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ABSTRACT: A numerical non-linear procedure able to represent the behavior of cracked Steel 

Fiber Reinforced Concrete (SFRC) is herein presented and verified. The involved post-cracking 

mechanisms, particularly tension softening and tension stiffening, have been investigated and 

properly taken into account. Different tension softening relationships have been implemented and 

discussed, one based on a micro-mechanical approach, another obtained from inverse analysis and 

finally the Model Code 2010 (MC2010) law. These models have been adopted in conjunction with 

a smeared crack approach to perform FE simulations of R/FRC ties characterized by different 
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cross-sections and fiber volume fractions. Numerical results have been validated against a 

comprehensive experimental program on R/FRC (characterized by a tension softening behavior) 

and RC ties recently carried out at the University of Brescia. Comparisons between experimental 

and numerical results indicate that smeared models can be adopted also for the analysis of this 

structural typology, subjected to a uniaxial state of stress, as a valuable alternative to discrete 

approaches. 

 

Keywords: Fiber reinforced concrete, Non-linear modeling, Tension stiffening, 

Tension softening, R/FRC ties.  

 

1. Introduction 

It is well established that the addition of fibrous reinforcement to concrete matrix 

enables to considerably increase the post-cracking residual tensile strength of the 

composite and, in general, its toughness. This enhanced capacity may allow for a 

reduction of conventional reinforcement (steel bars) especially in structures with 

high degree of redundancy, leading to an optimized reinforcement (i.e. higher 

performance at a lower cost) based on a combination of conventional steel bars 

and fiber reinforcement [1, 2]. This solution is particularly effective in terms of 

crack control – since a more distributed crack pattern characterized by reduced 

crack widths could be achieved – and also in terms of bearing capacity at Ultimate 

Limit States (ULS), since an adequate amount of rebars is still provided. 

The increasing interest within the concrete community for Fiber Reinforced 

Concrete (FRC) is confirmed by its recent inclusion in the Model Code 2010 [3], 

which introduces as a key-parameter for structural applications the material 

performance. The latter is expressed in terms of four residual tensile strengths fR,j, 

evaluated for different ranges of crack widths, each one relevant for different 

structural applications.  

As mentioned, FRC significantly improves the behavior at Serviceability Limit 

States (SLS), with respect to crack and deflection control. In service conditions, 

steel-to-concrete bond allows the transfer of tensile stresses from the rebar to the 

surrounding concrete (between cracks), which stiffens the response of a 

Reinforced Concrete (RC) member subjected to tension. This stiffening effect, 

referred to as “tension stiffening”, has been studied by several authors in 



3 

traditional RC elements [4, 5] generally made of Normal Strength Concrete 

(NSC). It has been also verified that fibers exert a beneficial effect on this 

phenomenon, since their presence limits the growth of splitting cracks, similarly 

to the confinement action provided by ordinary stirrups. When the bond failure is 

instead governed by pullout, the influence provided by fibers on the local bond-

slip response is more limited [6]. Furthermore, in FRC elements the post-cracking 

residual stresses due to fibers at any crack represent an additional contribution that 

influences the member response. The combination of these two mechanisms 

(tension stiffening and tension softening) results in a stiffer member behavior and 

in a different crack pattern, characterized by a reduced crack spacing and width. 

With reference to experimental investigations, a number of research studies [7-9] 

were carried out so far on the tensile behavior of FRC members since late 90’s. 

More recently, a broad experimental study on R/FRC members under uniaxial 

tension has been performed at the University of Brescia within a joint research 

with the University of Toronto [10, 11]. The main objective of this research was 

to evaluate formation and development of cracks in R/FRC members, both normal 

and high strength [12]. To this aim, a broad variety – not studied yet – of key-

parameters have been considered, such as concrete compressive strength, element 

size, effective reinforcing ratio, rebar diameter, eff ratio and volume fraction of 

fibers. 

As regards theoretical analysis, several analytical approaches have been proposed 

for describing cracking phenomena in RC ties and, in general, in RC members 

(e.g.: [13-15]). More recently, Fantilli et al. [16, 17] have developed approaches, 

based on a proper discretization of the main solving differential equation, suitable 

for RC ties as well as for FRC ones. 

Referring to finite element modeling, besides procedures based on the 

introduction of interface or connector elements between the steel bar and the 

surrounding concrete [18, 19], it is of main interest to take into account the 

peculiar combination of tension stiffening phenomenon between cracks with 

tension softening (provided by fibers at crack) in an unique smeared crack 

approach. One of the first studies was presented by Feenstra [20] for conventional 

reinforced concrete. Referring to concrete members reinforced by ordinary steel 

rebars and fibers, it can be mentioned the well known Disturbed Stress Field 

Model [21], which recently included the fiber resistant contribution [22]. Anyway, 
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these smeared approaches are more often applied to the analysis of beams, panels 

or slabs, while their application on R/FRC ties is rather limited [23, 24]. 

The present paper deals with the simulation of cracking phenomena in RC and 

R/FRC ties by means of non-linear numerical analyses based on a smeared-fixed 

crack approach [25, 26]. The numerical non-linear procedure has been suitably 

adapted for simulating the behavior of some FRC tension members with 

conventional reinforcement tested in the experimental campaign developed by 

Tiberti et al. [11]. Although in most structural applications FRC elements are co-

reinforced with traditional reinforcement, studies on this topic are less common 

with respect to those focusing on members containing steel fibers only. More 

specifically, the proposed model allows the evaluation of the constitutive behavior 

of cracked FRC members by properly adding the contribution provided by fibers 

(in terms of tension softening and tension stiffening) to the resistant contributions 

due to concrete and traditional reinforcement bars. For the evaluation of tension 

softening, fiber bridging is directly added to the bridging effect provided by 

aggregates, whereas the influence exerted by fibers on tension stiffening is taken 

into account indirectly, by modifying the bond-slip law between ordinary steel 

bars and concrete (accordingly to [27]). The developed model enables a reliable 

prediction of the analyzed experimental results in terms of both bearing capacity 

and axial stiffness, also allowing an effective simulation of concrete cracking 

phenomena. 

 

2. Experimental research  

A comprehensive database of the behavior of R/FRC and RC ties containing a 

central steel rebar was generated in a broad experimental campaign developed at 

the University of Brescia [10, 11, 28]. 

A total number of 97 RC and R/FRC prismatic members were cast and tested. The 

following key-parameters were investigated: 

- (square) cross-section side: from 50 to 200 mm; 

- clear concrete cover: from 20 to 85 mm; 

- effective reinforcing ratio, eff : from 0.98 to 3.26%; 

- rebar diameter : 10, 20 and 30 mm; 

- eff ratio: from 306 to 2043 mm; 
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- specimen length: from 950 to 1500 mm; 

- volume fraction of fibers Vf : 0, 0.5 and 1.0%. 

The effective reinforcement ratio (eff) represents the rebar area over the area of 

concrete in tension surrounding the reinforcement: in the present samples, =eff.  

2.1 RC and R/FRC test specimen configurations 

The experimental research was developed in two phases. In the first stage, 52 

specimens having the geometry shown in Figure 1a were cast and tested. Each 

specimen was 950 mm long and five square cross-sections were selected: 50, 80, 

100, 150 and 200 mm in size. In a second phase, only four square cross-sections 

were selected (80, 120, 180 and 200 mm in size) and a reinforcement ratio varying 

from 0.98% to 2.23% was adopted. Geometry and reinforcement details of 

specimens of the second phase are shown in Figure 1b. 

All tests were performed under displacement control. Four Linear Variable 

Differential Transformers (LVDTs, one for each side), were employed to measure 

the mean deformation over the length of the specimen. 

Samples belonging to the second stage of research, whose properties will be 

reported in next section, have been herein considered. More details concerning the 

overall experimental program can be found in Minelli et al. [10] and Tiberti et al. 

[11]. 

2.2 Material properties 

All samples were cast with a normal strength concrete (NSC). The same basic mix 

design was used for all batches [10], i.e. cement content of 400 kg/m3; water to 

cement ratio of 0.47; sand (0-4 mm) 610 kg/m3; coarse aggregate (4-10 mm) 1132 

kg/m3; superplasticizer 3.3 l/m3. With fibers, the amount of aggregate lowered up 

to a small 4%. 

Low-carbon hooked-end macro fibers were used, characterized by a 30 mm length 

and 0.62 mm diameter (aspect ratio l/ equal to 48), and with a tensile strength 

fu=1270 MPa. Two volume fractions were adopted: 0.5 and 1% (0.5M and 1M in 

the following). Moreover, a reference batch without fibrous reinforcement was 

prepared (plain). 

The concrete mechanical properties, as measured by means of standards tests (see 

[11]), are reported in Table 1 for the three batches. Even if the three concrete 



6 

mixes were designed to obtain the same nominal strength, the batch 1M was 

unfortunately characterized by a lower effective strength, making harder the 

comparison with the other specimens. 

It should be also observed that all the specimens were stored in a fog room (R.H. 

> 95%; T=20 ± 2oC) until 2 or 3 days before testing; then they were air dried in 

the laboratory. In the fog room, the measured free shrinkage strains turned out to 

be negligible (around 20-25 micro-strains). 

In order to characterize SFRC post-cracking behavior, three point bending tests 

(3PBTs) were also performed on small FRC notched beams (150x150x550 mm) 

according to EN 14651 [29]. Residual strengths fR,j (evaluated at 4 different Crack 

Mouth Opening Displacements - CMOD, i.e. 0.5, 1.5, 2.5 and 3.5 mm), and the 

flexural tensile strength (limit of proportionality) fL were calculated, as reported in 

Table 2 (mean values).  

Reinforcing bars (rebars) were made by B450C steel, according to European 

standard EN 10080 [30]. Tensile tests on rebars provided the mechanical 

properties reported in Table 3.  

2.3 Main experimental results 

The typical responses of RC and R/FRC ties, reported in Figure 2a, enables to 

emphasize one of the main advantages related to the combination of rebars and 

fibers, that is the global stiffness increase caused by the transmission of noticeable 

residual stress across cracks. This tendency can be recognized also during the 

crack formation stage but it is especially clear during the stabilized crack stage: in 

fact, as schematically shown in Figure 2a, the difference in tensile response at a 

given strain level, denoted by ΔLoad, illustrates the role of fibers. Hence, the 

tension stiffening increases with respect to that of RC samples. 

Another significant investigated aspect concerns the crack pattern and its 

evolution in terms of mean crack spacing (srm). In Figure 2b, the evolution of the 

mean crack spacing srm is plotted as a function of the average strain up to the end 

of the crack formation stage for specimens N200/30 (N states for normal strength 

concrete, the first number represents the cross-section side in mm and the second 

one the bar diameter). From this plot, the reduction of the mean crack spacing, 

which represents the second main advantage due to the addition of fibers, can be 

clearly noticed. 
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Similar tendencies have been found in all other specimens; refer to Minelli et al. 

[10] and Tiberti et al. [11] for more details. 

The experimental evidences will be numerically investigated in the following, by 

considering six R/FRC and RC ties, which, according to Tiberti et al. [11], are 

referred to as N120/20 and N180/20.  

Table 4 summarizes the main different characteristics of the analyzed samples, in 

terms of geometrical dimensions and fiber contents.  

3. Numerical modeling 

The 6 considered ties have been analyzed through a numerical non-linear 

procedure, which is based on the implementation into a FE Code [31] of a suitable 

constitutive model for steel fiber reinforced concrete – named 2D-PARC – able to 

account both for the material non-linearity and for the resistant contribution 

offered by fibers. 

The adopted constitutive model is based on a smeared-fixed crack approach and 

its theoretical formulation, which has been deduced for a SFRC membrane 

element subjected to general plane stresses, can be found in details in Cerioni et 

al. [25] and Bernardi et al.[26]. In short, the cracked SFRC stiffness matrix [D] is 

derived by considering the uncracked concrete and the steel reinforcement 

between adjacent cracks like two materials working in parallel, while uncracked 

SFRC between cracks and the crack itself are schematized like two elements 

working in series, so obtaining the following expression: 

             s
1

c

11
1cr

1
c DDIDDD


 , (1) 

where [Dc] and [Ds] are the stiffness matrices respectively of concrete and steel, 

[I] is the identity matrix and [Dcr1] represents the crack stiffness matrix. This latter 

accounts for the fundamental resistant mechanisms that take place after crack 

formation, that is aggregate and fiber bridging (in the following referred to as 

tension softening), aggregate interlock, tension stiffening and dowel action.  

In next Sections the attention will be focused on the modeling of tension softening 

and tension stiffening, which represent the two main phenomena governing the 

behavior of cracked R/FRC ties, with particular reference to the influence exerted 

on them by steel fibers. 
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3.1 Tension softening 

2D-PARC model is structured in a modular framework. All the mechanical 

phenomena governing the cracked stage are separately modeled on the basis of 

their properties. Subsequently these contributions are assembled to create an 

equivalent non-linear continuum material. In this way, each part of the model can 

be independently changed by adopting different formulations.  

With regard to tension softening contribution, several semi-empirical relations 

have been implemented into the model (see [26]). In this work the micro-

mechanical model proposed in [32] has been first followed. The transmission of 

tensile stresses across the crack due to aggregates and fibers is separately 

modeled; in more detail, aggregate bridging action is expressed through an 

empirical relation calibrated on the basis of several experimental data: 

 
 

11b

1m

1
1bp

011

maxct
11b c

a

w
c

ww1
w 


 


 ,   (2) 

where ct max is the maximum bridging stress due to aggregate action for a zero 

crack opening (so assumed equal to fct), w1 is the crack width, w01 is the crack 

opening corresponding to 0.5ct max and p is a parameter influencing the shape of 

the softening law. cb1 is the corresponding bridging coefficient to be inserted into 

the crack stiffness matrix [25] and 1 is the normal crack strain, which can be 

determined from the crack opening w1 and the mean crack spacing am1. It should 

be observed that subscript 1 is generally referred to primary cracking according to 

the notation previously adopted in Cerioni et al. [25] and Bernardi et al. [26]. The 

model allows indeed the formation of multiple cracks (generically denoted by 

subscript n), characterized by a different orientation with respect to primary ones. 

These subsequent cracks have not been considered herein due to the uniaxial 

nature of the examined problem. 

Fiber contribution f is evaluated as the sum of fiber bridging b and fiber 

prestress 0
ps, which characterizes fibers before the opening of a crack; both these 

terms can be expressed as a function of the total displacement s1* across the crack 

itself, representing the resultant of crack opening w1 and sliding v1, according to 

Figure 3. The normal and tangential components of f can be in turn evaluated 

through the following expressions: 
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11f
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1
2

1

1
1f11f11f c

vw

w
*)s(cos*)s(*)s(  


  (3) 

121f
2

1
2

1

1
1f11f112f c

vw

v
*)s(sin*)s(*)s(  


 , (4) 

where cf1 represents the fiber coefficient, while 1 = w1/am1 and 12 = v1/am1. 

Both the terms related to aggregate bridging and fiber action are incorporated into 

the local crack stiffness matrix [Dcr1] as part of the sub-matrix [Dc,cr1], which takes 

into account the contribution of concrete at crack location. This latter can be 

expressed in the local coordinate system of the crack (n1,t1), as: 

 





















1f1a

011f1bt,n
1cr,c cc0

ccc
D 11 ,   (5) 

where cb1 and cf1 are the aforementioned coefficients (Eqs. 2-4), while c01 and ca1 

schematize aggregate interlock effect [25]. 

As a second option, the evaluation of tension softening in R/FRC ties has been 

performed by implementing into 2D-PARC matrix the softening relation 

suggested in Model Code 2010 [3], which represents a useful tool in current 

design practice. It should be pointed out that the serviceability residual strength 

fFts and the ultimate residual strength fFtu, which are needed for the definition of 

the n - w1 curve, have been determined on the basis of the simplified post-

cracking linear model proposed in MC2010 [3]. These variables are expressed as 

a function of the nominal residual strengths (fR,j, Table 2) obtained by three point 

bending tests on SFRC notched beams. Since this n - w1 relation represents the 

post-cracking behavior of the composite material, by including both the 

contributions due to aggregates and fibers, the local crack stiffness matrix 

  11 t,n

1cr,cD  reported in Equation 5 must be in this case modified by considering a 

single coefficient ct1, which has been derived as follows: 

11t

1m

1
1t1n c

a

w
c)w(   ,   (6) 

so replacing the corresponding (1,1) term cb1+cf1 in Equation 5. 

Finally, a bilinear softening law formulated in terms of stress n vs. crack opening 

w1 has been obtained by means of the inverse analysis method [33]. To perform 
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inverse modeling, a bilinear softening diagram has been first assumed and 

numerical analyses of 3PBT on notched beams have been carried out. 

Subsequently, a best fitting procedure has been undertaken and the constitutive 

model optimized by minimizing the scatter between experimental and numerical 

analyses. Note that the elastic modulus (Ec) as well as concrete mean tensile 

strength (fctm) have been kept constant as they were experimentally determined 

(Table 1). For computational ease, these numerical analyses have been carried out 

by means of a discrete crack approach. The SFRC bilinear post-cracking law has 

been similarly implemented into the local crack stiffness matrix, by still 

considering a unique coefficient ct1 relative to the bridging effect of the composite 

material (concrete + fibers). 

It should be underlined that all the three models described above are consistent 

with the performance approach (according to MC2010 [3]), in which the post-

cracking behavior is a function of the composite material properties, not only of 

the adopted fibers. This also allows correctly modeling the fact that same fibers in 

different concretes would provide a rather different post-peak performance in the 

FRC composite. 

According to the first softening law [32] this effect is taken into account by 

simply varying the bridging coefficient cb1, while keeping constant the fiber 

coefficient cf1. On the contrary, following the other approaches (MC2010 [3] and 

bilinear softening law) the single coefficient ct1 assumes different values 

according to the results of experimental material tests. 

3.2 Tension stiffening 

Tension stiffening effect has been included into 2D-PARC model by 

implementing – for each cracked integration point of the FE mesh – a proper 

bond-slip law into a numerical procedure based on the finite difference method. 

The non-uniform distribution of steel strains due to bond between steel and 

concrete amid adjacent cracks is indeed evaluated in a finite number of points 

along rebar axis (see [25]), by properly discretizing the solving differential 

equation: 

  i

c

s

s
2

i

2

xs
E

E
1

E

4

dx

sd


 












 ,  (7) 
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s being the slip between concrete and steel,  the corresponding bond stress,  the 

geometrical steel percentage,  the bar diameter and Ec, Es the elastic moduli of 

concrete and steel. Thus, it is possible to evaluate the difference between the 

average and local stresses (at crack location) of the reinforcing bar, so as to 

properly model the increased stiffness of the bar in a cracked section due to bond 

[13]. The tension stiffening coefficient can be then evaluated as a function of the 

strain si,cr1 of the ith steel bar in correspondence of the crack: 

si

1i

1cr,si
1i lg




 ,    (8) 

lsi being the length of the ith bar between adjacent cracks and i1 the axial 

component, with respect to bar axis, of the crack displacement vector [25]. 

This resistant mechanism has been then incorporated into the local crack stiffness 

matrix [Dcr1] as part of the sub-matrix [Ds,cr1], which takes into account the 

contribution of steel reinforcement, so smearing the effect provided by bond. The 

matrix [Ds,cr1] can be expressed in the local coordinate system of each 

reinforcement layer (xi,yi), as: 

 





















1i

1i
1cr

si
si

iy,ix

1cr,si
d0

0gED  ,            (9) 

1cr
siE  being the secant elastic modulus corresponding to the steel axial strain at the 

crack, gi1 the coefficient related to tension stiffening and di1 the one representing 

dowel action, which is evaluated according to Walraven and Reinhardt [34]; see 

also Cerioni et al. [25]. As already known, the influence of dowel action can be 

neglected in the analysis of R/FRC ties; however its inclusion in 2D-PARC 

constitutive relation represents a potentiality of the model, which can be relevant 

in the study of other structural RC or FRC elements. 

The sub-matrix specified in Equation 9 is first evaluated for each ith reinforcement 

layer in its own local coordinate system (xi,yi), then transposed into the global 

system and summed up for all steel layers of the analyzed element. 

With regard to the bond-slip law adopted for the resolution of Equation 7, the one 

proposed in Harajli [27] and Harajli and Mabsout [6] has been adopted, since it 

properly takes into account the effect exerted by steel fibers on global structural 

response. As reported in Figure 4a, fiber action is similar to that of transverse 
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reinforcement in reducing the development of splitting cracks and preventing the 

brittle failure that characterizes ordinary unconfined concrete. This effect can be 

then taken into account by explicitly introducing – in the governing equations – a 

sort of “confinement parameter”, which depends on fiber volume percentage in 

the concrete matrix as well as on fiber geometry (namely diameter and length). In 

case of pull-out failure the influence of fibers is not significant and the local 

response in terms of bond stress-slip is similar to that of plain concrete; as a 

consequence, also the governing equations are quite similar – even if not identical 

– to those proposed in MC2010 [3] for ordinary reinforced concrete. Anyhow, the 

analytical formulation of this modified -s relation can be found in details in [26]. 

Since the law proposed in [6, 27] applies only for SFRC elements, the MC2010  

-s relation [3], reported in Figure 4b, has been also implemented into 2D-PARC 

constitutive matrix, to allow the analysis of plain concrete samples, as discussed 

in the following.  

The resulting bond-slip laws for the three considered experimental batches are 

shown in Figure 4c. Note that the three curves are almost superimposed for small 

values of slip, while, as slip increases, the batches with a progressively greater 

amount of fibers appear to be characterized by a less steep ascending branch and 

by a lower plateau corresponding to max (and also to the residual bond strength 

f). This effect is here not related to fibers but to the lower compressive strengths 

of the two FRC materials with respect to reference plain concrete (fcm respectively 

equal to 47.2 MPa for plain concrete, 40.8 MPa for 0.5M and 27.4 MPa for 1M, 

according to Table 1). As an example, Figure 4d reports two typical bond-slip 

curves obtained by considering the same concrete strength, with or without fibers: 

for small values of slip the two curves are still almost identical, while, as slip 

increases, fibers determine a reduction in the slope of the ascending branch and an 

increase in the maximum value of bond strength max and in the length of the 

corresponding plateau. It is worthwhile noticing that, in presence of pull-out 

failure, the law proposed in Harajli [27] and Harajli and Mabsout [6] is 

independent from the fiber content Vf, while this latter influences the trend of the 

curve in case of splitting failure (which has not been considered here, since the 

examined specimens did not show splitting cracks). 

4. Verification of SFRC constitutive tensile laws  
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In order to properly verify the parameters of the adopted tensile constitutive laws 

included into 2D-PARC model for cracked SFRC, the previously described tests 

on small notched beams have been first simulated. The post-cracking behavior of 

these beams without ordinary reinforcement is indeed basically ruled by tension 

softening, and consequently their modeling allows verifying the effectiveness of 

the softening law.  

To this scope, a mesh combining quadratic 8-node as well as triangular 6-node 

and 3-node 2D elements (the latter in the area around the notch to better capture 

stress localizations) has been defined. Figure 5a shows the adopted discretization, 

which has been performed only for one half of the notched beam, taking 

advantage of the symmetry. 

Numerical analyses have been first carried out by considering the tension 

softening model usually implemented into 2D-PARC for FE simulations of SFRC 

material, namely the Li et al. [32] law. The trend of this softening law is mostly 

influenced by the choice of three main parameters – the snubbing coefficient f, the 

interfacial bond strength 0 and the orientation efficiency factor 0 – for which a 

range of variability is suggested in [32], based on experimental data on SFRC 

specimens.  

In this work, reasonable values, reported in Table 5, have been chosen for the 

three-abovementioned parameters (within the range suggested in [32]) on the 

basis of the properties of the considered batches. Although the type of fibers is the 

same, different values have been adopted for the two FRC batches, due to the 

lower strength of the 1M concrete matrix. Accordingly, these values of f, τ0, η0 

(Table 5) have been also adopted for the FE simulations on R/FRC ties having the 

same concrete matrices and fiber contents. The good agreement between 

numerical and experimental behavior of notched beams in terms of applied load 

vs. CMOD response (Fig. 6a-b) confirms the adequacy of the adopted values. 

The numerical modeling of notched beams has been subsequently performed by 

considering other two simplified tension softening relations: the MC2010 [3] law 

and the bilinear equation derived from inverse analysis. 

A comparison between the three considered tensile laws is reported in Figure 5b 

(with reference to 0.5M matrix) in terms of both n-w1 and n-1, by assuming a 

structural characteristic length am1 equal to the length of the adopted fibers (as can 

be found also elsewhere, like in [35]). The three responses are almost coincident 
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in the first part of the descending branch (for very small values of w1), while, as 

crack opening increases, MC2010 [3] law tends to provide a greater fracture 

energy value for both small crack openings (less than 0.2 mm, typical of SLS, 

Serviceability Limit State) and for large crack widths. This trend is also confirmed 

by numerical analyses performed on notched beams through 2D-PARC model, by 

implementing the three abovementioned softening laws. As reported in Figure 6a-

b (respectively referred to 0.5M and 1M specimens), a significant overestimation 

has been obtained by applying MC2010 [3] relation, while the simplified bilinear 

law and the one proposed by Li et al. [32] provide comparable responses, which 

also well fit the available experimental data, for both fiber contents.  

5. Prediction of R/FRC ties post-cracking behavior  

2D-PARC constitutive model has been then applied to the analysis of the 6 

R/FRC and RC ties defined in Table 4. Also in this case, only one half of the 

tensile member has been considered, taking advantage of the symmetry of the 

problem, as shown in Figure 7 (with reference to specimens N180/20). This 

choice has been possible since cracks are assumed to be uniformly smeared. A FE 

mesh constituted by quadratic, isoparametric eight-node 2D elements with 

reduced integration (4 Gauss integration points) has been adopted and the same 

geometric steel ratio has been assigned to all elements, thus smearing also the 

influence of the steel bar over the whole cross-section. Numerical analyses have 

been performed under displacement control (in order to achieve a better numerical 

convergence), by applying an increasingly uniform displacement to all nodes 

belonging to the terminal section of the specimen.  

5.1 Basic assumptions for NLFE analysis 

In this Section some remarks on the basic assumptions adopted in the model – 

mainly concerning material strengths and crack spacing - are discussed, so as to 

allow a better comprehension of the graphs reported in the following.  

FRC tensile behavior in the cracked stage has been modeled by considering the 

three different laws described in previous sections and shown in Figure 5b for the 

batch 0.5M ([32], MC2010 [3], bilinear law). Numerical analyses have been 

carried out by considering deterministic values of material tensile strength as well 

as of fracture parameters through the mesh (without directly taking into account 
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the unavoidable statistical variability affecting any experiment). However, an 

indirect method for considering the material variability was employed as follows. 

The state of stress in R/FRC ties is, in fact, basically uniform and the cracking 

process starts at the weakest spot, while the following cracks will occur on 

locations where the tensile strength of the concrete is always slightly higher. 

Therefore, the most reliable numerical description of this phenomenon could be 

adopting the characteristic concrete tensile strength for the first crack [15] and the 

mean tensile strength for the last. Accordingly, in the stabilized crack stage 

(where no new cracks occur, but existing widen) the mean mechanical concrete 

properties should be used.  

Based on the aforementioned remarks, the three considered concrete tensile laws 

have been properly modified by adopting a characteristic value of concrete tensile 

strength and by assuming, as a first approximation, the post-cracking parameters 

in terms of mean material values. Consequently, it is expected that first crack load 

will be reasonable captured, whereas the R/FRC and RC ties behavior will be 

slightly underestimated especially at the beginning of stabilized crack stage (end 

of crack formation phase). During the stabilized crack stage, the residual post-

cracking strength provided by fibrous reinforcement at crack locations plays a 

relevant role since it governs the amount of stresses that can be re-introduced by 

means of steel-to-concrete bond in the uncracked portions of concrete between 

cracks. Moreover, the concrete portions between cracks remains within the elastic 

range, which generally makes the adoption of concrete characteristic tensile 

strength not a limitation. This procedure is intended to be an appropriate 

approximation of the actual behavior of R/FRC and RC ties within the framework 

of a smeared approach since it indirectly and simply takes into account the main 

effects of statistical distribution of material mechanical properties. 

In Figure 8a the constitutive laws obtained by considering the Li et al. [32] model 

(v1 = 0) and by assuming as concrete tensile strength the mean value fctm or the 

lower bound fctk,0.05 = 0.7 fctm (which is referred to 5% fractile), are reported. It 

should be noticed that this assumption is relevant only for very small crack 

openings (less than 0.1 mm). A negligible difference can be instead noticed as 

crack opening increases (for values bigger than 0.2-0.3 mm).  

The same trend has been also confirmed by FE simulation of R/FRC ties as 

reported in Figure 8b, which shows a comparison between the numerical and 
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experimental response in terms of load vs. strain for R/FRC tie N180/20, with 

0.5M fibers. It is confirmed that the major differences between the two responses 

can be observed for small strains – particularly around the first cracking load – 

while differences become negligible, as expected, in the stabilized cracking stage. 

However, it seems to be clear that the assumption of a lower value for fct allows 

achieving a best fitting of the experimental evidence, so confirming the 

assumption expressed by Bigaj [15]. For this reason, all the following numerical 

curves have been obtained by assuming a tensile strength equal to 0.7fctm, although 

not explicitly declared in the corresponding Figures. 

Numerical results have been also influenced by the assumptions concerning crack 

spacing. In the original formulation of 2D-PARC model [25], the cracked stage is 

assumed to be characterized by a fully developed crack pattern (corresponding to 

the stabilized crack stage), considering a constant value of am1. The spacing is 

evaluated through an “a priori” method based on the transmission length lt, by 

adopting different expressions depending on the type of reinforcement (traditional 

bars and/or steel fibers), as well as on the number of reinforcing layers with 

different orientations (i.e. longitudinal bars and stirrups). In the examined case, 

crack spacing am1 has been first set equal to 1.17 ls,max [11], being ls,max the 

introduction length proposed in MC2010 [3] for elements reinforced with both 

traditional bars and fibers. This last expression enables a rational evaluation of 

tensile stresses attained by steel fibers for a given crack width, and so it can be 

implemented in various analysis models and programs, being useful for predicting 

the structural behavior of R/FRC members. However, it should be noticed that the 

prediction of crack spacing in FRC composites is still a matter of discussion. 

Recent research works (e.g. [36]) have indeed proposed other relations that seem 

to allow a better modeling of experimental results in case of high strength fiber 

reinforced concrete elements. 

The numerical response obtained by implementing the abovementioned MC2010  

[3] expression is reported in Figure 9, in terms of applied load vs. average axial 

strain (Fig. 9a) and in terms of applied load vs. average crack width (Fig. 9b) for 

specimen N120/20, with 0.5M fibers. In the same Figure, the experimental 

response has been also compared to the numerical curve obtained by setting the 

crack spacing equal to the mean value recorded during the experimental tests in 

the stabilized cracked stage. The experimental values of average crack width have 
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been simply evaluated by the average elongation (measured by the 4 LVDTs) 

divided by the number of visible cracks. It should be remarked that numerical 

results shown in Figure 9 have been obtained by applying the softening law 

proposed by Li et al. [32]. It can be also noticed that the two numerical curves are 

almost superimposed and provide a good fitting of the experimental response, 

both in terms of global behavior and in terms of crack opening w1.  

Consequently, in the case of R/FRC ties, the proposed smeared model is able to 

correctly predict the axial stiffness (both in the uncracked and cracked stage), the 

yielding of rebars (through the adopted tension stiffening model), the ultimate 

sustainable load, as well as the evolution of average crack widths with applied 

loads, which represent some of the most significant quantities to be used in 

structural design. On the contrary, since these elements are subjected to a uniform 

state of stress, the model cannot be predictive with regard to crack spacing. 

However smeared models, like the one herein described, are also able to provide 

information on crack pattern evolution (in terms of crack spacing and position 

along the longitudinal element axis) when applied to the analysis of structural 

elements that are in general subjected to stress gradients (such as beams or slabs; 

see [26], [37-39]).  

The investigated problem concerning tension ties represents a sort of “limit case” 

in which both cracks and rebar are smeared and the applied state of stress is 

uniform. Nevertheless, as illustrated before, this approach can represent an 

interesting alternative with respect to finite element methods commonly adopted 

in the literature for this type of structural elements, which are generally based on 

discrete approaches or which model only the cracks as smeared, by considering 

instead the reinforcement as discrete [40]. One of the peculiarities of the adopted 

approach is indeed related to the ability of taking into account both tension 

softening and tension stiffening contributions into the formulation of the 

constitutive model, so reducing the computation effort related to the construction 

of the FE mesh, since no interface elements, nor double nodes in the cracked 

sections are required.  

Moreover, the particular nature of the considered problem and the availability of 

measured values of crack spacing allow a deepen study of the effectiveness of 

softening models available in technical literature for FE applications, which is one 

of the main objective of this work. For these reasons, it has been chosen to adopt 
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the mean experimental value of crack spacing in the numerical analyses reported 

in the following. 

5.2 Main numerical results 

Some of the main comparison between experimental and numerical curves 

obtained by applying all the above described tension softening models (Li et al. 

[32], MC2010 [3], bilinear law), and adopting the experimental measured value of 

average crack spacing are reported Figure 10. In case of plain concrete specimens, 

numerical analyses have been performed by only using the law proposed by Li et 

al. [32]. For comparison, bare bar response has been also plotted on the graphs. 

The comparisons between numerical and experimental curves (Fig. 10) highlight 

that the Li et al. [32] tension softening model as well as the bilinear law appear to 

be adequate in representing the experimental behavior. On the contrary, the 

adoption of the MC2010 [3] law yields to an overestimation of the softening 

contribution especially in the post-yielding branch (for larger crack widths), as 

already highlighted in Figures 5b and 6. However, it should be remarked that this 

law has been developed for design purposes and the same fib Bulletin N° 65 [3] 

suggests the use of more advanced constitutive laws in refined FE analyses. 

Similar results have been also obtained for specimens N180/20 (Figure 11), which 

are characterized by the same bar diameter but a bigger cross-section. The 

numerical analyses have been again performed by considering the same modeling 

choices already described for specimens N120/20. From Figure 11 it emerges that 

the proposed approach is able to represent the global behavior of the examined 

R/FRC ties, even if, for all the adopted tension softening models, better results 

have been achieved for a lower fiber content. For these specimens, having a low 

longitudinal steel ratio ( = 0.98%), the role of fibrous reinforcement in the 

stabilized crack stage as well as in the post-yielding branch can be better 

appreciated. For both R/FRC ties (0.5M and 1M, Figure 11b and c, respectively), 

it can be recognized a similar quite good prediction of the numerical curves based 

on Li et al. model [32] and bilinear law, even if, especially for R/FRC 1M sample 

(Figure 11c), a worse estimation in the stabilized crack stage and upon yielding 

can be observed. This trend appears even more pronounced when using the 

MC2010 [3] law.  
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Subsequently, FE analyses have been repeated by updating the average crack 

spacing am1, on the basis of the experimental distance between cracks measured at 

different values of the applied load ("evolutive crack spacing"), in order to 

evaluate the possible improvement in numerical results with respect to the 

classical formulation with a constant average crack spacing. Generally speaking, 

including the evolution of crack spacing in the analyses should allow a better 

representation of R/FRC tie global behavior in the first stage of crack formation. 

On the other hand, the two approaches should provide almost coincident results in 

the stabilized crack stage.  

The results obtained from the two approaches (constant or evolutive crack 

spacing) are reported in Figure 12 for specimens N180/20 (in which only the 

tension softening law by Li et al. [32] has been used). It has been found indeed 

that the numerical behavior of these specimens (which are characterized by a 

larger concrete cover and, thus, lower longitudinal steel ratio), is more affected by 

the crack spacing value assumed during the analysis, differently from specimens 

N120/20. Even if the curves obtained by assuming an evolutive crack spacing 

better fit the experimental responses for a given fiber content (plain or 0.5 M), the 

classical formulation based on the average crack spacing seems to be however 

adequate in predicting the most significant involved parameters (axial stiffness, 

yielding of rebar, ultimate load, crack width), requiring a lower computation 

effort. The same results have been also reported in Figure 13a in terms of tension 

stiffening contribution, defined as the difference between the load carried by the 

R/FRC tie and the corresponding resisted by the bare bar (Load, Figure 2a) for a 

given strain, according to Fields and Bishoff [9] and Wu and Gilbert [41]. The 

same graph of Figure 13a better highlights the contribution due to fibers (with 

respect to the reference plain concrete specimen) in the post-cracking stage, from 

both an experimental and numerical point of view. For the same specimen 

typology, the higher toughness due to fibers significantly increases the tensile 

strength of concrete between adjacent cracks for a given value of the average axial 

strain, so determining in turn an increase of tension stiffening contribution. This 

behavior appears to be more significant when comparing plain concrete to 0.5M 

specimen, while the beneficial effects related to a further increase in fiber content 

are partially counteracted by the lower properties of concrete in 1M sample 

(which has not been plotted so as to improve the readability of the graph).  
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Finally, Figure 13b shows a comparison between experimental and numerical 

responses for the same N180/20 specimen with 0.5M fibers in terms of tension 

stiffening contribution, by reporting all the three tension softening models 

implemented into 2D-PARC matrix, while keeping constant am1. Similarly to 

previous graphs, the bilinear law and the Li et al. law [32] allow to achieve a 

better fitting of experimental results both in the stabilized cracking stage and in 

the post-yielding range. 

 

6. Conclusions  

In this paper refined non-linear FE analyses have been performed on normal 

strength R/FRC and RC ties, characterized by different geometries and fiber 

contents. 2D-PARC constitutive matrix for SFRC elements [26] has been applied 

to correctly model the improvement offered by the inclusion of fibers in concrete 

mixes on global structural behavior, especially under service loads. Suitable semi-

empirical laws have been implemented to this aim. The tensile behavior of R/FRC 

elements has been analyzed by separately evaluating tension softening and tension 

stiffening, even though these two mechanisms are often modeled together and 

simply referred to as “tension stiffening” elsewhere. Tension stiffening has been 

herein simply related to bond between steel and concrete, taking into account the 

influence exerted by fibers indirectly, by adapting the shape of the bond-slip law. 

The main conclusions of this work can be summarized as follows: 

- even if discrete models are still more frequently adopted for the analysis of 

R/FRC ties, the smeared model herein proposed is able to correctly represent the 

behavior of these structural elements, provided that reliable tension softening and 

tension stiffening relations are included; 

- the resistant contribution of fibers at crack (tension softening) has been modeled 

by considering three softening laws characterized by a different level of accuracy 

(Li et al. [32]; MC2010 [3]; bilinear law). The law proposed by Li et al. and the 

simplified bilinear relation based on inverse analysis provide a quite precise 

response. On the contrary, MC2010 [3] law tends to significantly overestimate the 

softening contribution offered by fibers, especially in the post-yielding branch 

(i.e. for higher values of crack opening). This tendency occurs also in the 

stabilized crack stage for specimens having low longitudinal steel ratios; 
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- a further improvement of numerical analyses has been obtained by considering a 

variable (evolutive) crack spacing instead of a constant value, the latter related to 

the stabilized crack stage. In fact, a better representation of the actual response of 

tensile members can be obtained, especially for low cracking values. However, 

the classical formulation of the adopted model, based on the average crack 

spacing, seems to be adequate in predicting the most significant structural 

parameters involved (axial stiffness, yielding of rebar, ultimate load and crack 

width), by requiring at the same time a lower computation effort; 

- the effectiveness of numerical analyses, when applied to real case studies, is also 

related to a suitable estimate of crack spacing, that can be made based e.g. on code 

formulae, such as the one reported in MC2010 [3]. 
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Fig. 2 (a) Typical responses and (b) evolution of the mean crack spacing of RC and R/FRC 

N200/30 ties. 
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Fig. 3 SFRC membrane element in the cracked stage: kinematical parameters of the crack. 
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Fig. 4 Adopted bond-slip laws: (a) Harajli [27] and Harajli and Mabsout [6]; (b) MC2010 [3]. 

Comparison of the adopted bond-slip law for (c) the three considered mixes and (d) for specimens 

having the same concrete strength, with and without fibers. 
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Fig. 5 (a) FE mesh of small notched beams (dimensions in mm); (b) tension softening laws 

considered for FE analyses on notched beams. 
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Fig. 6 Comparisons between experimental and numerical responses in terms of load vs. CMOD for 

(a) 0.5M and (b) 1M notched beams by considering different tension softening laws. 
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Fig. 7 FE mesh adopted for N180/20 R/FRC tension ties (dimensions in mm). 
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Fig. 8 Influence of the assumed concrete tensile strength value on (a) Li et al. [32] tension 

softening model, (b) global behavior of N180/20 R/FRC tie, in terms of load vs. strain response. 
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Fig. 9 Comparisons between numerical and experimental response for N120/20 tie with 0.5M 

fibers by considering the experimental or the MC2010 [3] average crack spacing am1 in terms of 

(a) load vs. average axial strain and (b) load vs. average crack width.  
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Fig. 10 Comparisons between numerical and experimental response for N120/20 (a) plain 

concrete, (b) 0.5M and (c) 1M R/FRC ties in terms of load vs. strain response. For 0.5M and 1M 

specimens, a comparison between different tension softening laws is also provided. 
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Fig. 11 Comparisons between numerical and experimental response for N180/20 (a) plain 

concrete, (b) 0.5M and (c) 1M R/FRC ties in terms of load vs. strain response. For 0.5M and 1M 

specimens, a comparison between different tension softening laws is also provided. 
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Fig. 12 Comparison between numerical and experimental response for 0.5M N180/20 R/FRC tie 

in terms of load vs. strain response by assuming Li et al. [32] softening law and different crack 

spacing (constant or evolutive). 
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Fig. 13 Comparisons between numerical and experimental response for N180/20 ties in terms of 

tension stiffening contribution vs. strain response by assuming (a) Li et al. [32] softening law, a 

variable (evolutive) or constant crack spacing and a different amount of fibers (plain concrete and 

0.5M) or (b) different tension softening laws and a constant crack spacing. 
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Table 1 Concrete mechanical properties 

 plain 0.5M 1M 

fcm [MPa] 47.2 40.8 27.4 

fctm [MPa] 3.50 3.35 2.85 

Ec [MPa] 33900 32600 27800 
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Table 2 Fracture parameters of SFRC according to EN 14651 

SFRC matrix fLm [MPa] fR1m [MPa] fR2m [MPa] fR3m [MPa] fR4m [MPa] 

0.5M 4.60 4.12 4.07 3.35 2.69 

1M 4.64 5.43 4.89 4.36 3.86 



41 

Table 3 Geometrical and mechanical properties of reinforcing steel bars (2nd phase) 

Diameter 

 [mm] 

As 

[mm2] 

Es 

[GPa] 

fy 

[MPa] 

ft 

[MPa] 

10 78 204 522 624 

20 314 192 515 605 

30-1† 707 192 554 672 

30-2† 707 189 484 604 

† - The 30 bars came from two different production heats. 
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Table 4 Geometrical characteristics and fiber contents of investigated specimens 

Tension tie 
N120/20 

plain 

N120/20 

0.5M 

N120/20 

1M 

N180/20 

plain 

N180/20 

0.5M 

N180/20 

1M 

Side [mm] 120 180 

Reinforcing bar [mm] 20 20 

Length [mm] 1500 1500 

Reinforcing bar ratio,  [%] 2.23% 0.98% 

Vf [%] 0 0.5 1 0 0.5 1 
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Table 5 Assumed values for parameters of Li et al. [32] law 

Fibers f 0 0 

0.5M 0.75 5.5 1.0 

1M 0.50 4.0 1.0 

 

 


