
15 January 2025

University of Parma Research Repository

A KinFu based approach for robot spatial attention and view planning / Monica, Riccardo; Aleotti, Jacopo;
Caselli, Stefano. - In: ROBOTICS AND AUTONOMOUS SYSTEMS. - ISSN 0921-8890. - 75:(2016), pp. 627-
640. [10.1016/j.robot.2015.09.010]

Original

A KinFu based approach for robot spatial attention and view planning

Publisher:

Published
DOI:10.1016/j.robot.2015.09.010

Terms of use:

Publisher copyright

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available

Availability:
This version is available at: 11381/2806071 since: 2021-10-11T10:46:56Z

Elsevier

This is the peer reviewd version of the followng article:

note finali coverpage



Our reference: ROBOT 2538 P-authorquery-v11

AUTHOR QUERY FORM

Journal:
Robotics and Autonomous Systems

Article Number: 2538

Please e-mail your responses and any corrections to:

E-mail: corrections.esch@elsevier.river-valley.com

Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation
in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then
please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections
within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Your article is registered as belonging to the Special Issue/Collection entitled “3D Perception with PCL”. If this is NOT correct and
your article is a regular item or belongs to a different Special Issue please contact j.mohideen@elsevier.com immediately prior to
returning your corrections.

Location
in article

Query / Remark click on the Q link to go
Please insert your reply or correction at the corresponding line in the proof

Q1 Please confirm that given names and surnames have been identified correctly.

Q2 Color statement has been added to the caption(s) of Figs. 3, 7 and 8. Please check, and correct if necessary.

Q3 The usage ‘Gaussian nr.’ has been changed to ‘Gaussian no.’ in tables 5 and 6. Please check and correct if
necessary.

Q4 The repeated vol. 1 is deleted in Ref. [26]. Please check, and correct if necessary.

Q5 Biography is present only in the PDF file. We have inserted it in the TeX file. Please check and correct if
necessary.

Please check this box or indicate your approval if
you have no corrections to make to the PDF file

Thank you for your assistance.

Page 1 of ...1...

http://www.elsevier.com/artworkinstructions
http://www.elsevier.com/artworkinstructions
http://www.elsevier.com/artworkinstructions
http://www.elsevier.com/artworkinstructions
http://www.elsevier.com/artworkinstructions
mailto:j.mohideen@elsevier.com


Robotics and Autonomous Systems xx (xxxx) xxx–xxx

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

A KinFu based approach for robot spatial attention and view planning
Q1

∧
Riccardo

∧
Monica,

∧
Jacopo

∧
Aleotti ∗,

∧
Stefano

∧
Caselli

Dipartimento di Ingegneria dell’Informazione, University of Parma, Italy

h i g h l i g h t s

• A spatial attention approach is presented for a robot manipulator.
• Salient human actions are detected by hand motion tracking and GMM.
• Approximate locations of salient user actions draw robot’s attention.
• Next-best views are computed on the GPU using KinFu Large Scale.
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a b s t r a c t

When a user and a robot share the same physical workspace the robot may need to keep an updated
3D representation of the environment. Indeed, robot systems often need to reconstruct relevant parts
of the environment where the user executes manipulation tasks. This paper proposes a spatial attention
approach for a robot manipulator with an eye-in-hand Kinect range sensor. Salient regions of the envi-
ronment, where user manipulation actions are more likely to have occurred, are detected by applying
a clustering algorithm based on Gaussian Mixture Models applied to the user hand trajectory. A motion
capture sensor is used for hand tracking. The robot attentional behavior is driven by a next-best view algo-
rithm that computes themost promising range sensor viewpoints to observe the detected salient regions,
where potential changes in the environment have occurred. The environment representation is built upon
the PCL KinFu Large Scale project [1], an open source implementation of KinectFusion. KinFu has been
modified to support the execution of the next-best view algorithm directly on the GPU and to properly
manage voxel data. Experiments are reported to illustrate the proposed attention based approach and to
show the effectiveness of GPU-based next-best view planning compared to the same algorithm executed
on the CPU.

© 2015 Published by Elsevier B.V.

1. Introduction1

In this work a saliency-driven spatial attention approach is pre-2

sented where a robot manipulator actively updates the 3D rep-3

resentation of the scene only where a change is detected in the4

environment. Relevant changes in the environment, such as the5

ones caused by user manipulation activities, draw the robot’s at-6

tention. The proposed robot system closely links perception and7

motion planning. Indeed, the robot cannot observe at once the8

whole environment because of occlusions and kinematic con-9

straints. Hence, the robot is equipped with a sensor on its end-10

effector, which is used to maintain an updated representation of11

∗ Corresponding author.
E-mail addresses: rmonica@ce.unipr.it (R. Monica), aleotti@ce.unipr.it

(J. Aleotti), caselli@ce.unipr.it (S. Caselli).

the environment by active exploration. The robot focuses the view- 12

point of the eye-in-hand sensor towards the regions where user 13

actions are more likely to have produced change. 14

In particular, the paper proposes an attentional approach for a 15

6-DoF robot arm in a tabletop scenario. The robot is equipped with 16

a Kinect range sensor (Fig. 1). Relevant changes in the environment 17

are caused by manipulation actions (also named activities) of a 18

person interacting with objects, which may include moving or 19

removing an object in the scene or placing new objects. Potential 20

changes are detected by analyzing the motion of the user hand 21

bymotion capture. The 3D environment representation is updated 22

by the robot system only when one or more relevant changes are 23

detected. 24

To merge information acquired by the range sensor from dif- 25

ferent views a modified version of KinFu was developed and made 26

available for download. The KinFu Large Scale (KinFu LS) project [1] 27

is an open source implementation of KinectFusion [2] based on the 28

PCL library [3]. The environment is modeled as a volumetric 3D 29

http://dx.doi.org/10.1016/j.robot.2015.09.010
0921-8890/© 2015 Published by Elsevier B.V.
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Fig. 1. Experimental setup (left). Example of KinectFusion output (top right).
Motion planning environment (bottom right).

voxel grid using a truncated signed distance function. Each voxel1

is labeled as unknown, empty or occupied. When salient user ac-2

tivities are detected, points of interests are computed from the es-3

timated regions of the environment where something has possibly4

changed. Then, a Next Best View (NBV) algorithm is executed it-5

eratively to plan the best pose where the sensor must be placed6

to observe the regions of interest. Multiple views of the robot may7

be required in order to achieve a complete update of each region8

of interest. The robot exploration phase of each region of interest9

continues until information gain is negligible.10

The contributions of this work are illustrated next. A method is11

proposed for saliency-driven reconstruction and update of the en-12

vironment based on theKinFu algorithmandNBVplanning. Kinect-13

Fusion has been investigated in previous works [4,5] for robotics14

applications, but the use of KinectFusion with NBV planning on a15

3D voxel grid has not been considered before. Moreover, no pre-16

vious work has investigated novelty detection from user activities17

through NBV planning. In this work, the original KinFu algorithm18

has been modified to run the NBV algorithm directly on the GPU19

and to properly manage voxel data. Experiments are reported to20

compare the GPU-based NVB algorithm to the same algorithm ex-21

ecuted on the CPU. KinFu has also been modified to improve accu-22

racy by exploiting the accurate kinematics of the robot, as in [4],23

instead of performing egomotion estimation. Two strategies for24

NBV have been evaluated: keeping the KinFu active during the25

robot motion between consecutive views and turning it on only at26

the planned viewpoints. Finally, an algorithm is proposed which27

segments the human hand trajectory using a Gaussian Mixture28

Model (GMM) to detect where salient user actions occur. The pro-29

posed algorithm has been evaluated on a dataset of user activities30

and compared to a zero-velocity crossings (ZVC) approach.31

The paper is organized as follows. Section 2 presents an32

overview of the state of the art about novelty detection and atten-33

tion in robotics. Previous works on NBV planning and automatic34

segmentation of human tasks are also discussed. Section 3 pro-35

vides an overview of the proposed approach. KinectFusion is in-36

troduced in Section 4. Section 4 also describes the NBV algorithm37

developed on the GPU, how KinFu was adapted, and the algorithm38

for determination of the regions of interest. In Section 5 the soft-39

ware architecture based on the PCL library is discussed as well as40

the integration with the ROS middleware. Section 6 illustrates the41

experimental results. Section 7 concludes the paper discussing the42

results and providing suggestions for possible extensions.43

2. Related work44

Most attention-based approaches are strictly focused on lo-45

cating changes in the environment [6–11] and do not consider46

active exploration using NBV sensor planning. Petsch et al. [6] 47

proposed a framework for sensor-based detection of unexpected 48

(surprising) events. Manipulation events are detected from human 49

observation. Alimi et al. [7] presented an attention system for ob- 50

ject understanding using 3D data which is able to segment object 51

regions from the background. In [8] a weakly supervised method 52

is described identifying daily actions from video sequences based 53

on the change in the state of the environment. Aksoy et al. [9] pro- 54

posed a method for learning the semantics of
∧
object–action rela- 55

tions by observation using a dynamic graph representation. Herbst 56

et al. [10] presented an algorithm for object discovery from multi- 57

scene Markov random field analysis based on RGB-D data. 58

Other systems have been proposed for object attention for hu- 59

manoid robots or stereo-heads. Bottom-up saliency maps are usu- 60

ally defined from blobs of uniform color [12] or local features of 61

the environment [13]. Several spatial attention approaches have 62

been developed in the context of mobile robots to construct and 63

maintain a consistent representation of the environment as the 64

robot moves [14–16]. In particular, Drews et al. [16] introduced 65

a method for novelty detection based on Gaussian mixture mod- 66

els from laser scan data. Attention approaches based on other 67

non-verbal cues were presented in [17,18]. Schauerte et al. [17] in- 68

vestigated a method which combines object visual saliency with 69

directional information from pointing gestures. In [18] the focus of 70

attention of a person inhuman–robot interaction tasks is estimated 71

by gaze direction estimation. 72

NBV approaches usually assume that a target object is given 73

and do not cope with the problem of detecting regions of inter- 74

est from user actions. To the best of our knowledge, this is the 75

firstwork investigating the use of KinectFusion in conjunctionwith 76

NBVplanning on a 3Dvoxel grid. Furthermore, computation ofNBV 77

on the GPU was not considered before, except in [19] where a cus- 78

tom solution was investigated for an autonomous UAV. The NBV 79

algorithm adopted in this work follows the standard approaches 80

proposed by Banta et al. [20] and Connolly [21]. To determine the 81

placement of the sensor in eye-in-hand configuration a viewing 82

sphere is adopted around the region of interest and an objective 83

function is chosen which maximizes the unknown volume. Im- 84

provements have been proposed to ensure an overlap among dif- 85

ferent discrete views in [22]. However, in [22] a turntable is used 86

for moving the object. Approaches for full 6D planning around the 87

object usually consider a single object in the environment [23–28] 88

or assume simple objects to be scanned [29]. Whaite et al. [30] 89

adopted simple parametric models to represent the objects based 90

on superquadrics. Kriegel et al. [31] presented an exploration sys- 91

tem, combining different sensors, for tabletop scenes that supports 92

NBV planning and object recognition. More complete overviews of 93

advanced NBV approaches can be found in [32,33]. In [32] a prob- 94

abilistic framework for NBV planning in cluttered environments is 95

presented, which estimates the visibility of occluded space using a 96

PR2 robot. 97

Regarding previous works on segmentation of human hand 98

tasks and automatic extraction of regions of interest, little fo- 99

cus has been placed on the use of Gaussian mixture models [34]. 100

In [34] a GMM method is proposed for automatic segmentation of 101

full-body motion trajectories into basis skills by the intersection 102

of consecutive Gaussians. However, the approach is not intended 103

to identify meaningful and salient manipulation tasks. In [35] a 104

template-based technique was presented based on the computa- 105

tion of velocity features and hidden Markov models. Faria et al. 106

∧
[36,37] proposed an approach to segment and classify the ac- 107

tion phases of a task using information about hand orientation 108

and trajectory curvature. In [38] manipulation tasks were seg- 109

mented by identifyingmotion breakpoints from the fingertip poly- 110

gon area. Yeasin et al. [39] used a binocular vision system and 111

feature tracking for learning and segmenting skills from multiple 112

human demonstrations. 113
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Fig. 2. The general flowchart of the system.

3. Overview of the method1

The proposed attention-based approach enables a robot2

manipulator to update the 3D representation of the environment3

each time a change is detected. The update procedure consists4

of taking new observations using the eye-in-hand sensor in the5

regions where a user performed a task. The general behavior6

of the system is outlined in Fig. 2. First, an initialization phase7

occurs, where the robot acquires data along a predefined scan8

trajectory (which is assumed not to collide with any object) using9

KinectFusion. 3Ddata acquired after the initial scan only serves as a10

starting representation of the environment and may include large11

unseen areas due to object occlusions. Then, the robot moves to12

a ‘‘stand-by’’ configuration where it waits for a user to perform a13

task.14

The user can interact with the environment by performing15

object manipulation tasks. In the context of this paper each user16

task may involve one or more sequential actions (also named17

activities), each of which can be performed in different regions18

of the environment. For example, a pick-and-place task requires19

to direct the attention of the robot to both the initial and final20

configurations of the object. The trajectory of the user hand21

during a task is acquired by a motion capture sensor (described22

in Section 6) and it is analyzed by the GMM-AS algorithm, detailed23

in Section 4.4. GMM-AS generates a set of Points of Interest (POI).24

Each POI represents the approximate location of a region of interest25

where a change in the environment might have occurred.26

Then, all the regions of interest are cleared with unknown vox-27

els and the robot starts an update phase (Section 4) to explore all28

the now unknown regions of interest. After the update phase, the29

robot returns back to the ‘‘stand-by’’ configuration. The 3D repre-30

sentation of the environment is computed by the KinectFusion al-31

gorithm. In this paper the PCL KinFu LS implementation of Kinect-32

Fusion was adopted and extended. An overview of the algorithm is33

reported in Section 4.1, while the implementation in Section 5.34

The robot update phase is driven by a NBV algorithm [20,21],35

detailed in Section 4.3. Given a ternary volumetric representation36

(occupied, empty, unknown) of the environment, the NBV37

algorithm simulates the Kinect range sensor and produces a38

sequence of viewpoints ranked by their highest theoretical39

information gain. Collision free robot movements are planned40

using the OpenRAVE engine [40]. Occupied and unknown voxels41

are considered as obstacles in the motion planner. To speedup the42

planning phase, the representation is conservatively subsampled43

to voxels of size 4 cm.44

4. Robot attention approach45

The update phase of the environment 3D representation,46

detailed in Algorithm 1, starts when a set of Points Of Interest is47

generated (to be explained in Section 4.4). Each POI is characterized48

by a center point and a surrounding spherical shape S(POI),49

describing the region of interest that it generates. First, all the50

regions of interest are filled with unknown voxels (line 2) which51

will be considered as obstacles while planning robot movements.52

Then, the first POI of the sequence is selected and viewpoints53

are computed to explore its region of interest S(POI) by applying54

the NBV algorithm (line 5). The NBV algorithm scores viewpoints55

Algorithm 1: Environment representation update phase
Input: WS: 3D volumetric environment representation;
Input: POIs: Point of Interest array;
Output: WS: The updated representation;
1: for each POI in POIs do
2: ForgetAround(WS,POI);
3: end for
4: for each POI in POIs do
5: (Viewpoints,Gain)← NextBestView(WS,POI);
6: for I from 1 to size(Viewpoints) do
7: if Gain[I] < IncTh then
8: break;
9: end if
10: (Ok,Traj)← PlanRobotTo(Viewpoints[I]);
11: if Ok then
12: MoveRobotAlong(Traj);
13: PerformRobotOscillation();
14: (Viewpoints,Gain)← NextBestView(WS,POI);
15: end if
16: end for
17: end for

maximizing the estimated information gain. Information gain of 56

each viewpoint Gain[I] is computed as the number of unknown 57

visible voxels. NBV evaluation is limited to the shape S(POI) of the 58

current POI , since other POIs will be better served by subsequent 59

observations, centered on them. 60

All the viewpoints are then attempted one after the other, 61

starting from the most promising in decreasing order. If one 62

viewpoint predicts an information gain less than a given threshold 63

S(POI) is considered completely reconstructed and the next POI , 64

if any, is selected (line 7). Viewpoints are re-computed after 65

each successful observation (line 14). Once a valid viewpoint is 66

found, a trajectory for the robot is planned (line 10). A viewpoint 67

is skipped either when unreachable, due to robot kinematics, 68

or when already attempted for the current POI . All information 69

acquired by KinectFusion is used to update the environment 70

representation, thus it may happen that a region of interest S(POIi) 71

is partially observed during the exploration of another POI j. This 72

case is implicitly handled by the proposed algorithm. 73

When a viewpoint configuration is reached, the robot moves 74

so that the Kinect sensor tilts slightly (±5°) around the sensor 75

horizontal axis (line 13), allowing KinFu to work properly on a 76

continuous input stream of depth images from that viewpoint. The 77

tilting motion is modeled in the NBV algorithm by configuring the 78

simulated sensor with a wider vertical field of view than the real 79

Kinect sensor. Two variations of the NBV exploration strategy have 80

been evaluated. In the first, called ‘‘KinFu On ViewPoint’’ (KFOVP), 81

KinFu is allowed to acquire new data only from the observation 82

viewpoints as described above. In the second, called ‘‘KinFu On 83

Motion’’ (KFOM), KinFu is also kept active during the motion of 84

the robot between two consecutive viewpoints. We hypothesize 85

that KFOM should require a lower number of views to complete 86

the environment update phase. Both KFOVP and KFOM use KinFu 87

output as the 3D volumetric reconstruction of the scene. KinFu is 88

not reset after each viewpoint observation. 89

4.1. The KinectFusion algorithm 90

KinectFusion is an iterative algorithm for real-time tracking of a 91

moving depth camera and 3D fusion of the environment observa- 92

tions in a volumetric data structure. Software implementations ex- 93

ploit highly parallel GPU techniques (CUDA). The 3D environment 94

representation is accessible at any time, provided a fast access to 95

the GPUmemory is available. KinectFusion represents the environ- 96

ment as an implicit surface model using a truncated signed dis- 97

tance function (TSDF). TSDF is a clamped function R3
→ R which 98
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maps the 3D coordinates (x, y, z) to the distance from the near-1

est surface, negative inside objects and positive outside. KinectFu-2

sion samples a TSDF volume in a regular grid of voxels with fixed3

size. Each voxel contains two values: a TSDF sampled value v and4

a weight w that counts the number of times the voxel has been5

observed.6

Each KinectFusion iteration consists of four steps. Ray casting:7

A synthetic depth map (point cloud) is generated from the current8

TSDF volume, as seen by a virtual sensor placed in the last9

known sensor position.Depthmap conversion: The latestmeasured10

depth image is converted into an organized point cloud. Camera11

tracking: The point cloud is aligned with the synthetic depth12

map using a modified point-to-plane ICP (Iterative Closest Point)13

algorithm and then the motion of the sensor is estimated from14

the ICP transformation. Volumetric integration: The point cloud is15

converted to global coordinates andmergedwith the TSDF volume.16

Ray casting and volumetric integration steps are described next17

to explain how KinectFusion was adapted to work with the NBV18

algorithm.19

In the ray casting step, each ray of the sensor is sampled with20

constant step and traversed until it exits the TSDF volume or a21

zero crossing of the TSDF is found. When a zero crossing of the22

TSDF is found a new point is saved in the point cloud using a23

trilinear interpolation of the TSDF values of neighboring voxels.24

Since KinectFusion is executed on the GPU, each ray is evaluated25

in parallel.26

During the volumetric integration phase, the latest sensor pose27

and the corresponding observed points are converted in global28

coordinates. Then, the voxels intersected by the view ray are29

updated up to the observed point as follows. The weight value is30

used to average the new value with past values and it is increased31

at each new voxel observation. The weight value is capped to a32

maximum value Mw: thus, after some observations, the update33

procedure becomes a running average. The update equations of the34

TSDF andweight values of each intersected voxel can be written as35

follows:36

vSDF = ∥p− o∥ − ∥c − o∥ (1)37

v′ =
v · w + clamp (vSDF/Mv,−1, 1)

w + 1
(2)38

w′ = min (w + 1,Mw) (3)39

where p is the point observed by the sensor from position o and40

c is the position of the voxel in the TSDF volume, along the view41

ray op. The temporary value vSDF represents the Signed Distance42

Function, not yet truncated. The vSDF value is normalized by the43

maximum value Mv and clamped between−1 and 1 to obtain the44

updated TSDF v′. Empty voxels far outside the surface have a TSDF45

value equal to 1, empty voxels near the surface have a TSDF value46

between 1 and 0, while occupied voxels inside the surface have a47

TSDF value below 0 (Fig. 3). Voxels never observed have a 0 weightQ248

and their TSDF value remains at its default 0 value. Since the view49

ray stops at the observed point, voxels inside objects are never50

updated, even though from update Eq. (2) the TSDF value should51

be set to−1.52

4.2. KinFu Large Scale53

A limitation of the KinectFusion algorithm is that it can neither54

acquire data outside the TSDF volume, nor use data outside55

the TSDF volume for sensor tracking. Besides, the TSDF volume56

cannot be expanded indefinitely due to limited GPU memory.57

Improved versions of KinectFusion have been developed based58

on the concept of downloading part of the 3D representation59

on the CPU memory, thus freeing space on the GPU for data60

processing [41]. This operation is called shifting.61

Fig. 3. An example of 2D TSDF volume. The red line represents the object surface.
The yellow area represents the negative values inside the object, while the cyan
area the positive ones. (For interpretation of the references to

∧
color in this figure

legend, the reader is referred to the web version of this article.)

PCL KinFu LS uses a cyclical buffer to obtain a faster 62

shifting procedure, without the need of memory deallocation and 63

reallocation. The TSDF volume is allocated as a 3D matrix of fixed 64

size. Whenever shifting occurs, the origin of the TSDF volume is 65

translated, so it can represent a different area of the workspace. 66

Slices of the TSDF volume are downloaded from the GPU memory 67

to the CPU RAM. The now free slices on the GPU are then refilled 68

with existing data (if any) from the CPU, or reset to unknown state 69

(v = 0, w = 0). The new TSDF volume is partially overlapped 70

with the old one, hence some data is kept on the GPU memory. 71

Since the TSDF volume is organized as a 3D cyclical buffer only 72

the origin is shifted and no data needs to be moved on the GPU. 73

Downloaded slices would need a large amount of CPU memory, if 74

they were saved as a voxel grid. The solution proposed by KinFu 75

LS is to convert slices to a point cloud. Each point is defined by the 76

3D global coordinates of the voxel and the TSDF value. The weight 77

value is lost in the process.Moreover, to reduce the size of the point 78

cloud, all points with TSDF value v = 1 or never observed (w = 0) 79

are removed from the representation. 80

KinFu LS introduces a number of translated and scaled reference 81

frames. Reference frame {W } is the world frame in real metric 82

coordinates. The expanded frame {E} is the origin in expanded 83

coordinates, scaled with respect to world coordinates so that each 84

TSDF voxel has edge 1, i.e. a point Ep in frame {E} can be expressed 85

as: 86

Ep =
Wp
e

(4) 87

where e is the voxel size. The TSDF shift frame {H} is centered 88

at the voxel of index (0, 0, 0) in the TSDF volume in expanded 89

coordinates. The TSDF frame {O} is centered at the voxel of the 90

TSDF volume that determines the shifting operation, in expanded 91

coordinates. The TSDF frame {M} has the same origin of {O} but 92

it is defined in real world metric coordinates. An overview of 93

the reference frames is shown in Fig. 4. Reference frames defined 94

above are updated at each shifting operation. In the following, the 95

notation b
at indicates the translation vector of reference frame a 96

with respect to frame b. Given that the TSDF volume is cyclical, a 97

point Hp in TSDF shift coordinates can be expressed in extended 98

coordinates Ep as: 99

Ep =
Hp+ O

H t + SV

mod SV


+

E
Ot (5) 100

where SV is an array which contains the size of the TSDF volume 101

in voxels and mod is the component-wise modulo operator. SV is 102

added to (Hp+ O
H t) so that the result is always positive. 103

In the attention-based system a spherical region of interest 104

S(POI) of the TSDF volume has to be cleared if the following 105

inequality holds: 106

∥
W Sc − Wp∥ < W Sr (6) 107

RIMLAB
Nota
Q2 ok
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Fig. 4. A 2D representation of the KinFu LS reference frames. Unit vectors for {O},
{E} and {H} are shorter, since they use expanded (scaled) coordinates.

Fig. 5. The sphere sampled by NBV algorithm around the POI with radius d.

where W Sc is the sphere center and W Sr is the radius. TSDF voxels1

can be processed in parallel using a CUDA kernel. Each thread2

evaluates a different voxel, with index in TSDF shift coordinates3
Hp. To verify inequality (6), Hp has to be converted to Wp for each4

thread using Eq. (5) and then Eq. (4). However, it can be noticed5

that Eq. (4) can be applied to inequality (6) in advance, once for all6

on CPU. The CUDAkernel can then operate directly in the expanded7

coordinates {E}, and considering that8

OSc = ESc + O
E t (7)9

inequality (6) can be rewritten as:10

∥
OSc − Op∥ < OSr . (8)11

Hence, a slightly simpler equation than (5) may be used to obtain12

the point to be evaluated for inclusion in S(POI):13

Op =
Hp+ O

H t + SV

mod SV . (9)14

If the voxel satisfies the inequality it is set to unknown.15

4.3. Next-best view approach16

This section describes the GPU-based NBV algorithm. The17

algorithm follows the two-step approach proposed in [20,21]. In18

the first step, candidate viewpoints are sampled on a sphere with19

fixed radius centered on the current POI . Each sensor position is20

uniquely defined by assigning the radius (d), the POI and three21

attributes: longitude (φ), latitude (θ ) and rotation around the22

sensor axis (ψ) as shown in Fig. 5. Rotation ψ is mainly important23

to ease the search for a reachable pose of the robot manipulator.24

The three attributes are uniformly sampled in their ranges: φ ∈25

[0°, 360°), θ ∈ [0°, 90°], ψ ∈ [0°, 360°), to cover all the upper26

hemisphere. The sampling intervals are respectively 30°, 10° and27

45°, resulting in a total of 960 sampled viewing poses. The radius28

d is fixed at 0.8 m having the Kinect sensor a minimum sensing29

distance of 0.5 m.30

In the second step, viewpoints are evaluated and sorted in31

decreasing order by a scoring functionwhich counts the number of32

unknown visible voxels. The NBV algorithm must find where each33

viewing ray, passing through a pixel of the virtual sensor, intersects34

the first non-empty voxel in the environment representation. Thus,35

Algorithm 2: NextBestView(KinFu,POI)
Input: KinFu: KinFu world representation;
Input: POI: Current Point of Interest;
Output: Viewpoints: Array of viewpoints;
Output: Gains: Scores assigned to each viewpoint;
1: Viewpoints← GenerateViewpointsAround(POI);
2: Gains← array[size(Viewpoints)];
3: KinFu.ForceShiftToPoint(POI);
4: for I from 1 to size(Viewpoints) do
5: Gains[I] ← 0;
6: Voxels← KinFu.RayCast(Viewpoints[I]);
7: for each Voxel in Voxels do
8: if S(POI).Contains(Voxel) and Voxel.IsUnknown then
9: Gains[I] ← Gains[I] + 1;
10: end if
11: end for
12: end for
13: OrderViewpointsAndGains(Viewpoints,Gains);

the second phase is the most time consuming. Unknown voxels 36

are counted only if inside the current shape S(POI). Therefore, a 37

voxel ν viewed by the simulated sensor of the NBV algorithm will 38

contribute to the expected gain Gain[I] of a viewpoint with index I 39

as: 40

Gain[I] ←

Gain[I] + 1 if ν = unkn. ∧ ν ∈ S(POI)
Gain[I] otherwise . (10) 41

The proposed algorithm, named NBV-GPU, exploits the TSDF 42

volume itself. Indeed, it may be observed that the ray casting 43

phase of KinFu can be adapted to obtain the observed TSDF voxels, 44

provided the point of view of the virtual sensor can be arbitrarily 45

set. The main advantage of this novel solution is that the GPU 46

allows fast computation of the NBV at higher resolution than the 47

CPU can achieve. Moreover, it does not require data to be extracted 48

from the TSDF volume and converted on the CPU, and it uses 49

exactly the same sensor model as KinFu. 50

In particular, the ray casting phase of KinFu has been modified 51

to be executed on-demand by theNBV algorithm, from an arbitrary 52

pose. When traversed by the NBV algorithm rays must stop at 53

zero crossings (default behavior), but alsowhen an unknown voxel 54

(with 0 weight) is intersected. An overview of the NBV procedure, 55

called NextBestView in Algorithm 1, is shown in Algorithm 2. 56

Initially, a shifting is forced to set the origin {M} of the TSDF volume 57

to the POI (line 3). This shift loads the region of interest on the TSDF 58

volume. Unfortunately, as stated in Section 4.2, all shifting events, 59

including those that happen when KinFu is active, cause the loss 60

of both the weight values and the empty voxels with TSDF value 61

v = 1. Hence, empty voxels far from the surface and the unknown 62

voxels become impossible to distinguish. This informationmust be 63

restored in the TSDF volume for the NBV towork properly. Keeping 64

track of both unknown and empty voxels is achieved by using a 65

custom octree data structure on CPU memory. This data structure 66

was designed to efficiently store points observing that the number 67

of unknown and empty voxels is much higher than the number of 68

occupied ones. Details are provided in Section 5.2. 69

The NBV-GPU algorithmwas compared to a standard algorithm 70

whereNBV is computed on the CPU (NBV-CPU). As explained above 71

NBV-CPU requires volumetric data to be extracted from the GPU 72

TSDF volume to the CPU. In addition, extracted data needs to be 73

converted to a standard ternary representation (occupied, empty 74

and unknown voxels). A conversion rule can be defined as follows: 75
w = 0 → unknown voxel

w > 0

v ≤ 0 →occupied voxel
v > 0 →empty voxel.

(11) 76
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Fig. 6. The trajectory recorder and POI detection as functional blocks.

To speed-up ray casting NBV-CPU uses a standard PCL octree data1

structure, which is queried recursively to find the first intersection.2

In particular, NBV-CPU uses the getIntersectedVoxelCentersmethod3

of the pcl::octree::OctreePointCloudSearch class, configured to stop4

at the first non-empty octree voxel. This algorithm is optimized5

with respect to a raycasting algorithm in which the ray is followed6

through a voxel grid with a fixed step (named NBV-CPU-step in7

Section 6.4), since the ray skips empty volumes thanks to the octree8

data structure.9

4.4. Determination of regions of interest10

Task trajectories are automatically recorded when the user11

hand is inside the bounding box of the workspace. The user hand is12

tracked by a motion capture sensor, described in Section 6. When13

the hand exits the bounding box, the trajectory is analyzed. An14

overview of the procedure for trajectory acquisition, segmentation15

and POIs extraction is shown in Fig. 6.16

The proposed algorithm for POIs extraction, named Gaussian17

Mixture Models Activity Saliency (GMM-AS), is reported in18

Algorithm 3. The trajectory is defined as T = {qi} = {(xi, yi, zi)},19

a sequence of points qi with i ∈ 1 . . .N , where N is the length20

of the trajectory. Motion analysis for the determination of the21

POIs is executed in the augmented 4D space S = {(xi, yi, zi, ti)}22

which includes time stamp information (lines 1–4). Including the23

time stamp helps the separation of points close in space but far in24

time. Indeed, self-intersections should not be encoded by the same25

Gaussian in the model.26

GMM-AS fits aGaussianMixtureModel on the trajectory p(S) =27 K
j=1 πjN (S|µj,Σj) through Expectation Maximization (EM). EM28

is computed in function ExpectationMaximization (line 8), which29

takes as its arguments S and the number of Gaussians GC to be30

fitted, and it returns the GMM . The EM algorithm is initialized31

as in [34] by splitting the time span of the trajectory in equal32

segments and by assigning a Gaussian to each segment. Themeans33

and covariances of each Gaussian component are initialized using34

the sample mean and the sample covariances of the points which35

fall in the corresponding segment.36

Since to apply the EM algorithm the number of Gaussians37

must be known, EM is executed multiple times with an increasing38

number of Gaussian components, starting from 1. For each GMM39

a BIC index [34] is computed by ComputeBIC (line 9). The lower40

the value of the BIC index the better the GMM fits the trajectory.41

It is assumed that the best fitting GMM model is in the first local42

minimum of the BIC index. The algorithm terminates when the43

current BIC exceeds the best found BIC by a small threshold BICTh44

(lines 10–14). The Gaussians are ordered by increasing timestamp45

mean value in function SortByTimestamp (line 15).46

It can be observed that, in the GMM, intermediate hand move-47

ments between manipulation actions (e.g. object transportation48

phases) are likely to be represented by long and narrow Gaussians,49

that exhibit a single dominant direction with high variance (Figs. 750

and 8). On the opposite, Gaussians with more balanced variances51

and a higher weight appear where the user performs a manipula-52

tion action. This can be explained by observing that user actions53

are usually performed at slow speed and involve changes of hand54

Algorithm 3: GMM-AS POI detection
Input: T : the trajectory, sequence of points;
Output: POIs: the POI array;
1: S← empty set;
2: for i from 1 to size(T ) do
3: S← S ∪ {[xi yi zi ti]};
4: end for
5: MinBIC← +∞;
6: GC← 1;
7: repeat
8: GMM← ExpectationMaximization(S,GC);
9: BIC← ComputeBIC(GMM ,S);
10: if BIC < MinBIC then
11: (MinBIC, BestGMM, c∗)← (BIC,GMM,GC);
12: end if
13: GC← GC + 1;
14: until BIC > MinBIC + BICTh;
15: SortByTimestamp(BestGMM);
16: for g from 1 to size(BestGMM) do
17: sg = ComputeSaliency(Gg ,c∗);
18: end for
19: POIs← empty array;
20: for g from 2 to size(BestGMM)−1 do
21: thg←

1
2·Λ

Λ

i=1


sg+i + sg−i


;

22: if sg > POITh · thg then
23: POIs← POIs+ {[Gg .µx Gg .µy Gg .µz]};
24: end if
25: end for

Fig. 7. An example trajectory (left image) obtained from the placing task of an
object in point A. The superimposed GMM (right image). Only the blue ‘‘thick’’
Gaussian correctly determines a POI . (For interpretation of the references to

∧
color

in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. An example trajectory (left image) obtained from the task of picking and
placing an object from A to B. The superimposed GMM (right image). Only the blue
and the yellow ‘‘thick’’ Gaussians correctly determine two POIs. (For interpretation
of the references to

∧
color in this figure legend, the reader is referred to the web

version of this article.)

direction, hence more points are sampled without a dominant di- 55

rection. This facts can be exploited by evaluating each Gaussian Gg 56

using a ComputeSaliency function (line 17) defined as follows: 57

σi =

|λi| i ∈ {1, 2, 3} (12) 58
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s =
σ1 · σ2 · σ3

σ1 + σ2 + σ3
· π · c∗ (13)1

where λ1, λ2 and λ3 are the eigenvalues of the Gaussian G2

covariance matrix, marginalized over Cartesian coordinates, s is3

the saliency, c∗ is the Gaussian count and π is the weight (prior)4

of the Gaussian in the model. The saliency sg of each Gaussian5

is compared to the average saliency of the neighbor Gaussians6

(lines 20–25). The first and last Gaussians are ignored, since they7

∧
often suffer from boundary effects (line 20). If saliency is higher8

than the average saliency multiplied by POITh (line 22), the spatial9

coordinates (Gg · µx,Gg · µy,Gg · µz) of the mean of the current10

Gaussian are added as a new POI . It must be noted that there is no11

reliable correlation between the shape (or size) of a Gaussian and12

the shape of the potential region of interest. Indeed, the shape of13

the Gaussian is mostly determined by the user’s (local) trajectory14

and not by the shape of the object. Thus, the spherical region15

of interest S(POI) is set with a fixed radius (W Sr = 0.2 m),16

larger than most common objects in manipulation scenarios. The17

user can, in principle, perform an arbitrary number of tasks.18

Each task can include an arbitrary number of actions. However,19

after each task the user must wait for the robot to complete the20

environment update phase before performing the following task.21

GMM-ASmay generatemultiple close POIswhich, however, do not22

affect the performance of the system since these close POIs are23

simultaneously explored.24

The GMM-AS algorithm was compared to an adaptive zero-25

velocity crossings (ZVC) algorithm, which is based on the idea26

of looking for points of interest where slower hand movements27

appears. First, a mean filter with width (2B+ 1) is applied to the28

trajectory to reduce noise. The average speed at index i is then29

computed as:30

v̄i (r) =
1

∥Ri(r)∥


j∈Ri(r)

∥qj − qj−1∥
tj − tj−1

(14)31

where Ri is the set of the indices of the neighboring samples of qi32

within a radius r , defined as:33

Ri (r) = { j | ∀k ∈ ([j, i] ∪ [i, j]) , ∥qk − qi∥ < r } . (15)34

A slow hand movement is detected whenever the local speed is35

significantly lower than the speed averaged on a wider range. In36

particular, the average speed is computed for two values of r:37

r1 = 10 cm and r2 = 25 cm. Segments of trajectory that satisfy38

v̄i (r1) · ZVCTh < v̄i (r2), where ZVCTh is a constant multiplier,39

generate a POI at the average time index of the segment.40

5. Software architecture41

5.1. Extension of KinFu Large Scale for robot attention42

KinFu LS defines KinfuTracker as the main class. KinfuTracker43

can be instantiated to a function object where the operator()44

method accepts a new depthmap and executes one iteration of the45

algorithm. Two storage classes, TsdfVolume and CyclicalBuffer man-46

age the world model. TsdfVolume acts as a proxy for the TSDF vol-47

ume loaded on the GPU. CyclicalBuffer manages TSDF shifting and48

updates the reference frames. A nested classWorldModelmanages49

the point cloud with intensity (pcl::PointXYZI) that contains the50

downloaded slices. The intensity value here represents the TSDF51

value v. Overall nesting relations are shown in Fig. 9.52

To use KinFu as a persistent environment representation for the53

robot attention algorithm the following features were added. First,54

KinFu has to be interrupted and restarted on demand, for example55

when the robot reaches the stand-by configuration. Second, part of56

the environment has to be cleared, i.e. set to unknown to generate57

the regions of uncertainty of the POIs.58

Fig. 9. Relations among the most important classes of KinFu LS.

Interrupting KinFu can easily be achieved by not calling 59

the operator() method as there is no active thread in the 60

implementation. However, as the ICP algorithm works under 61

the assumption of small sensor movements between consecutive 62

readings, if a movement is too large egomotion estimation by ICP 63

does not converge. This case happens if KinFu is suspended and 64

resumed from another viewpoint. Therefore, to solve this issue, 65

KinFu must be provided with the actual pose of the sensor. To this 66

purpose a parameter, named hint, was added to operator(). The hint 67

parameter accepts a struct of type Hint, defined as in Listing 1. 68

struct Hint 69

{ 70

enum Type 71

{ 72

HINT_TYPE_NONE , 73

HINT_TYPE_HINT , 74

HINT_TYPE_FORCED 75

}; 76

Type type; 77

Eigen::Affine3f pose; 78

}; 79

Listing 1: The Hint struct.

Three modes of operations are allowed: HINT_TYPE_NONE 80

causes KinFu to use the default ICP egomotion tracking; 81

HINT_TYPE_FORCED disables ICP and forces the use of the pose pa- 82

rameter; HINT_TYPE_HINT where ICP is enabled but it initialized 83

with the pose parameter and not with the last sensor pose. In the 84

proposed system, the pose of the sensor is computed from the 85

robot kinematics. The thirdmodewas added to allow an additional 86

hybrid approach. 87

Clearing parts of the environment affects both TsdfVolume and 88

WorldModel classes. The point cloud contained by the WorldModel 89

class is in expanded coordinates {E}. Points not existing in this 90

model are considered unknown when loaded into the TSDF 91

volume. All the points in the WorldModel which verify inequality 92

(6) (Section 4.2) in expanded coordinates are set to unknown. The 93

sphere must also be cleared in the TSDF volume, accessed through 94

the TsdfVolume class in reference frame {O}. This procedure is 95

executed in parallel, on the GPU, for each voxel of the TSDF volume, 96

using Eq. (9) to clear voxels that satisfy inequality (8). If the voxel 97

is inside the sphere, the voxel is set to unknown (TSDF value v = 0 98

and weight w = 0). A wrapper method was added to the main 99

KinfuTracker class to convert the sphere to {E} and {O} coordinates 100

and consistently clear both theWorldModel and the TsdfVolume. 101

5.2. Extension of KinFu Large Scale for next-best view 102

KinFu LS defines a RayCaster class that can be used to 103

execute raycasting from an arbitrary pose in the TSDF volume. 104

The RayCaster class can be configured with arbitrary intrinsics 105

parameters: focal length and image size. The default configuration 106

is changed, by setting a wider vertical field of view, when 107

simulating the tilting motion of the real sensor described in 108

Section 4. RayCaster uses a CUDA kernel to perform ray casting 109

and to fill a vertex map with the voxels that are viewed by the 110

virtual sensor. A Boolean template parameter was added to enable 111
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the kernel to be used for the next-best view algorithm without1

affecting the original behavior.2

For the next-best-view implementation rays need to be stopped3

at the first non-empty voxel. A knowledge map was added on4

the GPU, filled with values indicating if the ray intercepted5

an unknown voxel, an occupied voxel or exited the volume6

intercepting only empty voxels. Unknown voxels in the knowledge7

map are counted, to estimate the number of unknown voxels seen8

by the virtual sensor, only if the corresponding point in the vertex9

map is inside the shape S(POI) (Eq. (10)).10

As stated in Section 4.2, shifting loses distinction between11

unknown (w = 0) and empty (v = 1) voxels when downloading12

data from the GPU, as w is discarded in the WorldModel. For13

this reason, KinFu LS was modified in such a way that the14

distinction between unknown and empty voxels is properly saved15

and restored for the shifted slices. Adding additional information16

to the KinFu WorldModel would be extremely expensive in terms17

of memory occupation. Thus, a data structure was introduced18

to only distinguish empty and unknown voxels. This structure,19

named BitmaskOctree, is based on the pcl::octree::OctreeBase class.20

BitmaskOctree operates at lower (1/8) resolution with respect to21

the TSDF volume. To match with the TSDF resolution, each octree22

leaf contains a 3D matrix boost::bitmask of 8 · 8 · 8 = 512 bits. The23

compression is lossless in terms of resolution, however the actual24

value is binarized to 0 (unknown) ifw = 0 and1 (known, i.e. empty25

or occupied) ifw > 0. Octree leaves that are completely unknown26

are not stored in memory. The minimum amount of memory for a27

bitmask with a single point is 64 bytes. However, this event is very28

unlikely, since known voxels tend to form clusters and most of the29

bitmaskswill be completely set. Indeed, leaves in theBitmaskOctree30

that are completely set are on average 69% of the total number of31

leaves.32

For the sake of generality BitmaskOctree was wrapped in a33

listener class. CyclicalBuffer was modified to accept a listener34

class which implements the WeightCubeListener interface, defined35

in listing 2. The onReset and onClearSphere methods are called36

when clearing the whole workspace or a spherical region of37

interest. When a shifting occurs, the method onNewCube is called38

to save TSDF weights before the shifting procedure. In addition,39

the retrieveOldCube method is polled during shifting and at each40

KinFu iteration until binarized weight information for the new41

TSDF volume origin is returned, extracted from the BitmaskOctree.42

The weight information is then merged with the TSDF volume43

in the GPU as follows. If the BitmaskOctree leaf is 1, the weight44

value in the TSDF volume is incremented by 1. Otherwise, the45

value on the TSDF volume is left unchanged. If incrementing the46

weight value results in a previously unknown TSDF voxel changing47

to known, the TSDF value is initialized to 1 (empty). The load48

operation may be executed at any time, amid KinFu iterations, as49

soon as the retrieveOldCube returns theweight information. Indeed,50

voxels changing from unknown to empty in the TSDF do not affect51

the correctness of the KinFu LS algorithm, because during standard52

execution the two types of voxel are treated in the same manner.53

class WeightCubeListener54

{55

public:56

virtual void onReset() = 0;57

virtual void onClearSphere(...) = 0;58

virtual void onNewCube(...) = 0;59

virtual bool retrieveOldCube(...) = 0;60

};61

Listing 2: The WeightCubeListener interface. Parameters are
omitted.

A multithread solution was implemented to execute asyn-62

chronously the setting and retrieval of values in the BitmaskOctree,63

Fig. 10. The multithread shifting procedure.

without disrupting the KinFu execution, as shown in the sequence 64

diagram in Fig. 10. The listener is an active object, with its own 65

processing thread. At the first retrieveOldCube call the request is 66

scheduled in a queue and, when the result is ready, it is returned 67

during one of the subsequent polling calls to the method. Also, the 68

onNewCube calls return immediately, while data is placed in the 69

same queue for later processing. 70

5.3. System integration in ROS 71

KinFu LS was integrated into the ROS (Robot Operating System) 72

framework and it is available for download (https://github.com/ 73

RMonica/ros_kinfu). Integration is based on the KinFuLS ROS 74

wrapper [42], which publishes the synthetic depth map to a ROS 75

topic and the current tracked sensor pose. The PCL KinFu LS 76

implementation is primarily designed to acquire data from the 77

Kinect sensor, visualize it and save data to a file before termination. 78

A post-processing phase is required to obtain a polygon mesh, by 79

calling an executable which runs theMarching Cubes algorithm. In 80

contrast to this standard behavior, as explained in Section 5.1 the 81

attention-based system requires the use of KinFu as a persistent 82

tool for environment representation. 83

In this work, the main kinfu node from [42] was extended 84

to handle the modifications of KinFu LS. The extended kinfu 85

node interacts with the ROS environment by accepting two 86

types of messages: commands and requests. Commands affect 87

the behavior of the system and do not require any further 88

processing. Commands include SUSPEND, RESUME, CLEAR_SPHERE. 89

Each command may also supply a hint or a forced hint, which act 90

as defined in Section 5.1. Also, a SET_FORCED_TF_FRAME command 91

binds the KinFu tracking to a reference frame using ros-tf. This 92

feature is used in this work to feed KinFu tracking with the 93

robot odometry. Commands change asynchronously the state of a 94

command subscriber, which applies the new configuration at the 95

next iteration of the KinFu. 96

Request messages ask the kinfu node to publish a part of 97

the environment. The part of the environment may be extracted 98

in various formats, such as a point cloud, a polygon mesh 99

or a voxel grid. Also, the projection of the environment on a 100

virtual sensor (used for NBV) is executed through a request. Each 101

request is served by a dedicated thread, different from the main 102

KinFu thread. Requests copy data from the WorldModel and the 103

BitmaskOctree after waiting for any KinFu pending operation in the 104

WeightCubeListener queue or any retrieveOldCube unfinished calls. 105

Each request thread must acquire an exclusive lock on KinFu to 106

copy data. However, additional processing can be performed in 107

parallel, such as execution ofmarching cubes to obtain the polygon 108

mesh, or subsampling to reduce the size of the point cloud in the 109

response. 110

https://github.com/RMonica/ros_kinfu
https://github.com/RMonica/ros_kinfu
https://github.com/RMonica/ros_kinfu
https://github.com/RMonica/ros_kinfu
https://github.com/RMonica/ros_kinfu
https://github.com/RMonica/ros_kinfu
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Fig. 11. The two environments used for testing KinFu tracking accuracy.

Fig. 12. KinFu egomotion tracking error in the first scenario of Fig. 11.

Table 1
3D object reconstruction errors.

Scenario Tracking method Mean abs. (m) St. dev. (m)

1 Egomotion 0.031 0.040
1 Robot kinematics 0.005 0.006
2 Egomotion 0.027 0.041
2 Robot kinematics 0.006 0.008

6. Experimental evaluation1

The experimental setup includes a small robot arm (Comau2

SMART SiX) with six degrees of freedom and a Kinect sensor3

mounted on the end-effector. The Kinect is calibrated with respect4

to the robotwrist. A Polhemus FasTrak is used for 3Dhand tracking,5

calibrated with respect to the robot base frame. FasTrak is an6

electro-magnetic device which tracks in real-time the position and7

orientation of a small receiver located on the wrist of the user. The8

advantage of using amagneticmotion capture device is that it does9

not suffer from occlusion problems. The overall configuration of10

the system is shown in Fig. 1. The software runs under the ROS11

framework on an Intel Core i7 4770 at 3.40 GHz, NVidia GeForce12

GTX 670.13

6.1. Evaluation of Kinect sensor tracking solutions14

Initial tests were performed to evaluate to what extent the15

internal drift of KinFu egomotion tracking may affect the robot16

attention system. In this section, KinFu egomotion tracking is17

compared with an alternative solution where KinFu is fed with the18

robot forward kinematics. Tests were performed by moving the19

robot arm along the trajectory used for the initial observation of20

the environment. Experiments were conducted in two scenarios21

with different objects as shown in Fig. 11. Tracking errors are22

computed as the difference between the robot forward kinematics23

(ground truth) and the KinFu egomotion estimation. Fig. 1224

shows the translation (Euclidean distance) and rotation (angle-axis25

representation) errors in the first scenario. The errors increasewith26

time during robotmotion. Egomotion tracking accumulates a large27

drift, as the translation error at the end is about 12 cm.28

To further evaluate the accuracy of the two solutions three29

parameters were measured for each object and compared to the30

ground truth values: the object height and the lengths of themajor31

Fig. 13. A trajectory representing an object placement task to location A (left) and
the superimposed GMM (right).

and minor axis of the object projection on the horizontal table. 32

Average errors for the parameters are reported in Table 1. The 3D 33

reconstruction using the robot kinematics exhibits much higher 34

accuracy than the one obtained using KinFu egomotion tracking. 35

For this reason, during all the experiments of the attention-based 36

system presented in Sections 6.3 and 6.4, the KinFu was fed with 37

robot kinematics. 38

6.2. GMM-AS algorithm evaluation 39

The robustness of the GMM-AS algorithm was evaluated on a 40

dataset of 330 tasks performed by four subjects. The dataset is 41

available at https://github.com/RMonica/hand-polhemus-dataset. 42

The dataset contains 110 placement tasks of new objects in the 43

environment, 110 object removal tasks from the environment 44

and 110 pick-and-place tasks. Each recorded task trajectory was 45

inspected manually and ground truth POIs were placed where 46

actions actually occurred, i.e. at the initial location of the object 47

for removal tasks, at the final location of the object for insertion 48

tasks and at both the initial and final object locations for pick-and- 49

place tasks. Object placement and removal tasks were evaluated 50

together as they are characterized by a single action and they 51

exhibit quite similar trajectories. Instead, pick-and-place tasks are 52

characterized by two actions. Actions were counted as correctly 53

detected if the distance to the true POI was within 20 cm 54

(POI radius). False positives (FP) were counted when a POI was 55

detected far from any ground truth POIs. False negatives (FN) 56

were counted when the algorithm did not detect any POI near 57

a ground truth POI . Tests were performed at different speeds of 58

the task by undersampling ( 12×,
1
4×) and oversampling (2×, 4×) 59

the trajectories. Additional tests were performed by adding to the 60

trajectories white Gaussian noise. 61

The GMM-AS and the ZVC-like algorithm show comparable 62

results on the dataset (Table 2). Also, ZVC-like shows a slightly 63

better result than GMM-AS when the two algorithms are tested at 64

different speeds (Table 3). However, to obtain this result the noise- Q3 65

reduction window parameter B of ZVC must be at most 4. Such 66

higher bound for B reduces the maximum noise that the ZVC-like 67

algorithm is able to compensate. As seen in Table 4, GMM-AS is 68

able to detect POIs even with 2.5 cm of standard deviation, while 69

the ZVC-like algorithm fails. 70

The ZVC-like algorithm takes some milliseconds of compu- 71

tational time, while the GMM-AS takes a few (2–8) seconds. 72

Nonetheless, this higher execution time does not affect the perfor- 73

mance of the robot attention system which is mostly affected by 74

planning and by the slow velocity of the robot. 75

Fig. 13 shows an example trajectory of an object placement 76

task. The saliency assigned to each of the Gaussians is reported 77

in Table 5. Only one Gaussian (the fourth) is classified as a salient 78

action (placement) and generates a single POI . Another example, 79

for a pick-and-place task, is shown in Fig. 14 and Table 6. In this 80

case, only the second and the fifth Gaussians are detected as salient 81

actions generating two POIs, which correspond to object picking 82

and placing respectively. 83

https://github.com/RMonica/hand-polhemus-dataset
utente
Nota
if possible change the graph legend within Fig.12 by adding a white space:

"Translation error"
"Rotation error"
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Fig. 14. A trajectory representing a pick-and-place task from location A to B (left)
and the superimposed GMM (right).

6.3. Evaluation of the robot attention system1

This section presents two complete experiments of the2

attention based system (Fig. 15) using NBV-GPU. Each experiment3

was performed two times using the same recorded user hand4

trajectory, the first one with KFOVP and the second with KFOM.5

In the first experiment, the user placed a plastic bottle in the6

environment, among a group of boxes. In the second experiment,7

the user picked up a jug from a pallet and then placed the jug on8

a wooden disc after passing over a briefcase. The tasks generated9

POIs and corresponding regions of interest as shown in Fig. 16.10

Table 2
Evaluation of GMM-AS and ZVC-like (Λ = 2, POITh = 2.5, B = 4,
ZVCTh = 1.72).

Tasks Algorithm Precision Recall

Placements and removals ZVC-like 96.4% 97.3%
Placements and removals GMM-AS 95.4% 95.9%
Pick-and-place ZVC-like 94.5% 98.2%
Pick-and-place GMM-AS 97.7% 97.3%

GMM-AS generated a single correct POI in the first experiment. In 11

the second experiment GMM-AS generated a total of three POIs, 12

two of them almost superimposed where the jug is moved. 13

Fig. 17 shows images of OpenRAVE planning, robot NBV 14

configurations, KinFu synthetic depth maps and environment 15

representations of KFOVP exploring the single POI in exper- 16

iment 1. A video of KFOM in experiment 1 is available at 17

http://rimlab.ce.unipr.it/documents/KinFuNBV2015.wmv. Fig. 18 18

shows all the five views performed by KFOVP in experiment 2. The 19

first view (first column) observes the empty space above the pal- 20

let where the jug is picked up (first POI). The other four views are 21

needed to reconstruct the second and the third (almost superim- 22

posed) POIs where the jug is moved on the wooden disc. 23

Fig. 19 illustrates the final result for the KFOVP experiments. 24

The average accuracy of the reconstructed objects involved in the 25

Fig. 15. The environment before (left), during (center) and after (right) the user task. First experiment (top row) and second experiment (bottom row).

Fig. 16. The environment 3D representation with user hand trajectory (left), GMM (center) and generated spherical regions of uncertainty (right) for the first (top row) and
second experiment (bottom row) in black color.

http://rimlab.ce.unipr.it/documents/KinFuNBV2015.wmv
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Fig. 17. KFOVP snapshots in experiment 1. From left to right: OpenRAVE planning, robot NBV configuration, KinFu synthetic depth map and reconstruction in the ternary
representation (unknown voxels are displayed in black), for each view pose (top to bottom).

Fig. 18. KFOVP snapshots in experiment 2. Robot NBV configuration (top row), KinFu synthetic depthmap (middle row) and the reconstruction in the ternary representation
(bottom row, unknown voxels are displayed in black) for each view pose (left to right).

Table 3
Evaluation of GMM-AS and ZVC-like at different speed
multipliers, on the whole dataset.

Speed multiplier Algorithm Precision Recall

0.25 ZVC-like 96.6% 93.0%
0.25 GMM-AS 98.0% 86.1%
0.50 ZVC-like 95.7% 97.7%
0.50 GMM-AS 97.0% 95.9%
1.00 ZVC-like 95.5% 97.7%
1.00 GMM-AS 96.6% 96.6%
2.00 ZVC-like 95.7% 97.7%
2.00 GMM-AS 96.8% 92.5%
4.00 ZVC-like 96.4% 97.7%
4.00 GMM-AS 97.0% 80.7%

tasks was measured by using the same parameters introduced in1

Section 6.1. KFOM and KFOVP achieve the same reconstruction2

Table 4
Evaluation of GMM-AS and ZVC-like at various noise
standard deviation values.

Std. dev. (cm) Algorithm Precision Recall

0.1 ZVC-like 95.4% 97.7%
0.1 GMM-AS 97.5% 98.4%
2.5 ZVC-like 95.1% 12.5%
2.5 GMM-AS 97.0% 80.2%
5.0 ZVC-like 97.5% 0.5%
5.0 GMM-AS 98.6% 56.8%

accuracy as shown in Table 7. A qualitative score from 1 to 10 was 3

given to evaluate the completeness of the reconstruction of each 4

object. In the first experiment KFOM is not significantly faster than 5

KFOVP, even if KFOM requires one less view. This can be explained 6

by the slower robot movement during acquisition required by 7

KFOM. The difference in total completion time is, however, higher 8
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Fig. 19. Final environment representation for KFOM and KFOVP in the two
experiments.

Table 5
The saliency computed for each Gaussian in Fig. 13.

Gaussian no. Saliency Threshold POI

1 0.005880 – NO
2 0.001646 0.040424 NO
3 0.001352 0.031084 NO
4 0.073616 0.002673 YES
5 0.001749 0.038675 NO
6 0.002383 – NO

Table 6
Saliency computed for each Gaussian in Fig. 14.

Gaussian no. Saliency Threshold POI

1 0.002341 – NO
2 0.025118 0.002693 YES
3 0.001191 0.036059 NO
4 0.001855 0.035187 NO
5 0.066844 0.002574 YES
6 0.000679 0.035919 NO
7 0.003140 – NO

Table 7
Reconstruction error, completeness, number of views and
execution time for KFOM and KFOVP.

Abs. error (m) Compl. Views Time (s)

Experiment 1

KFOVP 0.005 8 3 194
KFOM 0.008 9 2 191

Experiment 2

KFOVP 0.005 10 5 402
KFOM 0.007 7 3 304

Table 8
Time (seconds) of themost relevant algorithmphases, averaged
for each experiment.

Phase Experiment 1 Experiment 2
KFOVP KFOM KFOVP KFOM

Clear S(POI) 0.07 0.07 0.08 0.06
NBV-GPU 10.43 10.91 12.21 12.83
Robot movement 6.86 27.76 7.58 20.71

Table 9
Execution times for one phase of NBV-GPU, NBV-CPU and NBV-
CPU-step (times in seconds).

NBV-GPU NBV-CPU NBV-CPU-step

Execution time 10.6 211.5 619.6

Table 10
Comparison of overhead in standard KinFu LS and NBV-
GPU (times in ms).

Phase Std KinFu LS NBV-GPU

Shifting 830 836
Weights download 0 283
Read octree (parallel) 0 3396
Weights upload 0 45
Write octree (parallel) 0 1638

Total time 830 6232

in the second experiment where KFOVP requires two views more 1

than KFOM. Table 8 shows the execution times of specific phases of 2

the algorithm. As expected, the robotmovement is slower inKFOM. 3

In addition, for both KFOVP and KFOM the NBV-GPU algorithm is 4

about 20% slower in the second experiment than in the first. This 5

indicates that the computational time depends on the shape of the 6

environment. In general, it can be concluded that there are no large 7

differences between KFOM and KFOVP in terms of reconstruction 8

accuracy and completeness. KFOM is slightly faster than KFOVP 9

when a large number of views is required. 10

Fig. 20 shows the number of unknown voxels in the 3D 11

representation, for each POI. The number of voxels decreases as 12

the robot explores the environment and it never reaches 0 due 13

to unknown voxels inside objects. In experiment 2, the number 14

of unknown voxels in the first POI, above the pallet, decreases 15

almost to 0 at the first view. Also, in experiment 2 it can be noticed 16

that when using KFOM the robot observes voxels in the second 17

and third POI simultaneously as it travels to the first view pose to 18

observe the first POI , hence the number of unknown voxels of the 19

second and third POI decreases even before NBV planning starts for 20

these two POIs. 21

6.4. Evaluation of the developed KinFu LS extensions 22

A test scenario, shown in Fig. 21, was set up to compare the 23

performance of NBV-GPU and NBV-CPU. A single POI is detected 24

when a plastic bottle is placed by the user on top of a box. The 25

NBV-GPU algorithm takes about 10.6 s to compute the next best 26

view, thus confirming the results found in Section 6.3. In contrast, 27

when running the NBV-CPU algorithm at the same resolution 28

the experiment was aborted due to excessive execution time. 29

In Table 9 the execution times for the first NBV phase of the 30

experiment are reported, for each NBV algorithm. The step used 31

for the NBV-CPU-step algorithm was 0.3 cm, about half a voxel 32

size. These results confirm the advantage in terms of efficiency 33

of using NBV-GPU, i.e. executing the ray casting phase on the 34

GPU. In Table 10 the computational overhead introduced by NBV- 35

GPU when downloading and uploading weight data between 36

the BitmaskOctree and the TSDF volume is analyzed. A shifting 37

operation takes about 6 s, compared to 800 ms of the standard 38

KinFu LS implementation. However, thanks to the developed 39

multithreading architecture, read and write operations on the 40

octree run in parallel. Indeed, the actual overhead with respect 41

to the standard KinFu LS implementation is only about 283 ms, 42

which is due to the weight download phase, when KinFu must be 43

locked exclusively. An additional exclusive lock must be acquired 44

whenuploading on theGPU the storedweight values from the CPU, 45

however this phase requires only 45 ms. 46
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Fig. 20. The number of unknown voxels inside each uncertainty region, after user task (U) and at each robot NBV iteration.

Fig. 21. Environment (left), ternary representation (center) and POI (right), for the experiment described in Section 6.4.

7. Conclusions1

This paper presented a novel robot spatial attention approach2

for a robot manipulator equipped with a range sensor (Kinect)3

in eye-in-hand configuration. Relevant manipulation actions4

performed by the user are detected by tracking the motion of5

the human hand and by applying a GMM-based algorithm for6

saliency estimation. Approximate locations of the salient user7

actions are also computed and used to focus the robot’s attention.8

The 3D environment representation is updated by exploiting aNBV9

planner and a modified version of the PCL KinFu algorithm. In10

contrast to previous works, next-best view planning is performed11

directly on the GPU to enable fast computation of NBV at high12

resolution. KinFuwas alsomodified to exploit the robot kinematics13

to improve the accuracy of 3D reconstruction.14

Future work will investigate strategies to further improve15

the quality of the reconstructed model, like planning the scan16

trajectories of the robot instead of planning discrete next best17

views. Human motion analysis could also be improved by18

exploiting Kinect range data and skeleton tracking. Moreover, a19

possible extension of the spatial attention system is to recognize20

both the objects and the type of actions performed by the user from21

the changes in the environment.22
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