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FAST NUMERICAL PRICING OF BARRIER OPTIONS UNDER
STOCHASTIC VOLATILITY AND JUMPS∗

C. GUARDASONI† AND S. SANFELICI ‡

Abstract. In this paper, we prove the existence of an integral closed-form solution for pricing
barrier options in both Heston and Bates frameworks. The option value depends on time, on the
price and on the volatility of the underlying asset and it can be computed as the solution of a
two dimensional pricing partial integro-differential equation. The integral representation formula
of the solution is derived by projection of the differential equation and exploiting the properties
of the adjoint operator. We derive the expression of the fundamental solution (Green’s function)
necessary for the integral representation formula. The computation is based on the interpretation
of the fundamental solution as the joint transition probability density function of the underlying
asset price and variance and is obtained through Fourier inverse transform of a suitable conditional
characteristic function. We propose a numerical scheme to approximate the option price based
on the classical Boundary Element Method and we provide two numerical examples showing the
computational efficiency and accuracy of the proposed new method. The algorithm can be modified
to compute greeks as well.

Key words. Boundary Element Method, Barrier options, Bates model, Heston model.

AMS subject classifications. 65M38, 91G60, 91G20, 65M80.

1. Introduction. Option pricing is an important field of research in financial
economics from both a theoretical and practical point of view. The pioneering work
of Black and Scholes ([7]) laid the foundations of the field and stimulated important
research in option pricing theory and its mathematical models. However, it is well
known that the description of financial market behavior provided by this model is
not satisfactory. Very well known observed empirical statistical features of the log
prices, such as heavy tails, volatility clustering, aggregational gaussianity, cannot be
correctly described on the basis of the lognormal assumption on which the Black-
Scholes model stands. The volatility smile and smirk are other relevant phenomena
that cannot be explained on the basis of a Black-Scholes description. A huge effort has
been made in the last few years in order to overcome the intrinsic limitations of the
Black-Scholes model for financial derivatives. Several different extensions have been
introduced in order to give a more satisfactory description of financial markets, but the
main contributions in this direction can be grouped in two different classes of models,
the so called stochastic volatility models and the models with jumps. An extended
literature is available on both kind of approaches, giving a more realistic description
of the price evolution in financial markets where both features of stochastic volatility
and jumps can be present. This has naturally led to the introduction of more realistic
but more complicated models, for which no closed-form pricing formulas are available.
In particular, the Bates model ([5]) combines a Merton jump-diffusion model ([24])
with a stochastic volatility model of the Heston type ([22]).

From a different perspective, modern derivative contracts depart from the classi-
cal European paradigm of plain vanilla options and require the use of sophisticated
numerical methods to be priced. In particular, in recent years barrier options have
become increasingly popular and frequently traded financial instruments. Barrier op-
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2 C. GUARDASONI AND S. SANFELICI

tions are path-dependent exotic options that become activated or null if the underlying
asset reaches certain levels. There are four main types of barrier options that can ei-
ther have call or put feature: down-and-in, down-and-out, up-and-in and up-and-out.
The “down” and “up” terms refer to the position of the barrier relative to the initial
underlying price. The “in” and “out” terms specify the type of the barrier, referring
to activating and nullifying when the barrier is breached respectively. A down-and-
out call option for instance becomes nullified if the price of the underlying falls below
the barrier. Despite being frequently traded nowadays, barrier options are still known
as exotic options since they cannot be replicated by a finite combination of standard
products, i.e. vanilla call and put options, future contracts etc., and a closed-form
pricing formula is not available unless we assume a Black-Scholes framework for the
underlying.

For these more advanced financial models, pricing is traditionally based on Monte
Carlo methods that, anyway, are affected by high computational costs and inaccuracy
due to their intrinsic slow convergence.

Other possible approaches to barrier option pricing are offered by Finite Difference
Finite Element and Finite Volume methods [27], [1] or Binomial and Trinomial Trees
[8], [28], [30]. Lattice methods are actually explicit finite difference schemes in which
the time-step is tied to the spatial grid-size in order to guarantee numerical stability.
Therefore, they are not very efficient for pricing barrier options because they require
a fine grid spacing to handle barrier conditions and hence a very large number of
time-steps.

In the present paper, we propose a semi-analytical pricing method for this special
class of path-dependent options under the Bates framework, based on the Boundary
Element Method (BEM). Since 1970s, with the introduction of the electronic com-
puters, Boundary Element Method (BEM) has been largely used for approximating
solutions to partial differential equations (PDEs) in Physics and Engineering ([12])
and in particular, more recently, its application has been refined for time-dependent
problems that involve more difficult theoretical analysis (cfr. [14] for a deep survey
and references on this topic). Despite this, only very few and very recent contributes
([2],[3],[4]) are available in literature about its application to Quantitative Finance
and, more in general, to Economics ([23]).

The advantages of BEM, when compared to domain methods, such as Finite El-
ement Methods (FEM) or Finite Difference Methods (FDM), are well known ([11]):
only the boundary of the domain needs to be discretized and, in particular, exterior
problems with unbounded domains but bounded boundaries are handled as easily as
interior problems. Therefore, this feature makes this method quite interesting when
considering options with barriers: the solution in the interior of the domain is approx-
imated with a rather high convergence rate and can be evaluated at particular points
of the domain and not necessarily everywhere on a defined grid; far field boundary
conditions are implicitly satisfied.

BEM is based on the representation of the solution of the differential problem in
terms of integral equations. For plain vanilla options, this integral formulation reduces
to the fundamental evaluation formula for option pricing, i.e. the computation of the
option price as discounted expectation of the final payoff under suitable probability
measure. For barrier options, the integral representation formula and the boundary
condition at the barrier allow to obtain an equation that can be solved by integration
in time and variance only. Therefore, the dimensionality of the problem is reduced by
one. The integration domain is bounded in time and unbounded in variance. However,
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exploiting the far-field properties of the option price and of the kernels appearing in
the integrals, it can be truncated to compute the integrals numerically. Alternatively,
one can use an infinite element approach on the unbounded domain as in [31].

One of the main difficulties that could arise applying this method, concerns the
necessary explicit knowledge of a fundamental solution for the differential equation
governing the price of the contingent claim, namely the conditional (i.e. transition)
probability density function (PDF), that is generally available only for linear par-
tial differential equations with constant or some specific variable coefficients. The
fundamental solution is available in Black-Scholes case but, when considering more
complicated models such as Heston ([22]) or Bates ([5]), it may be available only
through Fourier inverse transform. In particular, when pricing exotic options, the
joint transition probability density function of stock log-price and variance must be
computed.

For Black-Scholes equation, BEM is really efficient and accurate as already deeply
investigated in [4] and [21], where the authors have tested the method for different
types of barrier options. Here, we will show that this method maintains these qual-
ities also for more general and possibly multifactor models like Heston’s and Bates’,
when we don’t know explicitly the analytical expression for the fundamental solution.
BEM consists of two phases: first, the numerical computation of a service functional
on the boundary, then the post-processing necessary to get the solution of the starting
differential problem. In particular, a great advantage of the BEM over Finite Dif-
ference approaches is that, in the post-processing, only one evaluation is needed for
one spot price and variance level. Moreover, differently from Monte Carlo methods,
if the option is to be priced for a new asset value one can implement only the post-
processing with a great computational saving. This makes sensitivity analysis easily
workable numerically. In the post-processing phase, closed-form formulas for the most
important greeks can be easily derived as well.

The paper is organized as follows: in §2, the Bates jump-diffusion stochastic
volatility model is presented. After recalling the main issues concerning the option
pricing under Bates’ framework, we provide an integral representation formula which
allows to price barrier options starting from a computation of the joint transition
probability density function of stock log-price and variance; we derive the expression
of the density function necessary for the integral representation formula. Moreover,
we provide a closed-form formula to compute the option delta. In §3, we discuss how
to numerically solve the boundary integral problem by the BEM approach combined
with Fourier inverse transform and discuss technical details of implementation. In
§4, we perform simulations on call options with a single barrier under both Heston
and Bates models to show the accuracy and the computational savings obtained with
BEM; the efficiency of our proposed approach is compared to the performance of
the Monte Carlo method. Section 5 concludes. Technical details of the proofs are
postponed to the Appendix.

2. Boundary integral formulation of a barrier option value under Bates
model. Bates model [5] provides an extension of the Heston stochastic volatility
model by considering jumps in the stock price process

(2.1) dxt =
(
µ− δ − 1

2vt

)
dt +

√
vtdW 1

t + jN (t)dN(t)
dvt = −λ(vt − v̄)dt + η

√
vtdW 2

t ,

where vt is the variance process i.e. the square of volatility and xt = log St is the
logarithm of the underlying asset value St; W 1

t , W 2
t are correlated Brownian motions
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with instantaneous correlation ρ, µ is the drift, δ the dividend yield. Here N(t) is a
Poisson process with intensity ξ and jN (t) are normally distributed jump sizes in the
logarithmic price, with expectation µj and variance σ2

j . The Poisson process N(t) is
independent of the Brownian motions and the jump sizes. The stochastic differential
equation (SDE) for the variance can be recognized as a mean-reverting square root
process, as originally proposed by [15] to model the spot interest rate. λ is the speed
of mean reversion, v̄ is the mean level of variance and η is the volatility of volatility.
The Feller condition, 2λv̄ ≥ η2, guarantees that vt stays positive; otherwise, it may
reach zero.
Under the martingale measure Q, the drift is given by r−ξk̄, where k̄ = E[ejN (t)−1] =

exp
(
µj + σ2

j

2

)
− 1 and r is the risk-free interest rate. Under Q, the characteristic

function of the log-price process in the Bates model can be obtained by multiplying
the characteristic function φc

T (ω; x0, v0, t0) of the continuous component xc
t of xt in

the Heston model by the characteristic function of the jumps which in this case is (see
e.g. [13])

(2.2) φJ
T (ω; t0) = exp{(T − t0)ξ(e−σ2

j ω2/2+iµjω − 1)}.
Therefore,

(2.3) φT (ω;x0, v0, t0) = E[eiωxT |xt0 = x0, vt0 = v0] = φc
T (ω;x0, v0, t0) · φJ

T (ω; t0),

where

φc
T (ω; x0, v0, t0) = E[eiωxc

T |xt0 = x0, vt0 = v0] =

= exp
{
iω(r − k̄ξ − δ)(T − t0) +

v0

η2

(
1− e−D(T−t0)

1− Ce−D(T−t0)

)
(λ− ρηiω −D)+

+
λv̄

η2

(
(T − t0)(λ− ρηiω −D)− 2 log

(
1− Ce−D(T−t0)

1− C

))
+ iωx0

}
,

where D =
√

(λ− ρηiω)2 + (ω2 + iω)η2 and C = λ−ρηiω−D
λ−ρηiω+D .

Model (2.1) allows for an analytically tractable method of pricing European options,
which are priced as discounted expected value of their terminal payoffs under the risk
neutral probability measure [5]. The two dimensional pricing partial differential equa-
tion (PDE) for a contingent claim in the Bates model can be deduced from hedging
arguments. In case of a one-dimensional model such as the Black-Scholes framework,
a self-financing portfolio is constructed via an option and −∆ units of stocks. Whereas
for Bates’ two dimensional model, the risk associated with the random volatility needs
to be hedged as well. Using Itô’s lemma and arbitrage arguments, the following two
dimensional pricing partial integro-differential equation (PIDE) is derived ([5])
(2.4)
∂V

∂t
+

1
2
v
∂2V

∂x2
+ ρηv

∂2V

∂x∂v
+

1
2
η2v

∂2V

∂v2
+

(
r − ξk̄ − δ − 1

2
v

)
∂V

∂x
− (λ(v − v̄)− θv)

∂V

∂v

−rV +
∫ +∞

−∞
[V (x + z, v, t)− V (x, v, t)]ξ

1√
2πσj

exp

(
− (z − µj)2

2σ2
j

)
dz = 0,

with the final condition

V (x, v, T ) = g(x),
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where V = V (x, v, t) is the price of the contingent claim, g is the payoff of the contract
at expiry and θ is known as the market price of volatility risk. The market price of
risk will be handled by the other parameters, because the model is usually calibrated
to the market. So, θ can be chosen to equal zero, i.e. factor risk premia have been
internalized in the stochastic structure.
The analytical solution of the partial integro-differential problem for a European plain
vanilla option can be expressed in terms of the moment generating functions or equiv-
alently of the characteristic functions associated to suitable “stock-adjusted” and
“money market-adjusted” probabilities.
In the case of more complex exotic options such as barrier options, closed-form solu-
tions are no longer available and we have to resort to numerical approximation. Monte
Carlo Methods are inherently inexact and affected by slow convergence. On the other
hand, using Finite Element Methods (FEM) or Finite Difference Methods (FD) en-
tails the need to define suitable final and boundary conditions based on analytic or
financial considerations. Often, these conditions hold only approximately or, if exact,
they have to be numerically approximated. This entails a tradeoff between accuracy
and computational cost by considering suitably large computational domains such
that possible errors occurring at the boundary do not affect the option value in the
region of interest. The issue of defining suitable boundary or far-field conditions for
a barrier option has been faced among others by [25], [31].
The BEM approach avoids these shortcomings of more traditional numerical ap-
proaches, as it poses the solution to the PDE (2.4) in an integral form that implicitly
satisfies the limiting boundary conditions as soon as we know its fundamental solution
G, namely the transition probability density function of the underlying asset x. Con-
sider a down-and-out call option i.e. an exotic option that is extinguished when the
price St = exp(xt) of the underlying asset goes down enough to breach an assigned
lower barrier L. Obviously, we have

(2.5) u(x, v, t) = 0 for x ∈ (−∞, L] , v ∈ Ωv = (0, +∞) , t ∈ [0, T ] .

Moreover, in this case g(x) = (ex − E)+ = max(ex − E, 0). The following integral
representation formula holds

Theorem 2.1. The undiscounted price u(x, v, t) = V (x, v, t)er(T−t) of a down-
and-out call option can be expressed for x ∈ Ωx = [log(L), +∞), v ∈ Ωv = (0,+∞),
t ∈ [0, T ] in the integral form

(2.6)

u(x, v, t) =
∫

Ωx

∫

Ωv

(ey − E)+G(y, w, T ; x, v, t)dwdy+

−
∫ T

t

∫

Ωv

w

2
G(log(L), w, s;x, v, t)

∂u

∂y
(log(L), w, s)dwds .

Proof. Details of the proof are contained in the Appendix A.

Note that we can obtain similar integral representation formulas also for options
with different single or double barriers (down/up, in/out) just resulting in different
boundary conditions for the PIDE1.
As far as the payoff function depends only on the stock value and not on the variance

1In the case of a plain vanilla option, i.e. assuming L = 0, taking into account the vanishing
boundary conditions for G on the boundary ∂Ω of the domain Ω = (−∞, +∞)×Ωv , we can represent
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level, after integration over Ωv, the fundamental solution needed in the first integral
of (2.6) can be recovered from the characteristic function (2.3) for the logarithmic
price only, by numerical Fourier inverse transform2 since

(2.7)
G̃(y, T ; x, v, t) :=

∫

Ωv

G(y, w, T ; x, v, t)dw =

= F−1[φT ](y, T ;x, v, t) =
1
2π

∫ +∞

−∞
φT (ω; x, v, t)e−iωydω.

Concerning (2.7), the main difference between Bates’ model and univariate models
such as Black and Scholes’ [21] is that in the former the transition density is not only
conditioned on the initial logarithmic stock price, but also on the initial variance.
For more complex payoffs, possibly depending on the variance level, as well as in the
second integral of (2.6), the required fundamental solution G corresponds to the joint
transition probability density function of log-returns and variance

(2.8) G(y, w, s; x, v, t) = p(y, w, s; x, v, t), for t < s.

To the best of our knowledge, no closed-form analytical espression is available for this
density in the Bates model and in the following we show how to derive it. Technical
details of the proofs are postponed to the Appendix.
Let us denote by p(xT , vT , T ;x0, v0, t0) the transition probability density from x0 and
v0 at t0 to xT and vT at T , namely the fundamental solution, where x0, v0, xT and vT

represent the logarithm of the initial stock price, the initial variance, the logarithm
of the stock price at maturity and the variance at maturity, respectively. In the two-
dimensional case, the transition density cannot be written in terms of the changes in
the logarithmic stock price and the variance because the Eq.(2.4) has not constant
coefficient with respect to the variance, i.e. the identity p(xT , vT , T ;x0, v0, t0) =
p(xT − x0, vT − v0, T − t0), does not hold in general. Nevertheless, it can be written
in terms of zx := xT − x0, T − t0 and vT , given the initial values at t0. In particular,
we have

Lemma 2.2. The transition density of the variance vT conditioned on v0 in the
CIR model is

pv(vT , T − t0|v0) = ce−b−q
(q

b

) a−1
2

Ia−1(2
√

bq),

where c = 2λ/((1 − e−λ(T−t0))η2), b = cv0e
−λ(T−t0), q = cvT , a = 2λv̄/η2 and Ia(q)

is the modified Bessel function of the first kind.

the price as

u(x, v, t) =

∫

Ωx

∫

Ωv

(ey − E)+G(y, w, T ; x, v, t)dwdy,

implying that the integral representation formula we are introducing reduces to the traditional
Green’s function approach.

2We define the Fourier transform of a function f(x) as

f̂(ω) := F[f ](ω) =

∫ ∞

−∞
f(x)eiωxdx

and the Fourier inverse transform as

f(x) := F−1[f̂ ](x) =
1

2π

∫ ∞

−∞
f̂(ω)e−iωxdω .
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Proof. See [17].

Moreover, we can prove the following

Theorem 2.3. The transition density for Bates model can be computed as

(2.9) p(xT , vT , T ; x0, v0, t0) = pv(vT , T − t0|v0)p(zx, T − t0|vT , v0),

The transition density function p(zx, T − t0|vT , v0) of the logarithm of the stock price
given v0 and given vT is known through its Fourier transform w.r.t. the variable zx

(2.10)
p̂(ω; v0, vT , T − t0) = exp

{
iω(r − δ − k̄ξ)(T − t0) + ρ

η (vT − v0 − λv̄(T − t0))
}
×

Φ
(
ω

(
λρ
η − 1

2

)
+ ω2

2 i(1− ρ2)
)

exp{(T − t0)ξ(e−σ2
j ω2/2+iµjω − 1)},

where Φ(a) is the characteristic function of the integrated variance
∫ T

t0
v(s)ds given

v0 and vT .

Proof. See the Appendix B.

In particular, the following result holds

Proposition 2.4. For a ∈ C,

(2.11)

Φ(a) =
γ(a)e−

1
2 (γ(a)−λ)(T−t0)(1− e−λ(T−t0))

λ(1− e−γ(a)(T−t0))

× exp
{

v0 + vT

η2

[
λ(1 + e−λ(T−t0))
(1− e−λ(T−t0))

− γ(a)(1 + e−γ(a)(T−t0))
(1− e−γ(a)(T−t0))

]}

×
I 1

2 d−1

(√
v0vT

4γ(a)e−
1
2 γ(a)(T−t0)

η2(1−e−γ(a)(T−t0))

)

I 1
2 d−1

(√
v0vT

4λe−
1
2 λ(T−t0)

η2(1−e−λ(T−t0))

) ,

where γ(a) =
√

λ2 − 2η2ia and d = 4v̄λ/η2.

Proof. See [9].

In conclusion, the transition density for Bates model can be obtained following Eq.(2.9)
with the transition density function p(zx, T − t0|vT , v0) resulting from the discrete
Fourier inverse transform w.r.t. ω of (2.10) and pv(vT , T − t0|v0) given by Lemma 2.2.

Computing greeks. An important application of our integral representation for-
mula (2.6) is the possibility of deriving closed-form expressions for the so called greeks,
that are so important for hedging. In particular, the derivation of delta and gamma
(respectively the first and second derivative of the option price with respect to the
underlying asset price S) is straightforward. Other greeks, such as vega, can be
more complicated. Nevertheless, in those cases one can easily resort to numerical
differentiation by computing difference quotients from perturbed variable or param-
eter values. By way of example, we compute the analytical formula for the delta,
that can be easily reiterated to compute the gamma as well. By the chain rule, we

have ∆(S, v, t) =
∂V

∂S
(S, v, t) =

1
S

∂u

∂x
(x, v, t)e−r(T−t). From (2.6), Leibniz’s rule for
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differentiation under the integral sign gives

(2.12)

∂u

∂x
(x, v, t) =

∫

Ωx

∫

Ωv

(ey − E)+
∂G

∂x
(y, w, T ; x, v, t)dwdy+

−
∫ T

t

∫

Ωv

w

2
∂G

∂x
(log(L), w, s; x, v, t)

∂u

∂y
(log(L), w, s)dwds.

Moreover,

∂G

∂x
(y, w, T ; x, v, t) = pv(w, T − t|v)

∂p

∂x
(y − x, T − t|w, v)

and

∂p

∂x
(y − x, T − t|w, v) =

1
2π

∫ +∞

−∞
p̂(ω; v, w, T − t)iωe−iω(y−x)dω.

Details on the computation of delta are discussed at the end of Section 4.

3. BEM numerical approximation. The Integral Representation formula (2.6)
can be considered as a closed-form solution for barrier option pricing. However, the
solution u(x, v, t) is defined as a function of ∂u/∂y itself and, moreover, the Green
function G is not available in explicit form and integration cannot be performed in
exact form. Therefore, we have to resort to numerical approximation, through the
so-called Boundary Element Method [11].
Consider the Integral Representation formula (2.6) and let x → log(L). Taking into
account the vanishing condition (2.5) on the option price at the log-barrier log(L), we
obtain the Boundary Integral Equation (BIE)

(3.1)

0 = u(log(L), v, t) :=
∫ +∞

log(L)

∫

Ωv

max(ey − E, 0)G(y, w, T ; log(L), v, t)dw dy+

−
∫ T

t

∫

Ωv

w

2
G(log(L), w, τ ; log(L), v, t)

∂u

∂y
(log(L), w, τ)dw dτ

whose sole unknown is the function ∂u
∂y (log(L), w, τ). Once solved numerically and ob-

tained ∂u
∂y (log(L), w, τ), we can reconsider equation (2.6) to get the solution u wherever

in the domain Ωx × Ωv at any instant in [0, T ].
We introduce a uniform decomposition 0 ≡ t0 < t1 < . . . < tN∆t ≡ T of the

time interval [0, T ] with time step ∆t = T/N∆t, N∆t ∈ Z+ and we choose temporally
piecewise constant shape functions ϕk(t) := H[t − tk−1] −H[t − tk], k = 1, . . . , N∆t,
where H[·] denotes the Heaviside step function3, for the approximation in time of the
unknown ∂V

∂y (log(L), w, τ) in Eq.(3.1).
Figs. 1-3 show the fundamental solution obtained computing (2.9) by numerical
inverse Fourier transform. As expected, we observe that: the fundamental solution
rapidly goes to 0 along w-axis when w → +∞, it takes the form of a bell-shaped

3We define the Heaviside step function as:

H[t− tk] =

{
1 if t > tk
0 if t ≤ tk

.
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distribution with mean v when τ increases along the τ -axis and it tends to a numerical
Dirac Delta distribution centered in v when τ → t = 0.

Fig. 1: Fundamental solution behavior with parameters of Example 2, varying the
distance of y from the log-barrier log(L), when v = 0.01 is lower than v̄ = 0.04.

Fig. 2: Fundamental solution behavior with parameter of Example 1, varying the
distance of y from the log-barrier log(L), when v is equal to v̄ = 0.04.

Fig. 3: Fundamental solution behavior with parameter of Example 1, varying the
distance of y from the log-barrier log(L), when v = 0.08 is higher than v̄ = 0.04.

Moreover we know that as volatility approaches infinity, the price approaches a
steady state ([22]). So, we can infer that there exists a value vMAX such that integrals
with kernel G involved in our discretization algorithm over interval [vMAX,+∞] are
negligible (in our numerical examples we set vMAX = 2 ∗ max(v, v)); then we can
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introduce a uniform decomposition of the truncated variance domain [0, vMAX] in
N∆v ∈ Z+ variance intervals of length ∆v := vMAX/N∆v and we can choose piecewise
constant shape functions ψh(t) := H[v − vh−1] − H[v − vh], h = 1, . . . , N∆v for the
approximation in variance of the unknown function

(3.2)
∂V

∂y
(log(L), w, τ) ≈ q(w, τ) :=

N∆v∑

h=1

N∆t∑

k=1

α
(k)
h ψh(w)ϕk(τ) .

Alternatively, we could resort to an infinite element approach as in [31], thus avoiding
any domain truncation. After substituting q(w, τ), we evaluate equation (3.1) in the
collocation points (vi, tj) choosing, as usual when considering piecewise constant trial
functions, barycenters of intervals [vi−1, vi]× [tj−1, tj ]

vi =
vi + vi−1

2
, i = 1, . . . , N∆v tj =

tj + tj−1

2
, j = 1, . . . , N∆t

and so obtaining a linear system whose unknowns are the coefficients of (3.2) collected
in the vector α =

(
α(k)

∣∣
k=1,...,N∆t

)
=

(
(α(k)

h |h=1,...,N∆v
)
∣∣
k=1,...,N∆t

)

(3.3) Aα = F

with

(3.4) A(jk)
ih =

∫ T

tj

∫

Ωv

w

2
G(log(L), w, τ ; log(L), vi, tj)ψh(w)ϕk(τ)dw dτ

and

(3.5)

F (j)
i =

∫ +∞

log(L)

∫

Ωv

max(ey − E, 0)G(y, w, T ; log(L), vi, tj)dw dy =

=
∫ +∞

log(L)

max(ey − E, 0)G̃(y, T ; log(L), vi, tj)dy,

with G̃ defined as in (2.7).
Note that, in system (3.3), A is a block-upper triangular Toeplitz matrix of dimension
N∆t and its blocks have dimension N∆v ×N∆v

(3.6)




A(0) A(1) A(2) · · · A(N∆t−1)

0 A(0) A(1) · · · A(N∆t−2)

0 0 A(0) . . .
...

...
...

. . . . . . A(1)

0 0 · · · 0 A(0)







α(1)

α(2)

α(3)

...
α(N∆t)




=




F (1)

F (2)

F (3)

...
F (N∆t)




as its elements depend on the difference k− j = `, ` = 0, . . . , N∆t−1 and they reduce
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to
(3.7)
A(jk)

ih =

=
∫ tk

max(tj ,tk−1)

H[tk −max(tj , tk−1)]
∫ vh

vh−1

w

2
G(log(L), w, τ ; log(L), vi, tj)dw dτ =

=
∫ tk

max(tj ,tk−1)

H[tk −max(tj , tk−1)]
∫ vh

vh−1

w

2
pv(w, τ − tj |vi)p(0, τ − tj |w, vi)dw dτ =

=
∫ tk

max(tj ,tk−1)

H[tk −max(tj , tk−1)]
∫ vh

vh−1

w

4π
pv(w, τ − tj |vi)

∫ +∞

−∞
p̂(ω; vi, w, τ − tj)dωdwdτ =

=
∫ 1

1
2− 1

2 H[`]

∫ vh

vh−1

∆t

4π
w pv(w, ∆t(`− 1

2
+ s)|vi)

∫ +∞

−∞
p̂(ω; vi, w, ∆t(`− 1

2
+ s))dωdwds =

=: A(`)
ih

as, with the change of variable τ = ∆t(k + s− 1), we get τ − tj = ∆t(k− j− 1
2 + s) =

∆t(`− 1
2 + s).

For the numerical evaluation of (3.7) at last line we use:
- the adaptive quadrature rule of the Matlab function Iquadgk with an absolute toler-

ance 10−6 for the inner numerical Fourier inverse transform in ω evaluated at
0. We decide not to use the Fast Fourier Transform, despite its efficiency, in
order to easily manage the accuracy and because we do not need to compute
the inverse transform at a set of values but only at y−x = log(L)−log(L) = 0;

- the Gauss-Legendre quadrature rule for the integral in w over variance domain
[vh−1, vh]. In order to save computation time and to keep accuracy, at each
time τ , we use a different number of nodes (never higher than 64) depending of
the fact that the integrand function may be peaked into the interval [vh−1, vh]
as suggested by Figs. 1-3;

- the Gauss-Legendre quadrature rule with 16 nodes for the outer integral in s over the
time interval. To preserve accuracy, when we need to integrate the numerical
Dirac Delta distribution (it happens when ` = 0 and vi ∈ [vh−1, vh]), we have
to concentrate the gaussian nodes towards the lower bound 1

2 − 1
2H[`] = 1

2
using for example the transformation for mild singularity suggested in [26]4.

Considering the evaluation of the rhs entries in (3.5), note that, from the numerical
point of view, it is convenient to avoid the integration over the unbounded domain

4Consider the following integral

I =

∫ b

a
f(x)dx =

∫ 1

0
f
(
(b− a)s + a

)
(b− a)ds

and then the transformation ϕ : [0, 1] → [0, 1] s.t. its derivatives ϕ(i)(0) = ϕ(j)(1) = 0 for i =
1 . . . p− 1 and j = 1 . . . q − 1:

ϕ(t) =
(p + q − 1)!

(p− 1)!(q − 1)!

∫ t

0
up−1(1− u)q−1du .

We apply the Gauss-Legendre quadrature rule to the integral

I =

∫ 1

0
f
(
(b− a)ϕ(t) + a

)
(b− a)ϕ′(t)dt ,

it turns out that nodes move to the lower bound a if p increases and they move to the upper bound
b if q increases.
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(log(L), +∞) and it is preferable to exploit the analytical solution of the plain vanilla
European Call option problem in this way
(3.8)

F (j)
i =

∫ +∞

log(L)

max(ey − E, 0)G̃(y, T ; log(L), vi, tj)dy

=
∫ +∞

−∞
max(ey − E, 0)G̃(y, T ; log(L), vi, tj)dy +

−
∫ log(L)

−∞
max(ey − E, 0)G̃(y, T ; log(L), vi, tj)dy

=
∫ +∞

−∞
max(ey − E, 0)G̃(y, T ; log(L), vi, tj)dy +

−
∫ log(L)

log(E)

H[L− E](ey −E)G̃(y, T ; log(L), vi, tj)dy

= EC(log(L), vi, tj)−
∫ log(L)

log(E)

H[L− E](ey − E)G̃(y, T ; log(L), vi, tj)dy .

The first integral represents the solution (multiplied by er(T−t)) of an European Call
option (EC) without barrier, that is the solution of Eq. (2.4) with the usual payoff
condition V (x, v, T ) = max(ex − E, 0) and it can be analytically written as in [5]. It
can be numerically computed, for example, as suggested in [10], but in this context
we need it evaluated only at x = log(L), v = vi, t = tj so that it is convenient to
simply compute the analytical solution written in [5] with standard quadrature rules:
(3.9)

EC(x, v, t) = er(T−t)(e−δ(T−t)exP1(x, v, t)− Eer(T−t)P2(x, v, t)
)

with

Pi(x, v, t) =
1

2
+

1

π

∫ +∞

0

Re

(
e−iz log(E)

iz
eCi(t,z)+Di(t,z)v+izx+Jump

)
dz i = 1, 2

Ci(t, z) = (r − δ)zi(T − t) +
λv

η2

{
(λ + (i− 2)ρη − ρηzi + fi)(T − t)− 2 log

[
1− gie

fi(T−t)

1− gi

]}

Di(t, z) =
λ + (i− 2)ρη − ρηzi + fi

η2

[
1− efi(T−t)

1− giefi(T−t)

]

gi =
λ + (i− 2)ρη − ρηzi + fi

λ + (i− 2)ρη − ρηzi− fi

fi =
√

(ρηzi− λ− (i− 2)ρη)2 − η2 (zi(−1)i+1 − z2)

Jump = −iξkz(T − t) + ξ(1 + k)2−i(T − t)
[
(1 + k)ize((−1)i−1+iz)izσ2

j /2 − 1
]

.

The improper integral in the Pi expression is easy to compute numerically because
the integrand function is smooth and it decays rapidly, therefore also in this case we
used the Matlab function quadgk that implements an adaptive quadrature rule over
an infinite interval.
The second integral in (3.8) is computed by a Gaussian quadrature rules with 32
nodes.
Once all the elements of linear system (3.6) have been evaluated, due to the partic-
ular structure (3.6) of matrix A, the approximate solution q(w, τ) of the BIE (3.1),
expressed by the vector of coefficients α in (3.2), can be obtained by block-backward
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substitution: the only matrix to be inverted is the diagonal block A(0), the others
update at every time step the right-hand side.
Then, one more step is necessary in order to get the undiscounted price of barrier
option u(x, v, t) in Ωx ×Ωv for t ∈ [0, T ): we have to post-process α introducing it in
Eq.(2.6) 5

(3.10)

u(x, v, t) :=
∫ +∞

log(L)

max(ey − E, 0)G̃(y, T ;x, v, t)dy+

−
N∆v∑

h=1

N∆t∑

k=floor[ t
∆t ]+1

α
(k)
h

∫ tk

max(t,tk−1)

∫ vh

vh−1

w

2
G(log(L), w, τ ;x, v, t)dw dτ .

The first term on the right-hand side of (3.10) can be manipulated as the elements
F

(j)
i (look at (3.5) and (3.8))

(3.11)∫ +∞

log(L)

max(ey − E, 0)G̃(y, T ; x, v, t)dy = EC(x, v, t)−
∫ log(L)

log(E)

(ey − E)G̃(y, T ; x, v, t)dy .

As usually we are interested in the option value at the time of evaluation u(x, v, 0),
the second term on the right-hand side of (3.10) is
(3.12)

−
N∆v∑

h=1

N∆t∑

k=1

α
(k)
h

∫ tk

tk−1

∫ vh

vh−1

w

2
G(log(L), w, τ ;x, v, 0)dw dτ =

= −
N∆v∑

h=1

N∆t∑

k=1

α
(k)
h

∫ tk

tk−1

∫ vh

vh−1

w

2
pv(w, τ |v)p(log(L)− x, τ |w, v)dw dτ =

= −
N∆v∑

h=1

N∆t∑

k=1

α
(k)
h

∫ tk

tk−1

∫ vh

vh−1

w

4π
pv(w, τ |v)

∫ +∞

−∞
p̂(ω; v, w, τ)e−iω(log(L)−x)dωdw dτ =

= −
N∆v∑

h=1

N∆t∑

k=1

α
(k)
h

∫ 1

0

∫ vh

vh−1

∆t

4π
w pv(w, ∆t(k − 1 + s)|v)·

·
∫ +∞

−∞

p̂(ω; v, w, ∆t(k − 1 + s))
eiω(log(L)−x)

dωdw ds

and it can be computed as done with the linear system entries.
Finally to get the price of the contingent claim we applied the relation V (S, v, 0) =
u(x, v, 0)e−rT .
The above described techniques for the computation of both linear system entries
and postprocessing are only a possible way to implement our BEM procedure. They
have been performed in order to reach a precision of, at least, 10−5 w.r.t. the values
obtained through the Matlab functions dblquad and triplequad, but significantly
reducing computational time. However, we think that computation times could be
lowered, though preserving accuracy.

5floor[·]:=function that rounds its argument to the nearest integers towards minus infinity.
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4. Numerical results. We show the performance of the proposed method by
means of two examples: the first in the Heston framework and the second under the
more general Bates model. A theoretical analysis of the convergence of the numerical
method developed in Section 3 appears to be a difficult task, due to the different
kinds of approximations involved (the BEM integral formulation, the Fourier inverse
transform, the numerical approximation of the integrals). Hence the accuracy of the
method proposed is tested by numerical simulation.
In order to show the efficiency of our semi closed-form pricing formula with respect to
other approximation methods, we implement a Monte Carlo (MC) simulation. The
implementation of MC method is complicated by two aspects: first, the barrier option
is path-dependent; second, the underlying process may perform jumps. This makes
more difficult to compute functionals like inft≤T St, which depend on the entire tra-
jectory and not only on its values at discrete times. To overcome this problem, one
can exploit the independence of the continuous and jump parts. Therefore, in the
intervals between jumps the process is continuous and increments of the diffusion can
be approximated with an Euler scheme. Moreover, the diffusion law on sufficiently
small intervals, conditionally on the values at its ends, may be approximated by a
Brownian bridge and the probability that a trajectory does not breach the barrier
between jumps can be computed as in [20] (p. 368). These probabilities can be used
to weight the final payoff at maturity. This approach is known as conditional Monte
Carlo and may reduce the bias and variance of a naive approach.
All the numerical simulations have been performed using a laptop computer (CPU
Intel i5, 4Gb RAM).

Example I: European down-and-out call option in the Heston framework.
In this example we used the parameter values that are suggested in [25] but setting
ξ = µj = σj = 0 and so naturally reducing to Heston framework:

(4.1)

Heston parameters

speed of mean reversion λ = 4 ;
long run mean level of variance v = 0.04 ;

correlation ρ = −0.5 ;
volatility of volatility η = 0.1 ;
free risk interest rate r = 0.05 ;

dividend yield δ = 0.02 ;
strike price E = 100 ;

down barrier value L = 110 ;

Jumps parameters

intensity ξ = 0 ;
jumps expectation µj = 0 ;

jumps variance σj = 0 ;

Evaluation Point

current time t = 0 ;
current variance v = 0.01 ;

current price S .

The expiry of the option is at T = 1. Therefore, the chosen domain of definition of the
pricing problem is the time interval [0, T ] = [0, 1], the variance interval [0, vMAX] ≈ Ωv

with vMAX = 0.08 and the price interval ΩS = (L,+∞).
Firstly, we investigate stability and convergence of BEM numerical approximation
varying discretization parameters in time N∆t and in variance N∆v: to do this, we
evaluate the option price V (S, v, t) at t = 0 near the down barrier value at S = 115 and
far from it at S = 150. Looking at Tables 1-2, we can observe the gradual stabiliza-
tion of option prices separately and jointly refining both in time and in variance space.
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S =115 N∆v =3 N∆v =6 N∆v =9 N∆v =12 N∆v =15
N∆t =3 8.3170E+00 8.3167E+00 8.3127E+00 8.3113E+00 8.3107E+00
N∆t =6 8.3356E+00 8.3244E+00 8.3212E+00 8.3200E+00 8.3195E+00
N∆t =9 8.3354E+00 8.3259E+00 8.3227E+00 8.3215E+00 8.3210E+00
N∆t =12 8.3353E+00 8.3265E+00 8.3232E+00 8.3220E+00 8.3215E+00
N∆t =15 8.3356E+00 8.3267E+00 8.3235E+00 8.3223E+00 8.3218E+00

Table 1: Table of option values V(115,0.01,0) as a function of the discretization pa-
rameters.

S =150 N∆v =3 N∆v =6 N∆v =9 N∆v =12 N∆v =15
N∆t =3 5.1022E+01 5.1032E+01 5.1033E+01 5.1033E+01 5.1033E+01
N∆t =6 5.1015E+01 5.1025E+01 5.1026E+01 5.1026E+01 5.1026E+01
N∆t =9 5.1013E+01 5.1023E+01 5.1024E+01 5.1024E+01 5.1024E+01
N∆t =12 5.1012E+01 5.1022E+01 5.1023E+01 5.1023E+01 5.1023E+01
N∆t =15 5.1012E+01 5.1022E+01 5.1022E+01 5.1023E+01 5.1023E+01

Table 2: Table of option values V(150,0.01,0) as a function of the discretization pa-
rameters.

To simplify the comprehension of the two tables, Figure 4 shows a graphical
evidence of the reduction of the relative error for increasing N∆t and N∆v. The
numerical solution with the finest discretization is used as the benchmark solution.
The left panels refer to the case S = 115 and show the behavior of the error of the
prices contained in the columns of Table 1 as a function of N∆t (at the top) and
of the error of the prices contained in the rows of Table 1 as a function of N∆v (at
the bottom). Columns and rows from 1 to 5 are denoted by different colors with
the following order: blue, green, red, light blue, magenta. The right panels refer to
the case S = 150 and show the behavior of the error of the prices contained in the
columns and rows of Table 2 using the same layout. All the graphs show very similar
behaviors. It is evident that fixing either N∆t = 3, 6, 9 or N∆v = 3, 6, 9 (blue, green
and red lines), while giving sensible results, hinders the convergence. On the contrary,
fixing larger values of one of the discretization parameters, say N∆t = 12, 15 allows
for very fast convergence for increasing N∆v (light blue and magenta lines). The same
happens when we exchange roles of N∆t and N∆v.
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Fig. 4: Heston model. Relative pricing errors for increasing N∆t and N∆v.

The convergence rate of BEM appears to be very fast in both time and variance.
The rate of decay of the error benefits from the high order of regularity of the solution
in the interior of the integration domain and we can observe that the error decays
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exponentially with respect to both N∆t and N∆v. Exponential decay of the error
can be pointed out by plotting errors on a semilogarithmic scale, since the logarithm
of the error should be approximately linear. Figure 5 shows the reduction of the
absolute errors on a semilogarithmic scale for increasing N∆t and N∆v. As expected,
the spectral convergence is clearly achieved both at N∆t = 15 w.r.t. the variance
dimension and at N∆v = 15 in time dimension, as denoted by the approximately
linear dependence of the magenta lines. The circles correspond to the errors on the
diagonal of Tables 1 and 2, i.e. when N∆t and N∆v are increased simultaneously.
Also along the diagonals the convergence can be considered exponential.
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Fig. 5: Heston model. Absolute pricing errors for increasing N∆t and N∆v on a base
10 logarithmic scale for the y-axis and a linear scale for the x-axis.

Moreover, we checked also if the number of Gauss quadrature nodes and if the
truncation value vMAX of the variance domain have been correctly chosen. Therefore,
we have repeated simulations doubling the number of quadrature nodes (Table 3) and
increasing the value vMAX (Table 4). Table 3 shows the absolute errors achieved w.r.t.
the values in Tables 1-2. We note that the improvement in results is not significant
in terms of the target accuracy.

N∆t = N∆v 3 6 9 12 15
S =115 2.9E-05 1.6E-06 2.4E-07 5.3E-08 2.0E-07
S =150 8.5E-11 2.3E-09 4.9E-09 9.7E-08 5.2E-08

Table 3: Difference between option values in Tables 1-2 and option values obtained
with same discretization parameters but doubling the number of Gauss quadrature
nodes.

The same happens if we enlarge the variance interval increasing vMAX as in Table
4.

N∆t 3 6 9 12 15
S =115 1.4E-06 1.7E-07 2.8E-07 3.2E-07 3.3E-07
S =150 1.2E-06 4.0E-06 5.0E-06 5.1E-06 5.1E-06

Table 4: Difference between option values in Tables 1-2 and option values obtained
with same discretization parameters but enlarging the variance space, i.e. setting
vMAX = 4

3 0.08 (accordingly N∆v = 4
3N∆t).



BARRIER OPTION PRICING UNDER BATES MODEL 17

From the point of view of time employed in computation, in Table 5 we can see,
on the left, computation times for S = 115 and, on the right, those for S = 150. The
difference is not due to the fact that we are “near” or “far” from the barrier, but to
the fact that the left panel shows the time for both pre and post-processing while the
right panel shows only post-processing time. This represents an operative advantage
of BEM: if we need to compute the option price for a new asset value (in this case for
S = 150) we do not need to repeat the whole procedure but we can implement only
the post-processing in Eq. 3.10 with a great computational saving.

BEM, S = 115
pre and post-processing

N∆t = N∆v times
3 1.5E+02 s.
6 7.5E+02 s.
9 3.4E+03 s.
12 3.7E+03 s.
15 6.2E+03 s.

BEM, S = 150
post-processing

N∆t = N∆v times
3 3.8E+01 s.
6 1.4E+02 s.
9 3.1E+02 s.
12 3.9E+02 s.
15 6.1E+02 s.

Table 5: Computation times of BEM method.

When comparing with MC method, the BEM method seems to be more reliable
from the point of view of accuracy and also more efficient. In Tables 6-9, N repre-
sents the number of random samples and M the number of time steps in Euler time
discretization in MC.

S=115
M N = 104 95% conf. int. N = 106 95% conf. int. N = 108 95% conf. int.
100 8.3410E+00 [8.01,8.67] 8.3198E+00 [8.29,8.35] 8.3353E+00 [8.33,8.34]
200 8.1367E+00 [7.81,8.47] 8.3356E+00 [8.30,8.37] 8.3291E+00 [8.33,8.33]
400 8.2543E+00 [7.92,8.59] 8.3295E+00 [8.30,8.36] 8.3254E+00 [8.32,8.33]
800 8.3002E+00 [7.96,8.64] 8.3256E+00 [8.29,8.36] 8.3261E+00 [8.32,8.33]

1600 8.1777E+00 [7.85,8.51] 8.3229E+00 [8.29,8.36] 8.3231E+00 [8.32,8.33]

Table 6: Option value approximations of V (115, 0.01, 0) and 95% confidence intervals
obtained using Monte Carlo method, with respect to the number of samples N and
the number of time steps M .

Monte Carlo, S = 115
M N = 104 N = 106 N = 108

100 4.8E-01 s. 4.4E+01 s. 4.5E+03 s.
200 7.6E-01 s. 6.5E+01 s. 5.1E+03 s.
400 1.2E+00 s. 1.1E+02 s. 1.7E+04 s.
800 2.0E+00 s. 1.9E+02 s. 2.1E+04 s.

1600 3.6E+00 s. 3.5E+02 s. 4.2E+04 s.

Table 7: Computation times of Monte Carlo method for S = 115.

S=150
M N = 104 95% conf. int. N = 106 95% conf. int. N = 108 95% conf. int.
100 5.1282E+01 [50.74,51.82] 5.1016E+01 [50.96,51.07] 5.1030E+01 [51.02,51.04]
200 5.1069E+01 [50.53,51.61] 5.1031E+01 [50.98,51.09] 5.1028E+01 [51.02,51.03]
400 5.1228E+01 [50.68,51.77] 5.1043E+01 [50.99,51.10] 5.1026E+01 [51.02,51.03]
800 5.1274E+01 [50.73,51.82] 5.1049E+01 [50.99,51.10] 5.1027E+01 [51.02,51.03]

1600 5.1357E+01 [50.82,51.90] 5.1052E+01 [51.00,51.11] 5.1029E+01 [51.02,51.03]

Table 8: Option value approximations of V (150, 0.01, 0) and 95% confidence intervals
obtained using Monte Carlo method, with respect to the number of samples N and
the number of time steps M .
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Monte Carlo, S = 150
M N = 104 N = 106 N = 108

100 6.4E-01 s. 6.4E+01 s. 6.3E+03 s.
200 9.8E-01 s. 9.6E+01 s. 9.3E+03 s.
400 1.6E+00 s. 1.6E+02 s. 1.6E+04 s.
800 2.9E+00 s. 2.9E+02 s. 2.9E+04 s.

1600 5.5E+00 s. 5.4E+02 s. 5.2E+04 s.

Table 9: Computation times of Monte Carlo Method for S = 150.

Due to the fact that Monte Carlo method has rate of convergence of order
√

N , as
expected, multiplying by 100 the number of samples, you can see in Tables 6 and 8 that
we get about one more digit of accuracy in option price; however, the computational
times become 100 times larger as shown in Tables 7 and 9. In relation to the number
M of time steps of discretization, we cannot appreciate any sensible improvement in
convergence. This may be due to the computation of the conditional expectation,
that reduces the bias due to the time discretization. Moreover, we note that far from
the barrier, i.e. at S = 150, the MC computational time seems to be slightly higher
because the underlying asset rarely hits the barrier and we must therefore compute
every survival probability for M steps, thus requiring greater computational effort per
path.
Making the comparison, with N = 108 and a computation time of about 103 seconds,
with MC method we are not able to reach an accuracy on the option price of order
10−2, both at S = 115 and at S = 150. On the contrary, this level of accuracy can
be easily reached with BEM. In particular, BEM seems to be even more accurate
at S = 150, because “far” from the barrier, integrals are easily better evaluated. If
we can settle of a smaller accuracy, say of order 10−1, MC method appears to be
more efficient: about 10−1 seconds of computation time with respect to 102 seconds
for BEM in the best case, but we have to note that computation time in BEM can
be reduced setting a lower accuracy threshold and a smaller number of nodes in the
numerical evaluation of integrals.

Finally, since with BEM it is fast to make an evaluation of the option price as a
function of the asset values, we can easily work out plots of the option price and, for
instance, compare in Fig. 6 its behavior with the behavior of a call option without
barrier: we observe that moving far from the barrier the two values tend to overlap,
as expected.
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Fig. 6: In the Heston framework, value of a down-and-out call option compared with
the value of a call option without barrier.
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Example II: European down-and-out call option in the Bates framework.
Consider the same parameters of Example I but introducing jumps:

(4.2)

Heston parameters

speed of mean reversion λ = 4 ;
long run mean level of variance v = 0.04 ;

correlation ρ = −0.5 ;
volatility of volatility η = 0.1 ;
free risk interest rate r = 0.05 ;

dividend yield δ = 0.02 ;
strike price E = 100 ;

down barrier value L = 110 ;

Jumps parameters

intensity ξ = 4 ;
jumps expectation µj = −0.04 ;

jumps variance σj = 0.06 ;

Evaluation Point

current time t = 0 ;
current variance v = 0.01 ;

current price S .

we can repeat the analysis above. The chosen domain of definition of the pricing
problem is therefore the time interval [0, T ] = [0, 1], the variance interval [0, vMAX] ≈
Ωv with vMAX = 0.08 and the price interval ΩS = (L, +∞). In Tables 10 and 11 we
list the results of our simulations, i.e. the option price at t = 0, v = 0.01 and S = 115
or S = 150, alternatively.

S =115 N∆v =3 N∆v =6 N∆v =9 N∆v =12 N∆v =15
N∆t =3 9.6050E+00 9.6156E+00 9.6022E+00 9.5975E+00 9.5956E+00
N∆t =6 9.6107E+00 9.6184E+00 9.6050E+00 9.6004E+00 9.5985E+00
N∆t =9 9.6113E+00 9.6191E+00 9.6057E+00 9.6010E+00 9.5992E+00
N∆t =12 9.6113E+00 9.6193E+00 9.6059E+00 9.6013E+00 9.5994E+00
N∆t =15 9.6114E+00 9.6194E+00 9.6060E+00 9.6013E+00 9.5995E+00

Table 10: Table of option values V(115,0.01,0) as a function of the discretization
parameters.

S =150 N∆v =3 N∆v =6 N∆v =9 N∆v =12 N∆v =15
N∆t =3 5.0241E+01 5.0248E+01 5.0249E+01 5.0249E+01 5.0249E+01
N∆t =6 5.0234E+01 5.0241E+01 5.0242E+01 5.0242E+01 5.0242E+01
N∆t =9 5.0232E+01 5.0239E+01 5.0240E+01 5.0240E+01 5.0240E+01
N∆t =12 5.0231E+01 5.0238E+01 5.0239E+01 5.0239E+01 5.0239E+01
N∆t =15 5.0231E+01 5.0238E+01 5.0239E+01 5.0239E+01 5.0239E+01

Table 11: Table of option values V(150,0.01,0) as a function of the discretization
parameters.

Again, to simplify the comprehension of the two tables, Figure 7 shows a graphical
evidence of the reduction of the relative pricing errors for increasing N∆t and N∆v,
using the same layout of Figure 4. The comments are similar to the Heston case
and convergence follows similar patterns as in Figure 4, with exponential rate only at
N∆t = 12, 15 and N∆v = 12, 15.
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Fig. 7: Bates model. Relative pricing errors for increasing N∆t and N∆v.

Figure 8 shows the reduction of the absolute errors on a semilogarithmic scale for
increasing N∆t and N∆v. Again, the spectral convergence is achieved at N∆t = 15
and N∆v = 15 respectively in space and time and on the diagonal of tables 10 and
11, i.e. when N∆t and N∆v are increased simultaneously.
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Fig. 8: Bates model. Absolute pricing errors for increasing N∆t and N∆v on a base
10 logarithmic scale for the y-axis and a linear scale for the x-axis.

The presence of jumps can be easily included in BEM technique and, looking at
Tables 10, 11, it is clear that it influences the option values but not the stability and
convergence of the method and not even the computational times, as evident in Table
12.

BEM, S = 115
pre and post-processing

N∆t = N∆v times
3 1.7E+02 s.
6 7.5E+02 s.
9 1.8E+03 s.
12 3.8E+03 s.
15 6.4E+03 s.

BEM, S = 150
post-processing

N∆t = N∆v times
3 4.4E+01 s.
6 1.5E+02 s.
9 2.6E+02 s.
12 4.6E+02 s.
15 6.6E+02 s.

Table 12: Computation times of BEM method.
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This is not the case for MC method: in Table 13, we can observe that, multiplying
by 102 the number of samples N , the improvement is lower than one digit of accuracy.
Moreover, while in the Heston framework the discretization in time had not great
impact, in Bates context it appears to be so significant as to introduce a bias: 95%
confidence intervals in Table 13 are in some cases disjoint.
Computational memory and time request in Bates context is hundred times larger
than in Heston framework (look at Tables 14, 16) so we are not able to increase
discretization parameters M and N as we would need in order to achieve the desired
accuracy. As a result, MC method would require very large values of M and N
and hence much time to reach the same accuracy level of BEM. For example, for
V (150, 0.01, 0) the computation time required by BEM to get three significant digits
correct is around 4.4E+01 s, while with MC it takes approximately 6.4E+03 s to
get to the same level of accuracy. For N = 108 and M = 400 the performed Monte
Carlo method is computationally too demanding: because of its computation memory
request, it crashes during the simulation without reaching the end.

S=115
M N = 104 95% conf. int. N = 106 95% conf. int. N = 108 95% conf. int.
100 9.4071E+00 [9.02,9.80] 9.6192E+00 [9.58,9.66] 9.6140E+00 [9.61,9.62]
200 9.4035E+00 [9.01,9.80] 9.5903E+00 [9.55,9.63] 9.5735E+00 [9.57,9.58]
400 9.7290E+00 [9.33,10.13] 9.5465E+00 [9.51,9.59] / /

Table 13: Option value approximations of V (115, 0.01, 0) and 95% confidence intervals
obtained using Monte Carlo method, as a function of the number of samples N and
the number of time steps M .

Monte Carlo, S = 115
M N = 104 N = 106 N = 108

100 2.4E+01 s. 2.3E+03 s. 3.1E+05 s.
200 4.8E+01 s. 4.6E+03 s. 6.1E+05 s.
400 9.6E+01 s. 9.2E+03 s. /

Table 14: Computation times of Monte Carlo method for S = 115.

S=150
M N = 104 95% conf. int. N = 106 95% conf. int. N = 108 95% conf. int.
100 5.0191E+01 [49.51,50.87] 5.0228E+01 [50.16,50.30] 5.0238E+01 [50.23,50.24]
200 4.9870E+01 [49.18,50.56] 5.0244E+01 [50.18,50.31] 5.0234E+01 [50.23,50.24]
400 4.9980E+01 [49.28,50.68] 5.0204E+01 [50.13,50.27] / /

Table 15: Option value approximations of V (150, 0.01, 0) and 95% confidence intervals
obtained using Monte Carlo method, as a function of the number of samples N and
the number of time steps M .

Monte Carlo, S = 150
M N = 104 N = 106 N = 108

100 3.25E+01 s. 3.23E+03 s. 3.08E+05s.
200 6.47E+01 s. 6.40E+03 s. 6.11E+05s.
400 1.28E+02 s. 1.22E+04 s. /

Table 16: Computation times of BEM and Monte Carlo Method for S = 150.

As already observed, the post-processing formula (3.10) used in BEM method can
be efficiently computed at every asset and variance values and at each time instant
t ∈ [0, T ]. This gives the opportunity to make a priori analysis of the investment or
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to perform sensitivity analysis and compute greeks numerically. For instance, also for
this last example, in Fig. 9 we can compare the behavior of the down-and-out call
option to that of a European contract, as a function of the asset price S.
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Fig. 9: In the Bates framework, value of a down-and-out call option compared with
the value of a call option without barrier.

Moreover, in the post-processing phase, we can implement formula (2.12) and
compute the delta of the option. In Table 17, we show evidence of the validity of
formula (2.12) for computing the delta of the barrier option. The values of the delta
at S = 115 and S = 150, obtained by (2.12) for N∆t = N∆v = 6, are compared to the
ones computed from numerical differentiation. The quadrature formulas employed
are the same used for the computation of the option value. The numerical delta is
obtained by a second order difference quotient on the option prices obtained by post-
processing (3.10) at S − ∆S, S, S + ∆S, for decreasing values of ∆S. We notice
that at S = 115 the numerical delta rapidly converges to the (analytic) BEM value
with a convergence ratio approximately equal to 4, which reveals the second order
convergence of the difference quotients. At S = 150, the second order convergence
of the numerical delta is affected by the fact that the difference quotients have been
computed from option prices obtained with an error tolerance of 10−6 and hence
numerical differentiation cannot improve this precision limit. In fact, at S = 150 the
option value is almost linear (see Fig. 9) and the numerical delta rapidly approximates
the exact value already for large values of ∆S.

S = 115 BEM value = 0.013631583 S = 150 BEM value = 0.010614217
∆S Num. delta Abs. error Conv. ratio Num. delta Abs. error Conv. ratio
5 0.015996 2.3646E-03 - 0.010620 6.1343E-06 -
2.5 0.014041 4.0915E-04 (5.78) 0.010616 1.3077E-06 (4.69)
1.25 0.013721 8.9718E-05 (4.56) 0.010614 1.0139E-07 (12.90)
0.625 0.013653 2.1516E-05 (4.17) 0.010614 2.0017E-07 (0.507)
0.3125 0.013637 5.1465E-06 (4.18) 0.010614 2.7556E-07 (0.726)
0.15625 0.013633 1.0956E-06 (4.70) 0.010614 2.9441E-07 (0.936)

Table 17: Computation of the option delta. Comparison between BEM (analytic)
procedure and numerical differentiation. The covergence ratio in parenthesis is the
ratio between absolute errors on consecutive grids: error∆S/error∆S/2.

5. Conclusions. We have introduced and proved an analytical formula for pric-
ing a down-and-out call option in the Heston/Bates framework. This formula can be
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easily modified to get formulas for all kinds of barrier options in the Heston/Bates
framework. We have also suggested a way to numerically compute the price and the
most common greeks of the barrier option based on a Boundary Element Method
approach.
One of the advantages of BEM over other PDE approaches is that the integral refor-
mulation reduces by one the dimensionality of the partial differential problem, thus
abating computation cost considerably. Furthermore, when multiple evaluations of
the option contract are needed, one can implement only the post-processing formula
(3.10) with a great computational saving and moreover the computation of derivative
quantities, either analytic or numeric, is straightforward.
Being based on a closed-form integral formula for option pricing, it achieves spectral
convergence in the interior of the integration domain. A rich convergence analysis
and numerical evidence of greater accuracy and reduced computational cost in com-
parison with results achieved by Monte Carlo method highlight BEM as a valid and
worthwhile alternative to traditional Monte Carlo approaches.

6. Acknowledgements. We wish to thank two anonymous referees for their
helpful comments and remarks.

Appendix A. Boundary Element Formulation: Bates model. In this
section we prove the integral representation formula (2.6) for the Bates model. For
the reader’s convenience, we first recall the notion of Green’s solution from the classical
theory of PIDEs.
We rewrite the PIDE (2.4) for a plain vanilla call option price V in the form
(A.1)



∂V

∂t
(x, v, t) + L[V ](x, v, t) + I[V ](x, v, t)− rV (x, v, t)=0 x ∈ R, v ∈ Ωv, t ∈ [0, T )

V (x, v, T )=max(ex − E, 0) x ∈ R, v ∈ Ωv

where the operators L and I are defined as6

(A.2) L[V ] =
1
2
v
∂2V

∂x2
+ρηv

∂2V

∂x∂v
+

1
2
η2v

∂2V

∂v2
+

(
r − ξk̄ − δ − 1

2
v

)
∂V

∂x
−λ(v−v̄)

∂V

∂v

(A.3)

I[V ] =
∫ +∞

−∞
[V (x + z, v, t)− V (x, v, t)]ν(dz)

= ξ E[V (x + z, v, t)− V (x, v, t)]

=
∫ +∞

−∞
[V (x + z, v, t)− V (x, v, t)]ξ

1√
2πσj

exp

(
− (z − µj)2

2σ2
j

)
dz

and its solution is given by the fundamental pricing formula

(A.4) V (x, v, t) = e−r(T−t)

∫ +∞

−∞

∫

Ωv

V (y, w, T )G(y, w, T ;x, v, t)dw dy.

6For simplicity, we are assuming the market price of risk θ = 0.
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Observe that

(A.5) u(x, v, t) := er(T−t)V (x, v, t) =
∫ +∞

−∞

∫

Ωv

max(ey − E, 0)G(y, w, T ; x, v, t)dw dy

is solution to the equation

(A.6)
∂u

∂t
(x, v, t) + L[u](x, v, t) + I[u](x, v, t) = 0 x ∈ R, v ∈ Ωv, t ∈ [0, T )

with the same final condition as in (A.1). Here G(x, y, v; w, t, τ) is the joint transition
probability density function (PDF), also known as Green’s function or fundamental
solution of the backward partial integro-differential problem.
It is well known ([18], [19]) that for each (x, v, t) ∈ R × R+ × [0, T ) the PDF
G(y, w, τ ;x, v, t), as a function of y, w, τ , solves the forward Kolmogorov equation
(also known as the Fokker-Planck equation)

(A.7)





−∂G

∂τ
(y, w, τ ;x, v, t)+L∗[G](y, w, τ ;x, v, t)+I∗[G](y, w, τ ;x, v, t)=0

y ∈ R, w ∈ Ωv, t < τ

G(y, w, t;x, v, t)=δ(x, y)δ(v, w) y ∈ R, w ∈ Ωv

where δ(·, ·) represents the Dirac distribution7 and L∗, I∗ are the adjoint operators
of L and I respectively8, defined by

L∗[ψ] =
1
2
w

∂2ψ

∂y2
+ρηw

∂2ψ

∂y∂w
+

1
2
η2w

∂2ψ

∂w2
−

(
r − ξk̄ − δ − 1

2
w

)
∂ψ

∂y
+λ(w − v̄)

∂ψ

∂w
+

+ ρη
∂ψ

∂y
+η2 ∂ψ

∂w
+λ(·)=

=
1
2

∂2
(
wψ

)

∂y2
+ρη

∂2
(
wψ

)

∂y∂w
+

1
2
η2 ∂2

(
wψ

)

∂w2
− ∂

(
(r − ξk̄ − δ − 1

2w)ψ
)

∂y
+

+
∂
(
λ(w − v̄)ψ

)

∂w
,

I∗[ψ] =
∫ +∞

−∞
[ψ(y − z, w, τ)− ψ(y, w, τ)]ν(dz).

7The Dirac’s delta distribution satisfies the property that
∫ +∞
−∞ δ(y, x)f(x)dx = f(y) , ∀f ∈

C∞0 (R).
8The adjoint operator is defined by the condition < I(ϕ), ψ >=< ϕ, I∗(ψ) >. In fact, for any

smooth functions ψ(y) and ϕ(y) we have

∫ +∞

−∞
I[ϕ](y)ψ(y)dy =

∫ +∞

−∞
ϕ(y)I∗[ψ](y)dy,

namely
∫ +∞

−∞
ξE[ϕ(y + z)− ϕ(y)]ψ(y)dy =

∫ +∞

−∞
ξϕ(y)E[ψ(y − z)− ψ(y)]dy,

since

∫ +∞

−∞
E[ϕ(y + z)]ψ(y)dy =

∫ +∞

−∞
ϕ(y)E[ψ(y − z)]dy.
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When we consider a down-and-out Barrier Call Option, defining L the lower
barrier for the asset S and setting x = log(S), the domain of investigation for
the undiscounted price of the option u(x, v, t) is Ω × [0, T ] where Ω = Ωx × Ωv =
[log(L),+∞)× [0, +∞). However, as remarked by [13] at p. 390, the nonlocal nature
of the integral operator in (2.4) requires to specify the behavior of the solution not
only at the barrier x = log L, but also beyond the barrier for x < log L. To compute
the integral implicit in the expected value of the integral term, we need the function
u(·, v, t) to be defined for all the values which the process can jump to from x by any
jump in the support of the Lévy measure ν, i.e. everywhere in R, and the natural
extension is to set the option value below the barrier equal to zero. Therefore, the
partial integro-differential formulation for a down-and-out call option is





∂u

∂t
(x, v, t) + L[u](x, v, t) + I[u](x, v, t) = 0 x ∈ (log(L), +∞), v ∈ Ωv, t ∈ [0, T )

u(x, v, T ) = max(ex − E, 0) x ∈ (log(L), +∞), v ∈ Ωv

u(x, v, t) = 0 x ∈ (−∞, log(L)], v ∈ Ωv, t ∈ [0, T )

and the Integral Representation (A.5) in the new domain Ω = Ωx ×Ωv has one more
term

(A.8)

u(x, v, t) :=
∫ +∞

log(L)

∫

Ωv

max(ey − E, 0)G(y, w, T ; x, v, t)dw dy+

−
∫ T

t

∫

Ωv

w

2
G(log(L), w, τ ; x, v, t)

∂u

∂y
(log(L), w, τ)dw dτ,

namely, we get the integral representation formula (2.6).

Proof of validity of the representation formula (A.8). For any given t, let us
consider the Bates model equation for u

(A.9)
∂u

∂τ
(y, w, τ) + L[u](y, w, τ) + I[u](y, w, τ) = 0 ∀τ ∈ [t, T ], y ∈ Ωx, w ∈ Ωv

with L, I defined in (A.2) and (A.3), respectively. Multiply Eq. (A.9) by the funda-
mental solution G(y, w, τ ; x, v, t), the PDE in (A.7) by u(y, w, τ), subtract them and
integrate in time and space obtaining
(A.10)∫ T

t

∫

Ωv

∫ +∞

log(L)

{
G(y, w, τ ; x, v, t)

∂u

∂τ
(y, w, τ)+u(y, w, τ)

∂G

∂τ
(y, w, τ ; x, v, t)

}
dy dw dτ

+
∫ T

t

∫

Ωv

∫ +∞

log(L)

{G(y, w, τ ; x, v, t)L[u](y, w, τ)−u(y, w, τ)L∗[G](y, w, τ ;x, v, t)} dy dw dτ

+
∫ T

t

∫

Ωv

∫ +∞

−∞
{G(y, w, τ ; x, v, t)I[u](y, w, τ)−u(y, w, τ)I∗[G](y, w, τ ;x, v, t)} dy dw dτ

= 0.
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The second integral in (A.10) verifies the following identity (look at the proof below)
(A.11)∫ T

t

∫

Ωv

∫ +∞

log(L)

{G(y, w, τ ; x, v, t)L[u](y, w, τ)− u(y, w, τ)L∗[G](y, w, τ ; x, v, t)} dy dw dτ

= −1
2

∫ T

t

∫

Ωv

wG(log(L), w, τ ; x, v, t)
∂u

∂y
(log(L), w, τ)dw dτ.

The third integral in (A.10) equals zero, by definition of adjoint operator. The first
integral in (A.10) can be integrated by parts
∫ T

t

∫

Ωv

∫ +∞

log(L)

{
G(y, w, τ ; x, v, t)

∂u

∂τ
(y, w, τ) + u(y, w, τ)

∂G

∂τ
(y, w, τ ; x, v, t)

}
dy dw dτ

=
∫

Ωv

∫ +∞

log(L)

{∫ T

t

G(y, w, τ ; x, v, t)
∂u

∂τ
(y, w, τ)dτ + u(y, w, τ)G(y, w, τ ; x, v, t)

∣∣∣∣
τ=T

τ=t

−
∫ T

t

∂u

∂τ
(y, w, τ)G(y, w, τ ;x, v, t) dτ

}
dy dw

=
∫

Ωv

∫ +∞

log(L)

u(y, w, T )G(y, w, T ; x, v, t)dy dw −
∫

Ωv

∫ +∞

log(L)

u(y, w, t)G(y, w, t; x, v, t)dy dw =

and taking into account the initial condition in (A.7), it remains

=
∫

Ωv

∫ +∞

log(L)

u(y, w, T )G(y, w, T ; x, v, t)dy dw −
∫

Ωv

∫ +∞

log(L)

u(y, w, t)δ(x, y)δ(v, w)dy dw

=
∫

Ωv

∫ +∞

log(L)

u(y, w, T )G(y, w, T ; x, v, t)dy dw − u(x, v, t) .

The representation formula (A.8) follows immediately. ¤

Proof of the identity (A.11):
Let us rewrite the integrand in (A.11) in divergence form

G(y, w, τ ; x, v, t)L[u](y, w, τ)− u(y, w, τ)L∗[G](y, w, τ ; x, v, t) =
∂p1

∂y
+

∂p2

∂w

with

p1 =
1
2

(
Gw

∂u

∂y
− u

∂(Gw)
∂y

)
+

(
r − ξk̄ − δ − w

2

)
Gu +

ρη

2

(
Gw

∂u

∂w
− u

∂(Gw)
∂w

)

p2 =
ρη

2

(
Gw

∂u

∂y
− u

∂(Gw)
∂y

)
− λ(w − v̄)Gu +

η2

2

(
Gw

∂u

∂w
− u

∂(Gw)
∂w

)

and, applying the divergence theorem, we obtain
(A.12)∫ T

t

∫

Ωv

∫ +∞

log(L)

{G(y, w, τ ; x, v, t)L[u](y, w, τ)− u(y, w, τ)L∗[G](y, w, τ ; x, v, t)} dy dw dτ

=
∫ T

t

∫

∂Ω

(p1, p2) · n dy dw dt,
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with n the outward normal vector on the boundary ∂Ω, as specified in Fig. 10.

Fig. 10: Down-and-out barrier call option domain.

Taking into account the natural vanishing boundary conditions for the probability
density function G as y → ±∞ and w → 0, w → +∞ and the barrier condition for
u, the boundary integral reduces to9

∫ T

t

∫

∂Ω

(p1, p2) · n dτ = −
∫ T

t

∫

{log(L)}×Ωv

p1 dy dw dτ

= −
∫ T

t

∫

Ωv

1
2

(
Gw

∂u

∂y
− u

∂(Gw)
∂y

)
+

(
r − ξk̄ − δ − w

2

)
Gu+

+
ρη

2

(
Gw

∂u

∂w
− u

∂(Gw)
∂w

) ∣∣∣∣
y=log(L)

dw dτ

= −1
2

∫ T

t

∫

Ωv

(
Gw

∂u

∂y
+ ρηGw

∂u

∂w

) ∣∣∣∣
y=log(L)

dw dτ

= −1
2

∫ T

t

∫

Ωv

wG(log(L), w, τ ; x, v, t)
∂u

∂y
(log(L), w, τ)dw dτ+

−
∫ T

t

ρη

2
wG(log(L), w, τ ; x, v, t)u(log(L), w, τ)dτ

∣∣∣∣
w→+∞

w=0

+

+
∫ T

t

∫

Ωv

ρη

2

(
G(log(L), w, τ ; x, v, t)+w

∂G

∂w
(log(L), w, τ ; x, v, t)

)
u(log(L), w, τ)dw dτ

= −1
2

∫ T

t

∫

Ωv

wG(log(L), w, τ ; x, v, t)
∂u

∂y
(log(L), w, τ)dw dτ. ¤

9In the case of a plain vanilla option, taking into account the vanishing boundary conditions for
G on the boundary ∂Ω of the domain Ω = Ωv × (−∞, +∞) as specified in Fig. 11, we get the so
called Green’s Identity

∫ T

t

∫

Ωv

∫ +∞

−∞
{G(y, w, τ ; x, v, t)L[u](y, w, τ)− u(y, w, τ)L∗[G](y, w, τ ; x, v, t)} dy dw dτ = 0

and, by substituting this into (A.10), we obtain the fundamental pricing formula (A.5).
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Fig. 11: Vanilla call option domain.

Appendix B. Joint transition probability density function. To prove
Theorem 2.3, we need the following Lemma

Lemma B.1. The transition density for the Bates model can be written in terms
of the change in the logarithmic stock price and the variance at maturity, given today’s
variance

p(xT , vT , T ; x0, v0, t0) = p(zx, vT , T − t0|v0),

where zx = xT − x0.

Proof. From the results in [16], [29] show that the two-dimensional conditional
characteristic function for the Bates model can be written as

φT (ω1, ω2; x0, v0, t0) = Et0 [e
iω1xT +iω2vT ] = eC(ω1,ω2,τ)+J(ω1,ω2,τ)+D(ω1,ω2,τ)v0+iω1x0 ,

where τ = T − t0 and C, J , D are suitable functions. Using the Gil-Pelaez inversion
formula, we can obtain the joint transition density

p(xT , vT , T ; x0, v0, t0) =

=
1
2π

∫ +∞

−∞

∫ +∞

−∞
Re(eC(ω1,ω2,τ)+J(ω1,ω2,τ)+D(ω1,ω2,τ)v0+iω1x0e−iω1xT−iω2vT )dω1dω2 =

=
1
2π

∫ +∞

−∞

∫ +∞

−∞
Re(eC(ω1,ω2,τ)+J(ω1,ω2,τ)+D(ω1,ω2,τ)v0−iω2vT−iω1zx)dω1dω2

which clearly depends on zx, v0, vT and τ . The fact that the characteristic function
is conditioned on time t0 completes the proof.

Proof. of Theorem 2.3. Equation (2.9) follows straightforwardly from Lemma
B.1 and the relation

p(zx, vT , T − t0|v0) = pv(vT , T − t0|v0)p(zx, T − t0|vT , v0) .

It remains to compute the characteristic function p̂(ω; v0, vT , T − t0) of the logarithm
of the stock given the initial variance v0 and given the variance at maturity vT . For
this derivation, we follow [6] and we write the dynamics of the Bates model in a
different manner

(B.1)
dxt =

(
µ− 1

2
vt

)
+ ρ

√
vtdW 1

t +
√

1− ρ2
√

vtdW 2
t + jN (t)dN(t)

dvt = −λ(vt − v̄)dt + η
√

vtdW 1
t ,
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where µ = r − ξk̄ under the risk-neutral probability measure.
From (B.1) we get

(B.2)

xT = x0 + µ(T − t0)− 1
2

∫ T

t0

vsds+

+ρ

∫ T

t0

√
vsdW 1

s +
√

1− ρ2

∫ T

t0

√
vsdW 2

s +
∫ T

t0

jN (s)dN(s),

(B.3) vT = v0 + λv̄(T − t0)− λ

∫ T

t0

vsds + η

∫ T

t0

√
vsdW 1

s .

Rewriting equation (B.3) as

η

∫ T

t0

√
vsdW 1

s = vT − v0 − λv̄(T − t0) + λ

∫ T

t0

vsds

and substituting into (B.2), it gives

zx = xT − x0 = µ(T − t0)− 1
2

∫ T

t0

vsds

+
ρ

η

(
vT − v0 − λv̄(T − t0) + λ

∫ T

t0

vsds

)
+

√
1− ρ2

∫ T

t0

√
vsdW 2

s +
∫ T

t0

jN (s)dN(s)

= µ(T − t0) +
ρ

η
(vT − v0 − λv̄(T − t0)) +

(
λρ

η
− 1

2

) ∫ T

t0

vsds

+
√

1− ρ2

∫ T

t0

√
vsdW 2

s +
∫ T

t0

jN (s)dN(s).

Notice that
∫ T

t0

√
vsdW 2

s is normally distributed with zero expectation and variance

equal to
∫ T

t0
vsds by Itô isometry. If we denote by Z a standard normal random

variable, then the characteristic function p̂(ω) conditional on v0 and vT reads

p̂(ω; v0, vT , T − t0) = Et0

[
eiω(xT−x0)|vT

]

= Et0

[
exp

{
iω

[
µ(T − t0) +

ρ

η
(vT − v0 − λv̄(T − t0))+

+
(

λρ

η
− 1

2

) ∫ T

t0

vsds +
√

1− ρ2

√∫ T

t0

vsdsZ +
∫ T

t0

jN (s)dN(s)






 |vT




= exp
{
iω

[
µ(T − t0) +

ρ

η
(vT − v0 − λv̄(T − t0))

]}

×Et0


exp



iω

(
λρ

η
− 1

2

)∫ T

t0

vsds + iω
√

1− ρ2

√∫ T

t0

vsdsZ + iω
∫ T

t0

jN (s)dN(s)



 |vT


.
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Since jumps are homogeneous and independent of the continuous part, we get

p̂(ω; v0, vT , T − t0) = exp
{
iω

[
(r − ξk̄)(T − t0) +

ρ

η
(vT − v0 − λv̄(T − t0))

]}

×Et0

[
exp

{
iω

(
λρ

η
− 1

2

)
V + iω

√
1− ρ2

√
V Z

}
|vT

]

×Et0

[
exp

{
iω

∫ T

t0

jN (s)dN(s)

}
|vT

]
,

where V =
∫ T

t0
vsds. Using the tower property for expectations and taking into

account the independence of the jump component from the variance process, we get

p̂(ω; v0, vT , T − t0) = exp
{
iω

[
(r − ξk̄)(T − t0) +

ρ

η
(vT − v0 − λv̄(T − t0))

]}

×Et0

[
Et0

[
exp

{
iω

(
λρ

η
− 1

2

)
V + iω

√
1− ρ2

√
V Z

}∣∣∣∣ vT , V

]]

×Et0

[
exp

{
iω

∫ T

t0

jN (s)dN(s)

}]
=

= exp
{
iω

[
(r − ξk̄)(T − t0) +

ρ

η
(vT − v0 − λv̄(T − t0))

]}

×Et0

[
exp

{
iω

(
λρ

η
− 1

2

)
V − 1

2
ω2(1− ρ2)V

}∣∣∣∣ vT

]

×Et0

[
exp

{
iω

∫ T

t0

jN (s)dN(s)

}]
=

= exp
{
iω

[
(r − ξk̄)(T − t0) +

ρ

η
(vT − v0 − λv̄(T − t0))

]}

×Et0

[
exp

{
i
[
ω

(
λρ

η
− 1

2

)
+

1
2
iω2(1− ρ2)

] ∫ T

t0

vsds

}
|vT

]

×Et0

[
exp

{
iω

∫ T

t0

jN (s)dN(s)

}]
=

= exp
{
iω

[
(r − ξk̄)(T − t0) +

ρ

η
(vT − v0 − λv̄(T − t0))

]}

×Φ
(

ω

(
λρ

η
− 1

2

)
+

1
2
iω2(1− ρ2)

)
φJ

T (ω),

where Φ(a) is defined by (2.11) and φJ
T (ω) by (2.2). This completes the proof.
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