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Abstract  -  In this work we show how 2D numerical 

simulations can be used to design and optimize front-side point 
contacts in surface-passivated CIGS cells. Detailed analysis of 
the combinations of passivation thickness, point contact size and 
pitch can help identifying solutions able to boost the 
performance of otherwise surface-limited cells: efficiencies close 
to those of cells with ideal (i.e., trap-free) CdS/CIGS interface 
can be achieved by the optimization of point contact features in 
the low nm range. The effect of varying the CIGS and CdS 
doping densities on the cell performance has also been analyzed. 
Index Terms — CIGS passivation layer, point contact, thin-

film photovoltaics. 

I. INTRODUCTION 

Copper indium gallium diselenide Cu(In1-xGax)Se2 (CIGS) 
is one of the most promising semiconductor materials for low 
cost, high efficiency thin-film solar cells. However, in order 
to reach the high efficiency/cost ratio the market requests, 
continuous improvement is a necessary task [1]. To achieve 
this goal, one first needs to identify the main electronic and 
optical loss mechanisms limiting the state-of-the-art solar cell 
performance, and, in a second step, to develop the best 
strategies to overcome these limits. 

Non-radiative bulk and interface recombination is 
responsible for the main electrical losses in the cell [2], and is 
therefore among the first performance limiters to suppress. In 
order to reduce recombination at the interfaces between the 
CIGS absorber layer and the buffer and/or the bottom contact, 
passivation layers can be deposited, as for Si solar cells. CIGS 
cells with passivation at the rear surface combined with 
micron–sized openings (point contacts), showed increased 
efficiency for CIGS absorbers with reduced thickness [3].  

However, the front CIGS surface (buffer/absorber 
interface) may also benefit from passivation, especially when 
the band alignment is less favorable than that of CdS [4]. 
Good passivation ensures minimal surface recombination 
losses in two ways: (i) it reduces interface defects, impurities 
or dangling bonds at the CIGS surface (chemical passivation); 
(ii) the presence of high negative fixed charge density inside 
the passivation repels minority carriers from the 
semiconductor interface (field-effect passivation) [5]. 
However, a passivation layer covering the whole absorber 
surface will result in large series resistance, which will cause 
the fill factor (FF) to drop. The insertion of point contacts at 
the front CIGS surface can – at least in part - overcome the 
problem, but it is necessary to determine the ideal point 

contact size and pitch, and the optimum passivation film 
thickness. A first experimental example of such type of point 
openings through a surface layer on top CIGS was recently 
discussed in ref. [6]. 

The present work investigates the effect of passivation with 
point contacts at the CIGS front surface by means of 2D 
numerical simulations where we vary (i) the passivation layer 
thickness, (ii) the point contact width and (iii) pitch. The 
effect of CdS and CIGS doping on cell performance has also 
been analyzed. The final aim is to provide guidelines for 
designing high-efficiency solar cells, with optimized 
geometrical features as determined by the 2D device 
simulations.  

II. METHODS 

A. Simulations 

We simulated the cell using the Synopsys Sentaurus-Tcad 
suite [7]. The cell behavior in the dark is described by the 
Poisson, electron and hole continuity, and drift-diffusion 
equations. Recombination via deep defects follows the 
Shockley – Read – Hall (SRH) model. The cell is illuminated 
by the standard AM1.5G solar spectrum.  

Unlike in previous studies [8], here we consider a 
monocrystalline cell structure, because our analysis was 
focused on analyzing the effect of passivation and point 
contacts at the CdS buffer/CIGS interface. In addition to that, 
we will show that optimum point contact sizes are in the low 
nanometer range, which is much smaller than the average 
grain size. 

The simulated cell is shown in Fig. 1. The passivation layer 
thickness h, the point contact width wpc, and pitch d are 
varied in order to evaluate their effect on cell performance. 
When h = 0, the CdS covers the full CIGS surface, and the 
cell structure is the standard one (i.e., with neither passivation 
nor point contacts). The most significant material parameters 
[9], [10] for the various cell layers are given in Table I, while 
the choice of passivation layer parameters is addressed below. 

B. Simulation Scenarios 

All simulations include spatially uniform bulk 
recombination centers; as far as interface recombination is 
concerned, we examined two scenarios for the CdS/CIGS 



 

interface: ideal interface (no trap centers) and non
interface (with trap centers).  

 

 

 

 

 

 

 

 
 
 
 
 
 
Fig. 1. Cross-section of the simulated solar cell (not to scale).
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We started setting the baseline for the standard cell with 

0 – i.e., no passivation - in the case of ideal CdS
interface; the simulated cell efficiency is 20.7
close to the 20.4% measured on record cells [
not imply that surface recombination is absent in the record 
cell of ref. [11], since similar values of efficiency may resul
from different combinations of absorber and interface 
properties). 

We then added an acceptor trap density of 3
CdS/CIGS interface lowering the efficiency
The acceptors are located at the CIGS mid
electron and hole lifetimes of 3.33 ps; these correspond to 
surface recombination velocity in the range of 10
simulated figures of merit of the baseline (h = 0) 
without acceptor traps at the CdS/CIGS interface
AM1.5G illumination are given in Table I
measured data from [11]. 

TABLE I 
MATERIAL PARAMETERS USED IN THE SIMULATIO

Material ZnO CdS 

Eg [eV] 3.3 2.4 

ε/ε0 9 9 
Nc [cm-3] 2.27x1018 0.677x1018 
Nv [cm-3] 3.34x1019 1.53x1019 

µe 
[cm2/(V·s)] 

100 100 

µh 
[cm2/(V·s)] 

25 25 

τe [ns] 10 33 

τh [ns] 25 25 

 

interface: ideal interface (no trap centers) and non-ideal 

of the simulated solar cell (not to scale). 

setting the baseline for the standard cell with h = 
in the case of ideal CdS/CIGS 

7%. This value is 
[11] (which does 

not imply that surface recombination is absent in the record 
], since similar values of efficiency may result 

from different combinations of absorber and interface 

3·1011 cm-2 at the 
efficiency to η = 11.1%. 
CIGS mid-gap, and give 

; these correspond to 
surface recombination velocity in the range of 106 cm/s. The 

= 0) cell with and 
without acceptor traps at the CdS/CIGS interface under 

II, together with 

The performance of the baseline cell with ideal 
therefore bulk-limited, while that of the cell with
interface acceptors is interface-limited
In order to recover from the 11.1% efficiency 
limited scenario, we simulated structures with 
thickness h = 5 nm, 10 nm, 25 nm 
(see Fig. 1); we assume that this layer completely passivates 
the surface acceptor traps, which are there
the point contact surface. The bandgap of the 
= 5 eV) is chosen so that it is transparent to the incident light, 
with a spike on the conduction band 
interface with CIGS. 

For each value of the passivation thickness
considered three values of the point contact pitch
50 nm, 100 nm, and 250 nm. Finally, for 
h and d, we vary the point contact width
and (d – 10 nm).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
III. RESULTS AND DISCUSSION 
The best efficiency for each value of passivation thickness 

h and the corresponding combination of 
shown in Table III.  

 
 
 
 
 
 
 
 
 
 
We observe the best performance in Tab. III for the thinnest 

(h = 5 nm) passivation, in conjunction with narrow (
nm) and closely spaced (d = 50 nm) point contacts.

Looking at Fig. 2, we observe that, in the presence of 
interface acceptor traps, narrow point contacts 
small wpc - yield Jsc and Voc values very close to the ideal 
ones, but give a smaller benefit to FF, which remains 
significantly lower than that of the baseline cell without 
interface traps. 
 
 

TABLE I
CELL PARAMETERS UNDER AM

Non – ideal interface
h 

[nm] 
optimum d 

[nm] 
optimum wpc

5 50 
10 50 
25 50 

 

TABLE 
BASELINE (h = 0) CELL PARAMETERS UNDE

ILLUMINATION

 Voc 
[V] [mA/cm

Simulated  
(ideal interface) 

0.734 

Simulated (non-
ideal interface) 

0.579 

Measurement  
[11] 

0.736 

 

SED IN THE SIMULATIONS 
CIGS 

1.21 
10 

2.30x1018 
1.80x1019 

100 

25 

150 

25 

The performance of the baseline cell with ideal interface is 
limited, while that of the cell with CdS/CIGS 

limited. 
% efficiency of the interface-

simulated structures with passivation of 
nm on the upper CIGS surface 

we assume that this layer completely passivates 
are therefore only present in 

bandgap of the passivation (Eg 
transparent to the incident light, 

conduction band (∆EC = 0.5 eV) at the 

passivation thickness h, we 
the point contact pitch d, namely, 

Finally, for each combination of 
the point contact width wpc between 5 nm 

value of passivation thickness 
and the corresponding combination of d and wpc values is 

We observe the best performance in Tab. III for the thinnest 
= 5 nm) passivation, in conjunction with narrow (wpc = 5 

= 50 nm) point contacts. 
Looking at Fig. 2, we observe that, in the presence of 

interface acceptor traps, narrow point contacts – i.e., with 
yield Jsc and Voc values very close to the ideal 

ones, but give a smaller benefit to FF, which remains 
that of the baseline cell without 

TABLE III 
AM1.5G ILLUMINATION 

ideal interface 
optimum wpc 

[nm] 
η 

[%] 
5 19.59 
5 18.99 
5 17.17 

TABLE II 
CELL PARAMETERS UNDER AM1.5G  
ILLUMINATION.  

Jsc 
[mA/cm2] 

FF 

[%] 
η 

[%] 

35.1 80.3 20.7 

34.7 55.4 11.1 

35.1 78.9 20.4 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Fig. 2: Simulated cell parameters vs. point contact width, wpc, for 
varying pitch, d. Non-ideal interface. h = 5 nm. The two reference 
lines indicate the case of absence of interface states (top line) and the 
case of presence of interface states with no passivation (bottom line). 

The cell performance appears thus to be limited by the 
series resistance arising from the current path inside the 
absorber - larger point contact pitch d implies higher 
resistance - which adds to the parasitic resistance of narrow 
point contacts. This parasitic resistance increases with 
passivation thickness, too, because the CdS thickness 
covering the point contact corners – which is equal to (30 nm 
– h), as seen in Fig. 1 - is reduced for higher h, thus 
determining the simulated dependence of cell performance on 
h (see Tab. III). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3: Simulated efficiency η versus p (p = wpc/d), for varying point 
contact pitch, d. h = 5 nm. 

 
If p is the ratio between the point contact width wpc and the 

distance d between point contacts, p = wpc/d, we can see from 
Fig. 3  that there is an optimum value of p that maximizes the 
efficiency η, namely, p = 0.1. 

It is important to point out that, unlike the case of Si cells, 
where micron-size or larger point contacts are used [12], our 
CIGS case calls for features in the lower nm range. This 
requires challenging patterning strategies, but the feasibility 
of such nano-patterned point contacts at the front CIGS 
interface has been recently demonstrated [6]. 

We have shown so far that the optimum point contact 
pattern is the result of a trade-off between the beneficial effect 
of surface acceptor passivation, which is maximum for 
narrow point contacts and wide pitch, and the detrimental 
effect of series resistance, which gets worse as the point 
contacts are made narrower and wider apart. It is therefore 
interesting to evaluate the effect of increased doping densities 
on the structures with point contacts, since it may be expected 
that more conductive CIGS and/or CdS layers would make 
the cell suffer less from series resistance effects, thus 
enhancing the point contact benefits.  

With reference to a cell with h = 5 nm, d = 50 nm, wpc = 5 
nm, we have simulated the illuminated behavior for different 
values of the CIGS acceptor doping density, while keeping 
the CdS donor doping density fixed at 2x1016 cm-3. The 
effects on cell performance are negative, as shown in Fig. 4.  

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: Simulated cell parameters vs. CIGS acceptor doping density. 
Non-ideal interface. h = 5 nm, d = 50 nm, wpc = 5 nm. The CdS 
donor doping density is 2x1016 cm-3. 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Conduction band profile and electron quasi-Fermi levels at 
0.601 V and AM1.5 (maximum power point for the cell with 6x1015 
cm-3 CIGS doping) for two different values of CIGS acceptor doping 
density (legend). Non-ideal interface. h = 5 nm, d = 50 nm, wpc = 5 
nm. The CdS donor doping density is 2x1016 cm-3. 
 

An explanation for the FF drop can be found in the band 
profiles of Fig. 5: heavier CIGS acceptor doping results in 
larger voltage drop across the CdS buffer, i.e., an increase of 
series resistance that drastically affects FF (see [4] for a 
discussion of the effects of doping and band alignment on 
CIGS cells performance): the voltage drop in the CdS layer 
under these conditions (0.601 V, AM1.5 illumination) almost 
doubles from 103 mV to 187 mV when the CIGS doping 
increases from 6x1015 to 6x1016 cm-3.  

Under short-circuit conditions, the CdS voltage drop is 159 
mV for 6x1015 cm-3, 339 mV for 6x1016 cm-3. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6: Simulated cell parameters vs. CdS donor doping density. 
Non-ideal interface. h = 5 nm, d = 50 nm, wpc = 5 nm. The CIGS 
acceptor doping density is 6x1015 cm-3. 

 
On the other hand, increasing the CdS doping does prove 

successful, as shown by Fig. 6. Again, the effect on VOC 
(+0.7%) and JSC (+0.5%) is marginal, the benefit coming from 
FF due to the reduction of the parasitic series resistance. 

VI. CONCLUSION 

This work is focused on the use of 2D numerical 
simulations for the design and optimization of front-side point 
contacts in CIGS cells. 



 

We show that careful analysis of the combinations of 
passivation thickness and point contact size and pitch can help 
salvaging the performance of otherwise surface-limited cells: 
efficiencies close to those of cells with ideal (i.e., trap-free) 
CdS/CIGS interface can be achieved by the optimization of 
point contact arrangement.  

Our simulations show that features in the low nm range are 
required for optimal performance. Such nano-patterning of 
the cell’s surface has been proven feasible by recently 
published work. 

Finally, since the optimum point contact pattern geometry 
comes from a trade-off between the beneficial effect of 
surface acceptor passivation, which is maximum for narrow 
and widely separated point contacts, and the detrimental 
effect of series resistance, which increases as the point 
contacts are made narrower and wider apart, we have 
analyzed the effects of varying the CIGS and CdS doping 
densities. While increasing the acceptor doping of the 
absorber has a negative impact on the cell’s fill factor and 
efficiency, due to degraded electron collection at the cathode, 
a heavier doping of the CdS buffer,and the attendant 
reduction of the point contact series resistance, bring 
significant benefit to the cell’s performance. 
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