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Fast Keypoint Features from Laser Scanner
for Robot Localization and Mapping

Fabjan Kallasi1 and Dario Lodi Rizzini1 and Stefano Caselli1

Abstract—Detecting features in sensor measurements and dis-
tinguishing among them is an important capability for robot
localization and navigation. Despite the wide diffusion of range
finders, there are few works on keypoint features for 2D LI-
DAR and there is potential for improvement over the existing
methods. This paper proposes two novel keypoint detectors for
the stable detection of interest points in laser measurements
and two descriptors for robust associations. The features defined
by combining keypoints and descriptors allow stable and effi-
cient place recognition. Experiments with standard benchmark
datasets assess the performance of the detectors and descriptors
investigated. One of the proposed features, termed FALKO-
BSC, achieves higher repeatability score and similar descriptor
performance compared with the FLIRT state-of-the-art feature.
FALKO-BSC is also shown to enable effective localization.

Index Terms—Range Sensing; Localization; Mapping

I. INTRODUCTION

RECOGNIZING distinctive regions, local patches and
points in sensor data is a fundamental capability for

many tasks including robot localization, mapping, registration,
scene description, and object detection. In computer vision
and point cloud processing, the feature approach [1]–[3] has
become an established paradigm to address these tasks. The
goal of the feature approach is the detection of interest
points, also known as keypoints, from the sensor data and
the computation of a distinctive signature for each them.
The term keypoint feature or, briefly, feature refers to an
interest point with the corresponding descriptor. Invariance
from viewpoints and repeatability are the main requirements of
keypoint detection. The standard signature of an interest point
has the form of a vector of values (usually dependent from
the point neighborhood) called descriptor. Descriptors enable
more robust correspondence matching among points acquired
from different viewpoints than simple geometric matching.

Several keypoint features have been proposed for images
and point clouds, but only few keypoint features exist for
sensor data acquired from planar range finders [4]–[6]. While
images and point clouds provide quantitatively and qualita-
tively rich information, laser scans consist of relatively few
points, which convey only geometrical data. The peculiar
nature of laser measurements makes the extraction of stable
and distinguishable interest points more difficult. Apart from
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Fig. 1: Example of feature association with FALKO detector and
BSC descriptors.

standard geometric features like segments, there are few works
related to 2D range keypoint features; these can be classified
into two categories. The first category includes methods that
convert the laser scan into an image and compute keypoints
using an existing computer vision method [5], [6]. This
approach enables the re-use of many algorithms proposed in
computer vision, but it is computationally expensive, requires
rasterization of laser measurements, and suffers from incon-
sistencies due to obstacle projection in an image. The second
category includes keypoint features explicitly designed for the
laser scan peculiarities. Indeed, the scan radial order is taken
into account in all the operations involving neighbor points,
e.g. smoothing, downsampling, curvature computation. This
second category includes FLIRT [4], which detects interest
points according to properties such as range-differences or
curvature and associates a descriptor to them.

In this paper, we propose two novel keypoint detectors,
FALKO (Fast Adaptive Laser Keypoint Orientation-invariant)
and Orthogonal Corner (OC), and two novel descriptors,
Binary Shape Context (BSC) and Cumulative Gaussian His-
togram (CGH). Like with the FLIRT curvature detector, the
two proposed detectors extract high curvature points in the
laser scans. However, FALKO and OC have been designed
to detect more stable points like corners rather than general
elements like gaps and isolated points that are dependent on
viewpoint. FALKO selects interest points through a careful
neighborhood selection and an effective cornerness scoring.
OC exploits the orthogonal alignment, which often holds
in artificial environments. Binary Shape Context (BSC) is a
variant of the shape context [4] that is less sensitive to point
concentration (Figure 1). The Cumulative Gaussian Histogram
(CGH) counts the polar distribution of neighbor points w.r.t.
the main orientation of the interest points. FALKO and OC
have been compared with the state-of-the-art approach FLIRT
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on standard benchmark datasets used in the robotic community
to assess feature stability and localization performance.

II. RELATED WORK

During the last two decades, several keypoint features have
been proposed for both images and point clouds. SIFT [7] is
often considered the first example and the prototype of key-
point features with descriptor. SIFT achieves scale invariance
through point extraction at different scales and distinguishes
points using descriptors. In later years, several other keypoint
methods in computer vision have been proposed [1], [2]. The
keypoint feature paradigm has also been successfully applied
in the context of 3D perception and shape recognition [3].
Extraction of significant local features from planar range finder
data is more difficult due to the limited number of points in
a scan compared to an image, and the peculiar distribution
of neighbor points. Hence, the occupancy grid approach is
prevailing in works on laser scan processing [8], [9], and
elementary geometric features like segments [10], curvature
points [11], and B-splines [12] have been used in association
with laser scanners.

One of the first attempts to define laser keypoints with
descriptor is illustrated in [13], where an orientation histogram
obtained from the local submap is associated to each selected
high-curvature point. This approach is improved in a subse-
quent work [14], but the global descriptors still represent a
complete submap. The only true examples of keypoint features
with descriptors for laser scans are proposed in [4]–[6]. Li
and Olson [5] propose to rasterize laser scans and to extract
interest points from the obtained image using Kanade-Tomasi
corner detector. The SIFT descriptor is then computed on
the neighborhood of each point. The method is improved in
the successive work [6] through scan smoothing pretreatment,
more efficient corner extraction and candidate suppression.
The main disadvantage of this approach lies in the inaccuracies
resulting from rasterization.

Tipaldi and Arras [4] proposed FLIRT, the first keypoint
feature explicity designed for planar laser scans. The input
laser scan is rescaled several times and keypoints are detected
at different scales according to parameters like curvature,
normal and range. Next, the local shape is encoded by two
descriptors, one representing the polar points distribution and
the other representing occupancy. While FLIRT is a practical
and conceptual improvement over the previous approaches, the
detection is based on a single parameter, which may result into
the identification of multiple and potentially unstable interest
points. For example, it can find keypoints where discontinuities
due to specific viewpoint occlusions occur, and also in unstable
isolated points. Furthermore, the multiscale approach, which
reduces the dependency from neighbor point distribution due
to angular resolution and distance, is computationally ex-
pensive and not always effective, since it is performed only
through local smoothing without downsampling.

III. KEYPOINT DETECTORS

In this section, we illustrate two novel keypoint detectors:
OC, which exploits orthogonal world hypothesis, and FALKO,

which extracts stable points through invariance from scan
density and orientation.

A. Orthogonal Corner Detector

Human-made indoor environments often consist of straight
linear walls and architectural elements arranged along orthog-
onal directions. Laser scans obtained in such environments
are composed of several points aligned along two orthogonal
dominant directions. This condition can be exploited to find
stable keypoints at the intersection of orthogonal line pairs.

To find the dominant direction of the laser scan points, the
algorithm computes the Hough Spectrum [15] of such points.
Let S be the point set from an input laser scan and [θ, ρ] be
the Hessian parameters of a line px cos θ + py sin θ = ρ.
Let us define a subdivision of parameter space into nθ × nρ
cells centered in [θt, ρr], where θt = t ∆θ with ∆θ = π/nθ
and ρr = ∆ρ(r − nρ/2) with r = 0, . . . , nθ − 1 and
t = 0, . . . , nρ − 1. The Hough Transform HT (θt, ρr) is
a bidimensional histogram that associates to each bin cell
centered on (θt, ρr) the number of scan points p ∈ S lying
on the line with parameters (θt, ρr). The Hough Spectrum
HS(θ) of S is defined as HS(θt) =

∑
ρr
HT (θt, ρr)

2. The
value of HS(θt) depends on the number of points aligned
to a line belonging to the pencil of parallel lines with pa-
rameter θt. To consider the contribution of two orthogonal
directions, the Orthogonal Hough Spectrum can be defined as
OHS(θt) = HS(θt) +HS(θt+nθ/2). The dominant direction
θ̄ is found as the absolute maximum of OHS(·).

Once the dominant direction θ̄ is found, all the scan points
are rotated by −θ̄ (call S̄ the set of rotated points) and tested as
candidate keypoints. The neighborhood of each scan point pi
(i index in the scan) has radius ri increasing with its distance
from the sensor origin, ‖pi‖, to have an approximatly uniform
number of neighbors. In our implementation, the radius is
computed as ri = a exp(b‖pi‖) where the parameters a = 0.2
and b = 0.07 are chosen s.t. 0.20 m . ri . 0.40 m for ranges
in 1− 10 m. For each point pi, the following sets have been
defined

C(pi) =
{
pj ∈ S̄ : ‖pj − pi‖ < ri

}
(1)

Cx(pi) = {pj ∈ C(pi) : |pj,x − pi,x| < w ∧ |pj,y − pi,y | > w} (2)
Cy(pi) = {pj ∈ C(pi) : |pj,y − pi,y | < w ∧ |pj,x − pi,x| > w} (3)

where w is the tolerance on point alignment. The neighbor
points of pi, constituting set C(pi), can be efficiently found by
exploiting the point radial order and the regular angular reso-
lution (index i is increasing counterclockwise). In particular, if
∆α is the angular resolution, the points pj ∈ C(pi) must have
an index j s.t. |j−i| < wi where wi = barcsin(ri/‖pi‖)/∆αc.

A good corner is defined by points aligned on both di-
rections, i.e., with high values of nx = |Cx(pi)| and ny =
|Cy(pi)|. A score is defined as

score(pi) =
nx + ny

ε+ |nx − ny|
(4)

The keypoints are chosen as the maxima of score(pi). In
order to avoid points that are too close and ambiguous, a non-
maxima suppression (NMS) procedure on 0.20 m range is
applied to select the most stable features.
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Fig. 2: An example of FALKO keypoint extraction with scores from
eq. (14) (blue) of each candidate point (green), corresponding triangle
approximation (light blue), and orientation vectors (red).

B. FALKO

Laser scan data consist in a set of points which approximate
the perceived environment shape. In LIDAR with low angular
resolution, the approximation is less accurate. Accurate de-
tection of interest points from noisy data can be performed
only after higher level inference than detection of simple
geometric shapes like segments or circles. FALKO exploits the
concept of edge intersection in 2D range data. This detector
has been designed to be orientation invariant and point density
independent.

Like for OC keypoints, the set of neighbor points C(pi) of a
candidate scan keypoint pi is defined by equation (1). The first
step of the proposed method avoids evaluation of points which
cannot be considered as candidate corners due to the lack of
neighbors, geometric inconsistency or artifacts originated by
range discontinuities. The point set C(pi) is divided in two
subsets

CL(pi) = {pj ∈ C(pi) : j < i} (5)
CR(pi) = {pj ∈ C(pi) : j > i} (6)

If the cardinality |CL| < 2 or |CR| < 2, the point is discarded
from the candidate corner set. The two endpoints xL and xR
of each candidate point neighborhood are defined as

xL = pjmin : jmin = arg min
j
{pj ∈ CL(pi)} (7)

xR = pjmax : jmax = arg max
j
{pj ∈ CR(pi)} (8)

The triangle 4pixLxR is then geometrically evaluated as a
rough approximation of the corner. Let xLxR be the base of
the triangle. If the base length ‖xLxR‖ or the triangle height
is less than ri

β the point is discarded. Parameter β is chosen
taking into account specific limitations on the aperture and
subtended angle of the corner. In particular, greater values
of β allow both wider and sharper corners to be selected as
candidates. These conditions efficiently filter unsuitable corner
candidates based on simple geometric properties. Then, for
each candidate point a cornerness score is computed. A polar
grid, which quantizes the space in circular sectors, is centered
on the candidate point pi. For each point pj,L ∈ CL(pi) and
pj,R ∈ CR(pi), a quantized orientation w.r.t. the candidate
point is computed as

φj,L =

⌊
sn
2π

tan−1

(
pj,y − pi,y
pj,x − pi,x

)⌋
, ∀pj ∈ CL(pi) (9)

φj,R =

⌊
sn
2π

tan−1

(
pj,y − pi,y
pj,x − pi,x

)⌋
, ∀pj ∈ CR(pi) (10)

where sn is the number of circular sectors in the polar grid.
Let

dθ(φ1, φ2) =
(

(φ1 − φ2) +
sn
2

)
(mod sn)− sn

2
(11)

be a distance function between the quantized orientations in
circular sector units. The score for a candidate point is defined
as

scoreL(pi) =

jmin∑
h=i−1

jmin∑
k=h−1

|dθ(φh, φk)| (12)

scoreR(pi) =

jmax∑
h=i+1

jmax∑
k=h+1

|dθ(φh, φk)| (13)

score(pi) = scoreL(pi) + scoreR(pi) (14)

This score function measures the alignment of the two point
sets, respectively CL and CR, and it is orientation invariant.
For each set, the more points are aligned in the same direction
the smaller is the score value. Figure 2 shows an example of
score computation. Keypoints are then chosen as local minima
(or maxima with score inversion) of the score function in (14)
with a NMS procedure. Like for OC keypoints, NMS range is
set to 0.20 m.

IV. KEYPOINT DESCRIPTORS

In this section, two novel descriptors are illustrated: the first
is derived from shape context descriptor [16], while the second
represents the relative orientation between each keypoint and
its neighborhood.

A. Binary Shape Context

Shape context is a local descriptor which represents the
points distribution in a linear-polar histogram. The bins of
the histogram centered on the keypoint count the neighbor
points lying inside the region corresponding to the bin. The
main drawback of this approach is its dependency from point
density. Indeed, due to the angular quantization of the laser
scanner, the same shape detected from two different view-
points may results in two different histogram distributions.
Figure 3(a) shows an example of shape context descriptor
for the same shape viewed from two near poses. The two
descriptors exhibit different peaks in the linear-polar histogram
which can cause mismatch in the recognition of the keypoint.
We propose a binary version of the local shape descriptor
which is less sensitive to neighbor points density than the
original one. Formally, given rn and αn, respectively the
number of radial and polar quantization in the descriptor grid,
for each keypoint kp the BSC descriptor is defined as the grid

BSCmj =

{
1 if ∃ pi : (pi − kp) ∈ BSCmj
0 otherwise

(15)

where pi is a point of kp neighborhood, m = 1, . . . , rn, j =
1, . . . , αn and BSCmj is a cell in the linear-polar grid. A
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distance function for the BSC descriptor can be defined as the
Hamming-like distance function

dBSC(BSC1, BSC2) =

rn∑
m=1

αn∑
j=1

BSC1,mj ⊕BSC2,mj (16)

where ⊕ is the XOR operator. Figure 3(b) shows the resulting
descriptors computed for the same keypoint viewed from
different poses.

B. Cumulative Gaussian Histogram

Laser scan data provide only geometric information of
the perceived environment. Thus, geometric shape or neigh-
borhood point distribution are commonly used as interest
point description. However, these approaches are viewpoint
and density dependent. Therefore, we propose a relative
orientation-based descriptor that exploits the viewpoint and
density invariant property of orientation between points.
We compute a histogram based on the same radial grid
presented in section III-B. Given αn, the number of histogram
bins, for each point pi in the keypoint kp neighborhood, a
relative quantized orientation φi is computed as

φi =

⌊
αn
2π

tan−1

(
pi,y − kpy
pi,x − kpx

)⌋
(17)

Then, for each point a discrete Gaussian distribution N (φi, σ)
is constructed. The CGH is defined as

CGHj =
∑
φi

N (j − φi, σ) (18)

where j = 1, . . . , αn and CGHj is a cell in the radial
histogram. Figure 3(c) shows two examples of CGH descriptor.
Histograms have the same radial distribution although the two
scans are perceived from two different robot poses. A normal-
ization of the histogram makes the descriptor less sensitive to
neighbor points density, and a symmetric χ2 test can be used
to evaluate the distance between two CGH descriptors.

C. Computing Corner Orientation

Descriptor matching can be computed through the evalu-
ation of a distance function. Since the same corner can be
perceived from different view-angles, the resulting descriptors
are not aligned w.r.t. the same start angle. Thus, for matching,
descriptors are rotated according to the corner orientation
estimated by the keypoint detector. For OC keypoints, the
corner orientation is given by the bisector angle between two
points aligned to the dominant direction θ̄ and its orthogonal
direction θ̄+π/2. For FALKO keypoints, the corner orientation
is computed with a variant of the Intensity Centroid [17]. First,
for both sets CL and CR given by equations (5) and (6), the
centroid is computed w.r.t. the interest point. The average of
the two centroids is used to compute the orientation vector
o. The corner orientation is estimated as atan2(oy,ox). This
method results in good orientation estimation without point
density dependency. Figure 3 shows some examples of corner
orientation vectors which can be used to align the descriptors
w.r.t. the same starting angle.

(a)

(b)

(c)

Fig. 3: Descriptor grids for example data with two different view-
points and relative corner orientation vector (purple arrow): (a)
Local Shape Context proposed in [4]; (b) Binary Shape Context; (c)
Cumulative Gaussian Histogram. Darker grey level represents higher
value in the histogram bin.

V. EXPERIMENTS
The aim of the experiments presented in this section is the

evaluation and comparison of the proposed keypoint detectors
and descriptors w.r.t. the state of the art. The most important
property of keypoints is their stability, i.e., the detection of
the same point in the environment after changing viewpoint
and regardless of laser scanner properties like noise level and
resolution. On the other hand, the performance of descriptors
depends on their capability to distinguish among different
places of the environment. In order to make the comparison
reproducible, we adopted the criteria employed in the experi-
mental assessment of [4], which in turn follows the approach
of Mikolajczyk et al. [1], [18]. Thus, we compared features
by changing the viewpoint, the noise level and the number of
measurements of a scan. Furthermore, global localization and
loop closure capabilities have been exploited comparing the
proposed features to FLIRT.

A. Experimental Setup

The proposed keypoint detectors and descriptors are as-
sessed on five datasets: fr-079, fr-clinic, intel, mit-csail and
victoria-park. All log files are freely available from Radish
and other online repositories1. However, the assessment about
features requires a groundtruth where all scan viewpoints
are referred to a single global reference frame. We used the
datasets with the registered scans provided with [4], which
consists of both the original scans and the corresponding
adjusted pose graph. For each test, a total of 100 random scans,
20 from each dataset, have been evaluated. Results are then
averaged over the 100 samples.

The scans in each dataset are used to assess the performance
of both the proposed keypoint detectors and the descriptors.
The experimental assessment is based on the comparison

1For example, http://kaspar.informatik.uni-freiburg.de/∼slamEvaluation/
datasets.php

http://kaspar.informatik.uni-freiburg.de/~slamEvaluation/datasets.php
http://kaspar.informatik.uni-freiburg.de/~slamEvaluation/datasets.php
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between two similar features sets. The stability of keypoints
has been measured in two ways. In the first one, the keypoints
have been extracted from all the scans of the datasets and
associated together according to the procedure described in [6].
The stable interest points are detected several times. The
covariance matrices of the associated keypoints provide a
measure of their stability.

The second metric for keypoint stability is the repeatability
of the points detected from two similar scans. In particular, the
sets of keypoint PR and PS are detected respectively from
a given reference scan and from another similar scan. The
keypoints appearing in both sets can be found by associating
the points, e.g., according to nearest neighbor criterion. Like
in [18], the repeatability is defined as the percentage of com-
mon keypoints over the smaller of the two keypoint sets, i.e.
|PR∩PS |/min{|PR|, |PS |}. In our experiments we performed
the four different tests proposed in [4] that assess the feature
robustness to changing conditions. A given scan is compared
with another scan obtained either by changing viewpoint or
by transforming the original scan.

1) Viewpoint. Each reference scan SRi of the dataset is
compared with all the scans SSj with a viewpose in 1 m
range. Then, the set of close scan pairs is partitioned
according to their level of similarity. Since the points
of a scan geometrically delimit a free region around
the laser, the similarity of two scans SRi and SSj is
measured by their overlap, which is the ratio between
the area of intersection SRi ∩ SSi and the area of their
union SRi ∪ SSj .

2) Noise. Each scan SSj is obtained by adding increasing
level of gaussian noise to the range measurement of the
original scan SRi. The standard deviation of the noise
(measured in meters) represents the level of noise.

3) Oversampling. The scan pairs used in this test are ob-
tained by adding new points to the original scan through
linear interpolation. The oversampling level corresponds
to the number of points obtained by interpolating two
adjacent points.

4) Subsampling. The scan pairs used in this test are ob-
tained by removing points from each scan of the dataset.
The subsampling level corresponds to the number of
points removed between two remaining points.

Descriptor performance is assessed using the same scan
pairs used in the four keypoint detector tests illustrated above.
Each pair of scans has been processed as follows. The key-
points sets PR and PS are detected respectively from the
reference scan SR and the similar scan SS as in the tests
discussed above and the corresponding sets of descriptors,
respectively DR and DS , are computed. Next, the sets DR
and DS have been associated measuring the distances between
descriptors. Two descriptors match if their distance is below a
given threshold. Several values of threshold have been used in
order to compute an evaluation through precision-recall curves.
The ground truth for these tests is obtained with a geometric
association of the keypoint used for descriptors computation.

Dataset Keypoint Num.
Points λ̄mean λ̄max

Single
Points

fr079
FALKO 1127 0.027 0.039 21.9%
OC 698 0.022 0.032 30.2%
FLIRT 1094 0.026 0.037 24.8%

fr-clinic
FALKO 39077 0.028 0.040 49.5%
OC 1804 0.021 0.033 59.1%
FLIRT 19314 0.024 0.035 52.6%

intel
FALKO 1153 0.028 0.039 24.8%
OC 405 0.019 0.028 33.1%
FLIRT 1155 0.025 0.035 26.2%

mit-csail
FALKO 1463 0.025 0.037 33.5%
OC 716 0.021 0.032 48.5%
FLIRT 1446 0.024 0.035 34.4%

victoria-park
FALKO 9764 0.027 0.039 61.3%
OC 760 0.021 0.036 72.5%
FLIRT 7120 0.026 0.038 70.5%

TABLE I: Average of the geometric mean and maximum of the
keypoint covariance matrix square-rooted eigenvalues. Best values
are in bold font.

B. Keypoint Detector Assessment

Evaluation of keypoints repeatability has been performed
with default parameters for each dataset. In particular, the
parameters used for FLIRT are those indicated in [4]. For OC,
we set nθ = 360, ∆ρ = 0.05, nρ = 1200 and w = 0.04. In
FALKO, we set β = 4.0 and sn = 16. These parameter values
have been used with both indoor and outdoor environments for
a fair comparison among methods. However, to achieve better
performance a fine tuning of the parameters is recommended.
Figure 4 shows the average results of repeatability tests. In
each test, FALKO outperforms both FLIRT and OC, except for
high noise deviation levels where, anyway, the scan data are no
longer reliable (above 0.3 m). In outdoor datasets, where the
scan is more scattered and there are stronger biolations of the
orthogonal hypothesis, OC results in poor performance, which
drops its average repeatability value over the five datasets.

Table I summarizes the results of the global stability tests
of keypoint detectors for all the datasets. As in [6], a global
map of keypoints is built for each dataset by adding a new
landmark, when a new point is distant at least dmin = 0.2 m
from any landmark in current map, and by associating a point
to the closest landmark l in the range dmax < 0.05 m.
The covariance matrix Σl is computed using the kl keypoints
associated to the map landmark l, when kl > 1. If kl = 1, l is
computed from a single point and is, therefore, an ephemeral
landmark. The maximum λmax,l and the geometric mean
λmean,l of the eigenvalues of Σl are used to measure the
uncertainty of l. The average of maximum eigenvalues λ̄max
and of eigenvalue geometric means λ̄mean are reported in
Table I with the percentage of landmarks obtained from single
points. As can be seen, OC has the lowest values of λ̄max and
λ̄mean in all the datasets, though with the higher percentage
of ephemeral points and lower number of detected keypoints.
FALKO obtains slightly higher values of λ̄max and λ̄mean
than FLIRT, but it tends to detect more stable points as
shown by the lowest percentage of single points, i.e. ephemeral
landmarks.



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2015

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

R
e
p
e
a
ta

b
ili

ty
 S

c
o
re

Overlap Level

Overlap Repeatability

FALKO
OC

FLIRT

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

R
e
p
e
a
ta

b
ili

ty
 S

c
o
re

Noise Std.Dev. [m]

Noise Repeatability

FALKO
OC

FLIRT

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

R
e
p
e
a
ta

b
ili

ty
 S

c
o
re

Oversampling Level

Oversampling Repeatability

FALKO
OC

FLIRT

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

R
e
p
e
a
ta

b
ili

ty
 S

c
o
re

Subsampling Level

Subsampling Repeatability

FALKO
OC

FLIRT

Fig. 4: Repeatability values of keypoint detectors FALKO, OC and FLIRT in four tests: (a) viewpoint with different scan overlap value; (b)
noise level with different noise variance; (c) oversampling of scan measurement; (d) subsampling of scan measurement.

Keypoint Time [µs]
FLIRT 23469

OC 5362
FALKO 567

Descriptor Time [µs]
β-grid 1106
BSC 34
CGH 27

TABLE II: Average computation time of keypoints and descriptors

C. Descriptor Assessment

Like in section V-B, descriptors have been evaluated with
the same parameters for all datasets. β-grid was set with the
default parameters from [4]. For BSC and CGH descriptors
we set rn = 8 (only for BSC), αn = 16 and a neighbors
radius equal to 0.5 m. For CGH we set standard deviation
σ = 0.6. Figure 5 shows the 1-Precision Recall curves
computed for the four scan transformations. The results of
a pure descriptor-association are poor for all the evaluated
descriptors due to the intrinsic lack of information in laser scan
data, as shown also in [1], [4]. A pure descriptor-association
without position or geometry information is not recommended
for pose estimation purpose. Descriptors can be used as a
gating rule in geometric associations like Nearest-Neighbors,
Hungarian algorithm or RANSAC. BSC and CGH perform
almost the same or even slightly better as β-grid in each
test, while requiring much less computation. Indeed, table
II shows the registered computation time. Performance is
computed over 1000 samples of the same dataset (fr079) on
an Intel Core i7-4770 CPU @ 3.40GHz, 8GB RAM. Results
show that FALKO, BSC and CGH significantly outperform
the other methods in computation performance. OC performs
better than FLIRT, but is 10 times slower than FALKO due to
rotation alignment. Computational times of FALKO and OC
are compatible with real-time execution.

D. Data Association with Keypoints

Estimation of robot pose given a single measurement and a
map is an important capability for global localization and loop
closure in SLAM. The experiments illustrated in this section
are designed to assess the contribution of keypoint features to
the execution of these tasks. The tests have been performed
on four datasets, three indoor (mit-csail, fr079, intel) and one
outdoor (fr-clinic), using the three keypoint detectors (FALKO,
OC, FLIRT) combined with pure geometric matching (Geom)
or with descriptor (BSC, CGH, β-grid). Each scan SR of a
dataset has been compared to the other scans Si 6= SR of
the the same dataset and aligned to the best matching one
among the S̄i. The candidate scan is estimated as follows.
The keypoints detected from each scan are used to compute the
GLARE signature of the scan [19]. The initial set of candidates
consists of the 10 scans Si, whose GLARE signatures are
closer to the GLARE signature of SR according to the L1-
norm. The keypoints of each Si and SR are the associated
using maximum common subgraph data association [20] and
are used to compute the robot pose in least-squares sense.
The selected scan S̄i is the scan that, after the alignment,
has the greatest number of keypoints with a neighbor point in
SR within the 0.10 m range. If a descriptor is used, only the
matching points with descriptor distance above a threshold are
accepted. The robot is considered localized if the associated
points are at least Nmin.
Figure 6 shows the 1-precision-recall curves w.r.t. Nmin for
the different datasets and the different keypoint features. A
localization is considered correct when the position error of the
aligned scan is less than 0.50 m and the angular error less than
10◦. The curves show that FALKO with geometric matching
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Fig. 5: 1-Precision Recall curves for the descriptors β-grid, BSC and CGH in four tests: (a) viewpoint (scan overlap value in interval
50%− 90%); (b) noise level; (c) oversampling of scan measurements; (d) subsampling of scan measurements.
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Fig. 6: 1-Precision Recall curves of global localizazion with FALKO-{BSC, CGH, Geom}, FLIRT-{β-grid, Geom} and OC-{BSC, Geom}
for datasets (a) mit-csail, (b) fr079, (c) intel, and (d) fr-clinic.

or descriptor validation dominates those of the other detec-
tors. The performance of FALKO-Geom and FALKO-BSC
are comparable, while FALKO-CGH has lower performance,
in particular in mit-csail. The proposed global localization
method strongly relies on the stability and robustness of the
keypoint detector, which is the main peculiarity of FALKO.

Figure 7 shows the values of recall, precision, position and
angular errors at a break even point. The average position
and angular errors are computed only for correctly localized
trials. The localization error is less than 10 cm and almost
always less than 1◦ for all features for correct localization.
FALKO outperforms almost always the other methods with a
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Fig. 7: Values of recall, precision, and average position and angular
errors of the tested features for each dataset.

high reliability of the association. In the outdoor dataset both
FALKO and OC obtain higher positional error even though
FLIRT obtains much lower precision in data association and
place recognition. The lowest position errors are achieved
by OC, but these values are computed on less corrected
associations.

VI. CONCLUSIONS

In this paper, we have proposed two keypoint detectors,
OC and FALKO, with two novel descriptors designed to
detect features from range finder measurements, BSC and
CGH. Like other state-of-the-art detectors, OC and FALKO
are conceived to find stable high curvature points in a laser
scan, and to be invariant to sensor viewpoint and point density.
OC and FALKO satisfy these properties through an efficient
evaluation of the neighbor point distribution instead of relying
on a computationally expensive multi-scale approach. The time
required to process a laser scan with OC and FALKO is one
or two orders of magnitude less than other available keypoint
detectors. The proposed descriptors BSC and CGH provide an
equally efficient signature for the keypoints. The performance
of the proposed algorithms has been tested on widely used
benchmark datasets and compared with FLIRT, the state-of-
the-art feature for LIDARs. The results about detection show
that FALKO achieves higher repeatably score and extracts less
ephemeral points than the other keypoint detectors. Moreover,
the precision-recall curves of the proposed detectors are con-
sistent with the achievable results obtained from computer
vision and laser scan data descriptors. The results also show
that geometric association with FALKO performs better than
other methods for global localization and loop closure purpose.
Using BSC as a final gating rule results in slightly better
precision in data association.

REFERENCES

[1] K. Mikolajczyk and C. Schmid, “A performance evaluation of local
descriptors,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 27, no. 10, pp. 1615–1630, 2005.

[2] S. Krig, “Interest point detector and feature descriptor survey,” in
Computer Vision Metrics. Springer, 2014, pp. 217–282.

[3] Y. Guo, M. Bennamoun, F. Sohel, M. Lu, and J. Wan, “3D Object
Recognition in Cluttered Scenes with Local Surface Features: A Survey,”
IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 36,
no. 11, pp. 2270–2287, Nov 2014.

[4] G. D. Tipaldi and K. O. Arras, “Flirt-interest regions for 2d range data,”
in Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2010,
pp. 3616–3622.

[5] Y. Li and E. Olson, “Extracting general-purpose features from LIDAR
data,” in Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
2010.

[6] ——, “Structure tensors for general purpose lidar feature extraction,” in
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2011,
pp. 1869–1874.

[7] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[8] G. Grisetti, C. Stachniss, and W. Burgard, “Improved Techniques for
Grid Mapping with Rao-Blackwellized Particle Filters,” IEEE Trans. on
Robotics, vol. 23, no. 1, pp. 34–46, 2007.

[9] D. Lodi Rizzini and S. Caselli, “Metric-topological maps from laser
scans adjusted with incremental tree network optimizer,” Robotics &
Autonomous Systems, vol. 57, no. 10, pp. 1036 – 1041, 2009.

[10] V. Nguyen, A. Martinelli, N. Tomatis, and R. Siegwart, “A comparison
of line extraction algorithms using 2d laser rangefinder for indoor mobile
robotics,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2005, pp. 1929–1934.

[11] P. Nunez, R. Vazquez-Martin, J. Del Toro, A. Bandera, and F. Sandoval,
“Feature extraction from laser scan data based on curvature estimation
for mobile robotics,” in Proc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA), 2006, pp. 1167–1172.

[12] L. Pedraza, D. Rodriguez-Losada, F. Matı́a, G. Dissanayake, and J. Miró,
“Extending the limits of feature-based SLAM with B-splines,” IEEE
Trans. on Robotics, vol. 25, no. 2, pp. 353–366, 2009.

[13] M. Bosse and R. Zlot, “Map Matching and Data Association for
Large-Scale Two-dimensional Laser Scan-based SLAM,” Int. Journal
of Robotics Research, vol. 27, no. 6, pp. 667–691, Jun 2008.

[14] ——, “Keypoint design and evaluation for place recognition in 2D
LIDAR maps,” Robotics & Autonomous Systems, vol. 57, no. 12, pp.
1211–1224, 2009.

[15] A. Censi, L. Iocchi, and G. Grisetti, “Scan Matching in the Hough
Domain,” in Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2005.

[16] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object
recognition using shape contexts,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 24, 2002.

[17] P. L. Rosin, “Measuring corner properties,” Computer Vision and Image
Understanding, vol. 73, no. 2, pp. 291–307, Feb. 1999.

[18] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,
F. Schaffalitzky, T. Kadir, and L. Gool, “A comparison of affine region
detectors,” International Journal of Computer Vision, vol. 65, no. 1-2,
pp. 43–72, 2005.

[19] M. Himstedt, J. Frost, S. Hellbach, H.-J. Boehme, and E. Maehle, “Large
scale place recognition in 2D lidar scans using geometrical landmark
relations,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2014, pp. 5030–5035.

[20] T. Bailey, E. Nebot, J. Rosenblatt, and H. Durrant-Whyte, “Data as-
sociation for mobile robot navigation: a graph theoretic approach,” in
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2000,
pp. 2512–2517.


	INTRODUCTION
	RELATED WORK
	KEYPOINT DETECTORS
	Orthogonal Corner Detector
	FALKO

	KEYPOINT DESCRIPTORS
	Binary Shape Context
	Cumulative Gaussian Histogram
	Computing Corner Orientation

	EXPERIMENTS
	Experimental Setup
	Keypoint Detector Assessment
	Descriptor Assessment
	Data Association with Keypoints

	CONCLUSIONS
	References

