of ���

one (10,12) or two (9, 13, 14) divalent metal ions within the active site (Figure 1). The two-metal-�	�

ion model is also consistent with biochemical (15) and computational (16) findings. The ions �
�

identified by means of X-ray diffraction are magnesium(II) or manganese(II), depending on the ���

crystallization conditions. Considering the relative abundance of these two metal ions in the cell ���

([Mg2+] is about 1000 times higher than [Mn2+]), magnesium may be more biologically relevant. ���

 ���
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Figure 1. Schematic representation of the metal-interacting residues within the catalytic site of ��

influenza virus PA endonuclease, assuming the presence of two metal ions (see ref. [12] and [13]). ��

 ��

 ��

Metal chelation has emerged as an efficient strategy to develop new inhibitors of metal-dependent ��

viral enzymes, the most illustrious example being the class of HIV integrase inhibitors, some of ��

which have already been approved (17). In the same way, development of PA-binding agents with 	�

metal-chelating properties may represent a successful strategy to tackle influenza infections. Several 
�

chelating molecules have been identified as influenza endonuclease inhibitors, including 2,4-���

dioxobutanoic acid derivatives (18-20), 5-hydroxy-1,6-dihydropyrimidine-4-carboxylic acids (12), ���

flutimide and its derivatives (21), 2-hydroxyphenyl amide derivatives (22) as well as tetramic acids ���

(23) and 5-hydroxy pyrimidin-4-one derivatives (24) (Figure 2).  ���

 ���
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L-742,001

��
Figure 2. Chemical structures of some prototype inhibitors of influenza virus endonuclease ([19], ��

[21], [24]) ��

 ��

Thiosemicarbazones (TSCs) possess a broad range of biological properties including antitumor, ��

antimalarial and antimicrobial activity (25); moreover, they have shown good antiviral activity against ��

herpes simplex virus (26), vaccinia and cowpox virus (27), as well as HIV (28, 29). The biological ��

properties of TSCs are often related to chelation of metal ions (30) and therefore they could be good 	�

candidates as chelating inhibitors of influenza virus endonuclease. TSCs can coordinate to the metal 
�

centre in an N,S-bidentate mode, but when an additional coordinating group is present, more ���

diversified binding modes become possible (31). In particular, the presence of the OH group in ���

salicylaldehyde thiosemicarbazone derivatives might provide a more favourable coordination for hard ���

metal ions like Mg2+, that prefers oxygen donor atoms.  ���

Page 7 of 42 Journal of Biological Inorganic Chemistry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

��

�

In the present work, we report the synthesis of some salicylaldehyde thiosemicarbazone derivatives (1-��

6, Figure 3) and their biological evaluation against influenza virus, both in enzymatic assays with ��

influenza virus PA-Nter and in virus yield assays in MDCK cells. In order to investigate the role of the ��

thiosemicarbazone moiety on activity, we also synthesised and tested compound 7, the hydrazone ��

analogue of 2, the most active molecule in the thiosemicarbazone series. ��

To assess the role of metal chelation in their antiviral mode of action, we have selected 1 and 2 (1 ��

without activity and 2 with reasonable activity against the PA-Nter enzyme) and studied their ��

interactions with Mg2+, the ion that is probably involved in the endonuclease activity of the native 	�

influenza virus RdRp complex. Finally, the crystal structure of complex Mg(HL
1
)22CH3OH is 
�

described (1, H2L
1). ���

 ���
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Figure 3. Chemical structures of ligands 1-7 and the coordination modes A and B of 1-5, involving ��

the OH groups���
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���

Materials and methods ��

 ��

Chemistry ��

 ��

All reagents of commercial quality were used without further purification. Purity of compounds was ��

determined by elemental analysis and verified to be �95% for all synthesized molecules. NMR ��

spectra were recorded at 25 °C on a Bruker Avance 400 FT spectrophotometer. The ATR-IR 	�

spectra were recorded by means of a Nicolet-Nexus (Thermo Fisher) spectrophotometer by using a 
�

diamond crystal plate in the range of 4000-400 cm-1. Elemental analyses were performed by using a ���

FlashEA 1112 series CHNS/O analyzer (Thermo Fisher) with gas-chromatographic separation. ���

Electrospray mass spectral analyses (ESI-MS) were performed with an electrospray ionization (ESI) ���

time-of-flight Micromass 4LCZ spectrometer. MS spectra were acquired in positive EI mode by ���

means of a DEP-probe (Direct Exposure Probe) mounting on the tip a Re-filament with a DSQII ���

Thermo Fisher apparatus, equipped with a single quadrupole analyzer.  ���

Synthesis of the ligands. The TSCs 1-6 and hydrazone 7 were prepared following reported ���

procedures (32). Briefly, to a solution of the aldehyde in absolute ethanol, an equimolar amount of ���

thiosemicarbazide was added, dissolved in the same solvent. In the synthesis of 7, semicarbazide �	�

hydrochloride was used, which was suspended in ethanol and the pH adjusted to 7 by using KOH �
�

1M. The mixture was refluxed for 6 hours, cooled at room temperature and concentrated in vacuum. ���

The resulting precipitate was filtered off, washed with cold ethanol and dried in vacuum.  ���

N-(2-hydroxy-3-methoxybenzylidene)-thiosemicarbazide (1, H2L
1
). Yield = 71%. 1H-NMR ���

(DMSO-d6, 25°C), �: 3.80 (s, 3H, OCH3), 6.77 (t, 1H; J = 7.9 Hz, ArH), 6.96 (d, 1H, J = 7.8 Hz, ���

ArH), 7.52 (d, 1H, J = 7.8 Hz, ArH), 7.87 (s, br, 1H, NH), 8.09 (s, br, 1H, NH), 8.40 (s, 1H; ���

HC=N), 9.20 (s, br, 1H, OH), 11.39 (s, br, 1H; NH). 1H-NMR (MeOD-d4, 25°C), �: 3.90 (s, 3H, ���
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�

OCH3), 6.84 (t, 1H; J = 7.9 Hz, ArH), 6.99 (d, 1H, J = 7.8 Hz, ArH), 7.43 (d, 1H, J = 7.8 Hz, ArH), ��

8.41 (s, 1H; HC=N). MS (EI, 70 eV), m/z (%) = 225.0 ([M]+, 100); IR (cm-1): �NH = 3459, 3339; ��

�OH = 3158 (br); �C=N = 1596; �C=S= 1532, 821; �OCH3 = 1258, 1056. Anal. Calcd. for ��

C9H11N3O2S�0.5H2O: C 46.14; H 5.16; N 17.94. Found: C 45.92, H 4.82, N 18.24. ��

N-(2,3-dihydroxybenzylidene)-thiosemicarbazide (2, H2L
2
). Yield = 75%. 1H-NMR (DMSO-d6, ��

25°C), �: 6.63 (t, 1H; J = 7.9 Hz, ArH), 6.79 (d, 1H, J = 7.8 Hz, ArH), 7.35 (d, 1H, J = 7.5 Hz, ��

ArH), 7.86 (s, br, 1H, NH), 8.08 (s, br, 1H, NH), 8.36 (s, 1H; HC=N), 9.20 (s, vbr, 2H, OH), 11.37 ��

(s, br, 1H; NH). 1H-NMR (MeOD-d4, 25°C), �: 6.75 (t, J = 7.9 Hz, 1H), 6.86 (dd, J = 7.9, 1.6 Hz, 	�

1H), 7.14 (d, J = 7.9 Hz, 1H), 8.30 (s, 1H, HC=N). MS (EI, 70 eV), m/z (%) = 210.9 ([M]+, 100); 
�

IR (cm-1): �NH = 3364, 3256; �OH = 3173 (br); �C=N = 1620; �C=S = 1539, 825. Anal. Calcd. for ���

C8H9N3O2S�0.5H2O: C 43.63; H 4.58; N 19.08. Found: C 43.33, H 4.48, N 18.98. ���

N-(2,4-dihydroxybenzylidene)-thiosemicarbazide (3) Yield = 78%. 1H-NMR (DMSO-d6, 25°C), ���

�: 6.25-6.29 (m, 2H; ArH), 7.67 (d, 1H, J = 8.4 Hz, ArH), 7.74 (s, br, 1H, NH), 7.94 (s, br, 1H, ���

NH), 8.24 (s, 1H; HC=N), 9.78 (s, br, 2H, OH), 11.17 (s, br, 1H; NH). MS (EI, 70 eV), m/z (%) = ���

211.0 ([M]+, 100); IR (cm-1): �NH = 3479, 3347; �OH = 3262, 3128 (br); �C=N = 1630; �C=S = 1582, ���

875. Anal. Calcd. for C8H9N3O2S 1/3H2O: C 44.23; H 4.48; N 19.34. Found: C 43.94, H 4.05, N ���

19.18. ���

N-(2,5-dihydroxybenzylidene)-thiosemicarbazide (4) Yield = 85%. 1H-NMR (DMSO-d6, 25°C), �	�

�: 6.68 (m, 2H; ArH), 7.22 (s, 1H, ArH), 7.78 (s, br, 1H, NH), 8.07 (s, br, 1H, NH), 8.30 (s, 1H; �
�

HC=N), 8.83 (s, br, 2H, OH), 9.21 (s, br, 2H, OH), 11.33 (s, br, 1H; NH). MS (EI, 70 eV), m/z (%) ���

= 211.0 ([M]+, 100); IR (cm-1): �NH = 3427, 3328; �OH = 3048, 3002 (br); �C=N = 1623; �C=S = 1559, ���

942. Anal. Calcd. for C8H9N3O2S 1/3H2O: C 44.23; H 4.48; N 19.34. Found: C 44.11, H 4.39, N ���

19.18. ���

N-(2-hydroxy-5-methoxybenzylidene)-thiosemicarbazide (5) Yield = 63%. 1H-NMR (DMSO-d6, ���

25°C), �: 6.76-6.84 (m, 2H; ArH), 7.48 (s, 1H, ArH), 8.01 (s, br, 1H, NH), 8.13 (s, br, 1H, NH), ���

8.35 (s, 1H; HC=N), 9.44 (s, br, 2H, OH), 11.36 (s, br, 1H; NH). MS (EI, 70 eV), m/z (%) = 225.0 ���
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���

�

([M]+, 100); IR (cm-1): �NH = 3412, 3304; �OH = 3120 (br); �C=N = 1626; �C=S = 1537, 821. Anal. ��

Calcd. for C9H11N3O2S: C 47.99; H 4.92; N 18.65. Found: C 48.17, H 4.82, N 18.34. ��

N-(3-(1,1’-biphenyl)-4-carboxylic acid)-thiosemicarbazide (6). Yield = 51%. 1H-NMR (DMSO-��

d6, 25°C), �: 7.53 (t, J = 8 Hz, 1H; ArH), 7.78 (m, 2H, ArH), 7.89 (d, J = 8 Hz, 2H, ArH), 8.03 (d, ��

2H, ArH), 8.13-8.26 (m, 4H, ArH+HC=N+NH2), 11.51 (s, br, 1H, NH), 13.00 (s, br, 1H, OH). MS ��

(EI, 70 eV), m/z (%) = 298.9 ([M]+, 60); IR (cm-1): �NH+OH = 3432, 3263, 3143 (br); �C=N = 1606; ��

�NH2 = 1535. Anal. Calcd. for C21H16N2O6S�1.5H2O: C 55.21; H 4.94; N 12.88. Found: C 55.38, H ��

4.85, N 13.03. 	�

N-(2,3-dihydroxybenzylidene)-semicarbazide (7). Yield = 70%. 1H-NMR (DMSO-d6, 25°C), �: 
�

6.36 (s, br, 2H, NH2), 6.64 (t, 1H; J = 7.9 Hz, ArH), 6.76 (d, 1H, J = 7.8 Hz, ArH), 7.17 (d, 1H, J = ���

7.5 Hz, ArH), 8.14 (s, 1H; HC=N), 9.21, 9.39 (s, br, 2H, OH), 10.17 (s, br, 1H; NH). 1H-NMR ���

(MeOD-d4, 25°C), �: 6.75 (t, J = 7.9 Hz, 1H), 6.86 (dd, J = 7.9, 1.6 Hz, 1H), 7.14 (d, J = 7.9 Hz, ���

1H), 8.30 (s, 1H, HC=N). MS (EI, 70 eV), m/z (%) = 195.0 ([M]+, 100); IR (cm-1): �NH = 3455, ���

3350; �OH = 3166 (br); �C=O = 1694; �C=N = 1592. Anal. Calcd. for C8H9N3O3: C 49.23; H 4.65; N ���

21.53. Found: C 49.16, H 4.48, N 21.40. ���

Mg(HL
1
)2 2.5 H2O (8). 0.5 mmol of H2L

1 was dissolved in 20 ml of methanol and 4 eq. of NEt3 ���

were added. The solution turned yellow and it was stirred at r.t. for 30 minutes; 0.5 eq. of ���

magnesium acetate were added and the reaction mixture was stirred at r.t. for 4 hours, concentrated �	�

in vacuum and cooled overnight. The precipitate was filtered off and washed with water. Crystals �
�

suitable for X-ray diffraction analysis were obtained by slow evaporation of the mother liquors at ���

room temperature. Yield: 74%. 1H-NMR (MeOD, 25°C), �: 3.89 (s, 3H, OCH3); 6.84 (t, br, 1H, ���

ArH), 6.98 (d, br, 1H, ArH), 7.42 (d, br, 1H, ArH), 8.40 (s, 1H, HC=N). MS-ESI, m/z (+,%) = 473 ���

([M+H]+, 40); 495 ([M+Na]+, 40). IR (cm-1): �NH = 3334 (br); �C=N = 1596; �C=S = 1534; �OCH3 ���

=1238, 1027. Anal. Calcd. for C18H20N6O4Mg 2.5H2O: C 41.75, H 4.87, N 16.23, S 12.38. Found: ���

C 41.30, H 4.75, N 16.12, S 12.97.  ���

Page 12 of 42Journal of Biological Inorganic Chemistry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

���

�

Mg(HL
2
)2 (9). 0.5 mmol of H2L

2 was dissolved in 20 ml of degassed methanol under nitrogen and 4 ��

eq. of NEt3 were added. The solution turned yellow and it was stirred at r.t. for 30 minutes; 0.5 eq. ��

of magnesium acetate were added and the reaction mixture was stirred at r.t. for 4 hours, ��

concentrated in vacuum and cooled overnight. The precipitate was filtered off under inert ��

atmosphere, washed with water and kept under nitrogen. Both the solution and the solid turn dark if ��

exposed to air. 1H-NMR (MeOD-d4, 25°C), �: 6.47 (s, br, 2H), 6.81 (s, br, 1H), 8.12 (s, br, 1H, ��

HC=N). MS-ESI, m/z (-, %) = 443 ([M]-, 10); 210 ([HL2]-, 100). IR (cm-1): �NH+OH = 3275, 3164 ��

(br); �C=N = 1568; �C=S = 1534. 	�

 
�

X-ray crystallography ���

 ���

Single crystals of 2 and of Mg(HL
1
)2

.
2CH3OH were selected and mounted on glass fibers to collect ���

data on a SMART Breeze diffractometer. The crystals were kept at 293 K during data collection. ���

Table 1 reports crystal data and structure analysis. Using Olex2 (33), the structure was solved with ���

the SIR2004 (34) structure solution program using Direct Methods and refined with the ShelXL ���

refinement package (35) using Least Squares minimisation. Anisotropic displacement parameters ���

were refined for all non-hydrogen atoms. Hydrogen atoms were partly located on the Fourier ���

difference map and partly introduced in calculated positions riding on their carrier atoms. Hydrogen �	�

bonds were analyzed with PARST97 (36) and the Cambridge Structural Database software (37,38) �
�

was used for the analysis of the crystal packing. Table 1 summarizes crystal data and structure ���

determination results. Crystallographic data (excluding structure factors) for 2 and ���

Mg(HL
1
)2

.
2CH3OH have been deposited with the Cambridge Crystallographic Data Centre as ���

supplementary publication no. CCDC 1049845-1049846. Copies of the data can be obtained free of ���

charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44) 1223-336-���

033; e-mail: deposit@ccdc.cam.ac.uk). ���

 ���
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�

Biology ��

 ��

Production of recombinant influenza virus PA-Nter protein ��

The coding sequence for PA-Nter (i.e., residues 1-217 from the PA protein of influenza virus strain ��

A/X-31) was cloned in the pET28a(+) plasmid (Merck KGaA, Darmstadt, Germany) with an N-��

terminal 6xHis-tag, and this bacterial expression plasmid was transformed into E. coli BL21-��

CodonPlus cells (Agilent Technologies, Santa Clara, CA). These bacteria were grown to an OD of ��

0.6, when IPTG was added at a final concentration of 1 mM to induce expression of recombinant 	�

protein for 5 h at 37 °C. The bacterial cells were ruptured using a French press and the protein was 
�

purified by 6xHis-Ni-NTA chromatography (Qiagen, Valencia, CA), followed by buffer exchange ���

using PD-10 desalting columns (GE Healthcare, Diegem, Belgium) to keep the protein in storage ���

buffer (50 mM Tris-HCl pH 8, 100 mM NaCl, 10 mM �-mercaptoethanol, 50% glycerol). Protein ���

purity was verified by SDS-PAGE with Coomassie Blue staining, and protein concentration was ���

determined by Bradford assay. Finally, the purified protein was divided in aliquots and stored at -80 ���

°C. ���

 ���

Plasmid-based endonuclease assay ���

 �	�

The enzymatic PA-Nter assay was performed according to a published method (22) with minor �
�

modifications (20). One microgram of recombinant PA-Nter was incubated with 1 �g (16.7 nM) of ���

single-stranded circular DNA plasmid M13mp18 (Bayou Biolabs, Metairie, Louisiana) in the ���

presence of the test compounds and at a final volume of 25 �L. The assay buffer contained 50 mM ���

Tris-HCl pH 8, 100 mM NaCl, 10 mM �-mercaptoethanol and 1 mM MnCl2. The reaction was ���

incubated at 37 °C for 2 h and then stopped by heat inactivation (80 °C, 20 min). The ���

endonucleolytic digestion of the plasmid was visualized by gel electrophoresis on a 1% agarose gel ���
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���

�

with ethidium bromide staining, and the amount of remaining intact plasmid was quantified by ��

ImageQuant TL software (GE Healthcare). ��

The percentage inhibition of endonuclease activity was plotted against the compound concentration ��

on a semi-logarithmic plot, using GraphPad Prism software (GraphPad Software, La Jolla, CA). ��

Values were the mean ± S.E.M. of three independent experiments. The 50% inhibitory ��

concentrations (IC50) were obtained by nonlinear least squares regression analysis. The known PA-��

Nter inhibitor 2,4-dioxo-4-phenylbutanoic acid (DPBA) was included as the reference compound. ��

 	�

Cells and media 
�

 ���

Madin-Darby canine kidney (MDCK) cells (a kind gift from M. Matrosovich, Marburg, Germany) ���

and human embryonic kidney 293T (HEK293T) cells (purchased from Thermo Scientific)�were ���

grown in Dulbecco's modified Eagle medium (DMEM) supplemented with 10% fetal calf serum ���

(FCS), 1 mM sodium pyruvate and 0.075% sodium bicarbonate. Virus experiments were performed ���

in MDCK infection medium, consisting of Ultra MDCK medium (Lonza, Basel, Switzerland) ���

supplemented with 0.0225% sodium bicarbonate, 2 mM L-glutamine, and 2 �g/mL tosyl ���

phenylalanyl chloromethyl ketone (TPCK)-treated trypsin (Sigma-Aldrich). The cells were ���

incubated in a 5% CO2 humidified atmosphere. �	�

 �
�

vRNP reconstitution assay  ���

 ���

The assay to determine the inhibitory effect of the compounds on reconstituted influenza virus ���

vRNPs is described in more detail elsewhere (39, 40). Briefly, the four relevant expression plasmids ���

derived from influenza A/PR/8/34 [i.e., pVP-PB1, pVP-PB2, pVP-NP, and pVP-PA; generously ���

donated by M. Kim (41), Korea Research Institute of Chemical Technology, Daejeon, South Korea] ���

were combined with a firefly luciferase reporter plasmid (also a kind gift from M. Kim) and ���
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���

�

cotransfected into HEK293T cells using Lipofectamine 2000. After 24 h incubation at 37 °C in the ��

presence of the test compounds, luciferase activity was determined using the ONE-Glo luciferase ��

assay system (Promega). The 50% effective concentration (EC50) was defined as the compound ��

concentration causing 50% reduction in the vRNP-driven firefly luciferase signal, as compared to ��

cells receiving medium instead of compound. These EC50 values were calculated by interpolation ��

assuming a semi-log dose-response effect. In parallel, the compound cytotoxicity, expressed as ��

CC50 (50% cytotoxic concentration) was determined using the spectrophotometric MTS cell ��

viability assay (CellTiter 96 AQueous One Solution Cell Proliferation Assay; Promega). The CC50 	�

values were defined as the compound concentration reducing cell viability in untransfected 
�

HEK293T cells by 50%, as compared to the wells receiving medium instead of compound. ���

Ribavirin was included as the reference compound. ���

 ���

Virus yield assay ���

 ���

To determine anti-influenza virus activity in cell culture, a virus yield assay was performed (40). ���

One day prior to infection, MDCK cells were seeded into 96-well plates at 25,000 cells per well. At ���

day 0, the test compounds were added at serial dilutions, immediately followed by infection with ���

influenza A/PR/8/34 virus. The multiplicity of infection (MOI) was 150 CCID50 per well (50% cell �	�

culture infectious dose; determined by the method of Reed and Muench (42)). After 24 h incubation �
�

at 35 °C, the supernatants were harvested and stored at -80 °C. The viral copy number in these ���

samples was estimated by a one-step quantitative real-time reverse transcription (qRT)-PCR assay ���

(CellsDirect One-Step qRT-PCR kit; Invitrogen, Life Technologies, Gent, Belgium), with influenza ���

virus M1-specific primers and probe [see (43) for all details]. An M1-plasmid standard was ���

included to allow absolute quantification. The EC99 and EC90 values were calculated by ���

interpolation from data of at least three experiments and defined as the compound concentration ���

causing respectively a 2-log10 and 1-log10 reduction in viral RNA (vRNA) copy number, as ���
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���

�

compared to the virus control receiving no compound. In parallel, uninfected MDCK cells were ��

used to determine the CC50 values of the compounds after 24 h incubation, using the MTS cell ��

viability assay (CellTiter 96 AQueous One Solution Cell Proliferation Assay; Promega). Ribavirin ��

was included as the reference compound. ��

 ��

Results and discussion ��

 ��

Chemistry 	�

 
�

The ligands 1-6 (Figure 3) were easily prepared in high yields by condensation of the ���

thiosemicarbazide and the substituted benzaldehyde; they were characterized by spectroscopic ���

tools, mass spectrometry and elemental analysis. 2 was also characterized by single crystal X-ray ���

diffraction. In 6 the OH/OCH3 groups are substituted by a carboxylic moiety, which retains good ���

affinity for magnesium ions, following a suggestion emerged in the research for new inhibitors of ���

HIV RNase H (44), which has two magnesium ions in its active site. In the IR spectra of 1-6 the ���

C=S stretching absorptions are at about 1530-1580 and 820-940 cm-1; in the 1H-NMR spectra, the ���

resonances of the iminic proton (about 8.0 ppm) and of the hydrazonic NH and of NH2 (11.3 ppm ���

and 7.8-8.0 ppm, approximately) are evident. Isomerism around the C=N bond is possible, but in �	�

the 1H-NMR spectra registered in d6-DMSO there is only one set of signals: evidently, all the �
�

ligands are in the E form in solution. Even if these ligands can give rise to a thione-thiol ���

equilibrium, no evidence was obtained about the presence of the thiolic form in solution. Analogous ���

considerations can be made for 7, the hydrazonic analogue of compound 2. ���

Ligands 1-5 are very versatile: they possess both soft and hard donor atoms and they can act as ���

bidentate or tridentate chelating ligands. Complexes of salicylaldimine thiosemicarbazones with ���

divalent metals like Pd(II), Zn(II), Cu(II), Ni(II) have been studied previously (45-50), but little is ���

known about their interactions with magnesium ions (51). Magnesium is a hard Lewis acid and so ���
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���

�

coordination of the sulphur atom could be excluded. It is know that salicylaldimine ligands can be ��

NO-coordinated to magnesium (A, Figure 3), but in 1 and 2, with two oxygen donors in ortho, ��

coordination B (Figure 3) is also plausible. Since chelation of the divalent metal cofactors within ��

the active site of the influenza virus PA endonuclease provides the possible basis for their antiviral ��

activity (17), we decided to clarify the coordination properties of two of these ligands (1 and 2, ��

H2L
1 and H2L

2, respectively) towards Mg2+. The ligands were combined with magnesium acetate to ��

react in the presence of triethylamine as a base to afford the corresponding metal complexes 8 and ��

9. It is worth noting that, in the case of 2, the reaction was executed under inert atmosphere, since 	�

the reaction mixture became dark when exposed to air. In order to verify the influence of the metal 
�

to ligand ratio or the pH, different reaction conditions were used with 1 (1:1 and 1:2 metal to ligand ���

ratio; up to 4 equivalents of base), but only with a 1:2 metal to ligand ratio and in the presence of 4 ���

equivalents of base, a metal complex was isolated.  ���

The infrared spectrum of both 8 and 9 displays bands associated to the NH group (3163-3460 cm-1), ���

thus indicating that this functionality is not deprotonated. The bands associated to the C=S ���

stretching are unaffected upon complexation, therefore it can be assumed that this group is not ���

involved in coordination, as confirmed by X-ray diffraction analysis on 8. In the IR spectrum of 8 ���

the stretching of the methoxy group is slightly shifted compared to the free ligand, suggesting a ���

possible involvement in coordination. The 1H-NMR spectrum of 8 registered in d6-DMSO shows �	�

the presence of two sets of signals: one set corresponds to the free ligand, while the second one �
�

corresponds to the metal complex. The use of a coordinating solvent, therefore, causes the partial ���

decoordination of the ligand. On the contrary, in the 1H-NMR spectrum in MeOD, where the ���

solubility is however low, there is a unique set of signals: the ligand coordinates to the metal in a ���

bidentate fashion only when a poor coordinating solvent is present. The 1H-NMR spectrum of 9 ���

shows very broad signals, which might indicate that a fluxional behavior can exist in solution. It is ���

worth noting that complex 9 is not stable if exposed to air both in solution and at the solid state. ���
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�

Mass spectra confirmed the presence in solution of complexes of type M(HL)2 and elemental ��

analysis confirmed the proposed stoichiometry, Mg(HL
1
)2 2.5 H2O, for 8.  ��

 ��

X-ray crystallography ��

 ��

Ligand 2 was crystallized from ethanol as the solvate form 2�CH3CH2OH (Table 1). The molecular ��

structure, shown in Figure 4, is perfectly planar, and the thiosemicarbazone chain is completely ��

extended, with trans torsion angles larger than 175° along the chain. The cis configuration between 	�

the amide NH and the imidic CH favours the aggregation of coplanar molecular pairs by the 
�

interactions between these groups and the sulphur (Figure 4, bottom) (N2-H…S1(i)=3.401(1)Å, ���

167.2(1)°, C7-H…S1(i)=3.762(1)Å, 152.0(1)°, i=1-x, -y, 2-z). The dimeric assembly is surrounded ���

by ethanol molecules linked by hydrogen bonds to the hydroxyl groups of 2 which act as donors: ���

O2-H…O3(ii)=2.816(2)Å, 141(2)°; O1-H…O3(iii)=2.770(2)Å, 168(3)° (ii=2-x, y-1/2, 3/2-z; iii=2-���

x, -y, 1-z). The ethanol molecule in turn donates a hydrogen bond to the sulphur atom (O3-���

H…S1(iv)=3.218(1)Å, 158(2)°, iv= x+1, y, z) while the -NH2 moiety donates a hydrogen bond to ���

one hydroxyl group (N3-H…O2(v)=3.013(2)Å, 178(2)°, v=1-x, 1/2+y, 3/2-z), thus generating a ���

three-dimensional hydrogen bond network. ���
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�	�

�

���

Figure 4. Molecular structure and labelling of 2, with thermal ellipsoids drawn at the 50% ��

probability level. Bottom: supramolecular aggregation of 2�CH3CH2OH in the solid, with dotted ��

hydrogen bonds. ��

��
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���

Complex Mg(HL
1
)2

.
2CH3OH crystallizes from methanol in the orthorhombic P2nn space group ��

(Table 1). The neutral complex comprises two monodeprotonated (HL1)- ligands coordinated in a ��

bidentate mode to the magnesium cation by means of the methoxy group and of the deprotonated ��

hydroxyl group, forming two planar five-membered chelation rings; two cis methanol molecules ��

complete the octahedral coordination (Figure 5) and the overall complex molecule has a pseudo ��

twofold rotation axis relating the two ligands and the two methanol molecules.  ��

�	�

Figure 5. Molecular structure and labelling of complex Mg(HL
1
)2

.
2CH3OH, with thermal 
�

ellipsoids drawn at the 50% probability level and dashed intramolecular hydrogen bonds. Bottom: ���

supramolecular aggregation of Mg(HL
1
)2

.
2CH3OH in the solid, with dotted hydrogen bonds. ���
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 ��

The mer configuration of the two bidentate ligand confers optical activity to the complex; the ��

crystal is however racemic due to the presence of reflection planes. The thiosemicarbazone arms are ��

protonated on the amidic nitrogen and are noticeably distorted due to intramolecular interactions. In ��

fact the amide NH and the imidic CH groups are in trans configuration, and the latter is also turned ��

away from the hydroxyl group, in contrast to the situation observed for the free ligand 2 (H2L
2), ��

whose molecular structure is comparable to 1 (H2L
1). The torsion angles along the chains of the two ��

ligands (HL1)- in the complex differ significantly from the 0/180° value of the extended 	�

conformation of the free ligand, reported in parentheses: C1-C2-C8-N1= 150/155°(-5°), C2-C8-N1-
�

N2=7/3° (180°), C8-N1-N2-C9=-166/-162°(175°), N1-N2-C9-N3=9/5°(-2°). These conformational ���

distortions are mainly due to strong intramolecular hydrogen bonds between the amidic NH and the ���

coordinated deprotonated hydroxyl oxygens (N2-H…O1=2.582(1)Å, 147(1)°; N11-���

H…O10=2.589(1)Å, 153(1)°), and between the coordinated methanol molecules and the sulphur ���

atoms (O100-H…S1=3.189(1)Å, 155(1)°; O200-H…S2=3.212(1)Å, 159(1)°). The -NH2 moiety is ���

involved in an intermolecular hydrogen bond to the sulphur atom generating an R22(8) ring (Figure ���

5, bottom) which expands in ribbons along the diagonal ab (N3-H…S1(vi)=3.410(1)Å, 162(1)°; ���

N12-H…S2(vii)=3.503(2)Å, 166(1)°, vi=x+1, y-1,z, vii=x-1, y+1, z). In both the free ligand and the ���

complex the sulphur atoms are significantly involved in intermolecular interactions where they act �	�

as acceptors from –OH and –NH groups. �
�

 ���

Biological activity ���

 ���

Compounds 1-6 were evaluated for their ability to inhibit endonuclease activity in an enzymatic ���

assay with recombinant PA-Nter, and the results are presented in Table 2. Besides, their anti-���

influenza virus activity was determined in cell culture, in a virus yield assay in MDCK cells and in ���

a vRNP reconstitution assay in HEK293T cells. We also evaluated the inhibitory activity of 1-6 ���
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���

�

against a broad panel of DNA [i.e. herpes simplex virus type 1, vaccinia virus and adenovirus, ��

evaluated in infected human embryonic lung fibroblast (HEL) cells] and RNA viruses (Coxsackie ��

B4 virus and respiratory syncytium virus, tested in HeLa cells; parainfluenza-3 virus and Punta ��

Toro virus, tested in Vero cells). However, they were found to be inactive against these diverse ��

viruses, with the exception of a modest activity of 2 against herpes simplex virus-1 (EC50 = 58 �M) ��

and vaccinia virus (EC50= 45 �M). ��

As can be seen in Table 2, compounds 2 and 4 displayed moderate activity in the PA-Nter ��

enzymatic assay, with the catechol derivative 2 presenting the best result (IC50: 37 �M). It is 	�

interesting to note that this compound has an activity profile similar to that of a 2,3-
�

dihydroxyphenyl amide inhibitor that we recently reported (22), indicating the importance of the ���

catechol pharmacophore for inhibition of the PA-Nter enzyme. In line with the enzymatic data on ���

series 1-6, compounds 2 and 4 were also the only derivatives showing antiviral activity in both cell ���

culture assays. Compound 2 displayed an EC99 �87 �M and EC90 �56��M in the virus yield assay, ���

and an EC50 value of 63 µM in the vRNP reconstitution assay. For 4, the corresponding values were ���

48, 34 and 22 µM, respectively. Additionally, compound 5 displayed weak inhibitory activity in the ���

vRNP reconstitution assay, with an average IC50 value of 150 µM. ���

Even if the set of data is quite limited, some careful conclusions can be drawn. 1 and 2 can ���

coordinate the divalent magnesium ion in the B mode, by using the methoxy and OH groups (1) or �	�

two OH groups (2); however, 1 is inactive, while 2 has moderate activity. The same type of �
�

substitution, i.e. moving from 4 (5-OH) to 5 (5-methoxy), has the same effect on biological activity ���

[i.e. 4 is moderately active; 5 has very weak activity (vRNP reconstitution assay) or is inactive ���

(virus yield assay)]. It is difficult to correlate this effect to a different coordinating ability of the ���

ligands, in particular looking at 4 and 5, which can both use mode A (Figure 3). Similarly, a ���

different coordination behaviour cannot explain the different activity of 3 and 4. On the other hand, ���
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the finding that 4 has lower activity in the enzymatic assay than 2, could well be related to their ��

different coordination mode to the magnesium ion in the active site of the PA-Nter enzyme.  ��

 To further investigate the role of the thiosemicarbazone moiety on activity, we evaluated the ��

biological activity of compound 7, the hydrazonic analogue of 2. It is worth noting that the ��

replacement of the sulphur atom of 2 with an oxygen in compound 7 implies a slight improvement ��

in the inhibitory activity against the PA-Nter enzyme, with the IC50 changing from 37 to 24 �M. ��

This can be related to the improved ability of the ligand to interact with the metal cofactors, when a ��

harder donor atom is present. However, the activity of 7 in the cellular vRNP assay is lower than 	�

that of the parent thiosemicarbazone 2, thus suggesting that for the thiosemicarbazone compounds 
�

inhibition of PA-Nter endonuclease is not the only mode of action. In influenza virus-infected cells, ���

in fact, the antiviral activity is higher for compound 4 than for 2, and the other TSCs are inactive. ���

Note that, in cell culture (i.e. in the virus yield and vRNP reconstitution assay), 4 produces antiviral ���

activity at concentrations below 50 �M, while in the enzymatic assay its IC50 value was 341 �M. ���

This suggests that the suppressive effect of 4 on influenza virus replication may not merely be ���

related to direct inhibition of the endonuclease enzyme, since the compound may also affect other ���

steps in the virus replicative cycle. These considerations are in line with our recent studies (20) ���

showing the complex biological properties of some molecules proposed as metal chelating ���

inhibitors of the influenza virus PA endonuclease.  �	�

 �
�

Conclusions ���

 ���

We have started a project focused on synthesis and biological evaluation of chemical scaffolds that ���

are able to bind one or two metal ions in the PA-Nter active site and, in this way, can inhibit ���

influenza virus replication (20,22,40). From this perspective, salicylaldehyde thiosemicarbazones ���

seem promising, because of their well-known coordinating abilities and biological properties. In the ���

first evaluation reported here, positions 3, 4 and 5 of the phenyl ring were substituted with OH and ���
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���

�

OCH3 donor groups to derive a structure-activity relationship. Compounds 2 and 4 displayed ��

moderate activity in the PA Nter enzymatic assay and antiviral activity in both cell culture assays ��

used in this study. In particular, compound 2, with two OH groups in position 2 and 3 on the phenyl ��

ring, is the most active and this is in line with the results recently reported by us with a 2,3-��

dihydroxyphenyl amide inhibitor (22) and the literature regarding the use of natural polyphenols for ��

inhibiting influenza virus infection (52). Thiosemicarbazones 1-5 are effectively able to coordinate ��

magnesium(II) ion, as definitely proved by the structure of Mg(HL
1
)2

.
2CH3OH, but it seems ��

difficult to correlate their activity exclusively to this ability. For example, compound 5 is inactive, 	�

while 4 is moderately active, but structural differences between them (5-methoxy group in 5 instead 
�

of 5-OH group as in 4) do not imply differences in chelating properties. The different activity could ���

depend on a different mechanism of action, but also on what Cohen sharply describes as “malleable ���

interaction” in metal coordination by metalloenzyme inhibitors (53), to describe the large number of ���

factors (donor atom identity, orientation, electrostatics, van der Waals interactions,…) that are ���

involved in the inhibition mechanism. Another point that deserves closer examination is the ���

difference between the data obtained for 2 and 4 by using different assays: in the enzyme assay, 2 ���

results more active than 4, but the opposite was seen in virus-infected cells and the vRNP ���

reconstitution assay. Compound 4 probably acts by different antiviral mechanisms, not only metal ���

chelation. This underscores that characterization of the activity of a new compound is possible only �	�

if different complementary assays are used. �
�

 ���
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Table 1. Crystal data and structure refinement for 2 and Mg(HL
1
)2

.
2CH3OH. ��

 Mg(HL
1
)2

.
2MeOH   2 

Empirical formula  C20H28MgN6O6S2  C10H15N3O3S  

Formula weight  536.91  257.31  
Temperature/K  293(2)  293  

Crystal system  orthorhombic  monoclinic  

Space group  P2nn  P21/c  
a/Å  7.878(1)  9.3259(6)  

b/Å  10.639(2)  13.5879(9)  
c/Å  31.921(5)  10.1652(6)  

���� 90  90  

����� 90  101.2117(9)  

����� 90  90  

Volume/Å3  2675.4(7)  1263.5(1)  

Z  4  4  

�������cm3
�� 1.333  1.353  

��mm-1
�� 0.267  0.257  

F(000)  1128.0  544.0  

Radiation  MoK�(��= 0.71073)�� MoK�(��= 0.71073)��

2� range for data collection/° 2.552 to 44.106  4.452 to 63.216  

Reflections collected  21724  19770  
Independent reflections  3296 [Rint=0.0818, Rsigma= 0.0481]  4033 [Rint = 0.0263, Rsigma = 0.0184] 
Data/restraints/parameters  3296/7/326  4033/0/174  

Goodness-of-fit on F2  1.073  1.031  

Final R indexes [�>=2�����]�� R1 = 0.0702, wR2 = 0.1916  R1 = 0.0442, wR2 = 0.1267  

Final R indexes [all data]  R1 = 0.0855, wR2 = 0.2057  R1 = 0.0492, wR2 = 0.1311  

Largest��F max/min / e Å-3
�� 1.09/-0.38  0.81/-0.71  

Flack parameter 0.43(7) 
���

��

Page 30 of 42Journal of Biological Inorganic Chemistry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

�
�

�

Table 2. Inhibitory activity of compounds 1-7 in the enzymatic assay with influenza virus PA-Nter ��

endonuclease, or cellular influenza virus assays based on virus yield or vRNP reconstitution.���

Compound Enzyme 

assay with 

PA-Nter
a 

Virus yield assay 

in influenza virus-infected MDCK 

cells
b 

vRNP reconstitution 

assay in HEK293T 

cells
c
 

  Antiviral activity Cytotoxicity Activity Cytotoxicity 

 IC50 EC99 EC90 MCC CC50 EC50 CC50 

(1)  >500 >200 >200 �200 >200 >200 >200 

(2)  37 �87 �56 �100 �138 63 >200 

(3) >500 >200 >200 >200 >200 >200 >200 

(4)  341 48 34 �100 146 22 >200 

(5) >500 >200 >200 �200 >200 150 >200 

(6) >500 >100 >100 >200 >200 >100 >200 

(7) 24 ND ND ND ND 107 >200 

DPBAd 5.5 ND ND ND ND ND ND 

Ribavirin ND 13 8.5 �200 >200 9.3 >200 

aRecombinant PA-Nter was incubated with the ssDNA plasmid substrate, a Mn2+-containing buffer and test ��

compounds. Cleavage of the substrate was assessed after 2 hr incubation. The IC50 represents the compound ��

concentration (in µM) to obtain 50% inhibition of cleavage. ��
bMDCK (Madin-Darby canine kidney) cells were infected with influenza A virus (strain A/PR/8/34) and ��

incubated with the compounds during 24 hr. The virus yield in the supernatant was assessed by real-time qPCR. ��

The EC99 and EC90 values represent the compound concentrations (in µM) producing a 2-log10 or 1-log10 	�

reduction in virus titer, respectively. The cytotoxicity, assessed in uninfected MDCK cells, was expressed as the 
�

CC50 value (50% cytotoxic concentration, determined with the MTS cell viability assay, in µM). ���
cHEK293T (human embryonic kidney 293T) cells were cotransfected with the four vRNP-reconstituting ���

plasmids and the luciferase reporter plasmid in the presence of the test compounds. The EC50 value represents ���

the compound concentration (in µM) producing 50% reduction in vRNP-driven firefly reporter signal, estimated ���

at 24 h after transfection. The CC50 (in µM), i.e. the 50% cytotoxic concentration, was determined in ���

untransfected HEK293T cells by MTS cell viability assay. ���

dDPBA, 2,4-dioxo-4-phenylbutanoic acid ���

ND, not determined. ���
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