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Highlights

• We adapt the Tweedie distribution for modelling economic transac-
tions.

• We address statistical and computational issues in parameter estima-
tion.

• We develop an efficient exact algorithm for random variate generation.

• We empirically show the potential of the Tweedie model for anti-fraud
analysis.

1



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Modelling international trade data with the Tweedie

distribution for anti-fraud and policy support

Lucio Barabesia, Andrea Cerasab, Domenico Perrottab, Andrea Ceriolic,∗

aDepartment of Economics and Statistics, University of Siena; Piazza S.Francesco 7,
Siena, Italy

bEuropean Commission, Joint Research Centre, Institute for the Protection and Security
of the Citizen; Ispra, Italy

cDepartment of Economics, University of Parma; Via Kennedy 6, Parma, Italy

Abstract

This paper shows the potential of the Tweedie distribution in the analysis of
international trade data. The availability of a flexible model for describing
traded quantities is important for several reasons. First, it can provide direct
support to policy makers. Second, it allows the assessment of the statistical
performance of anti-fraud tools on a large number of data sets artificially
generated with known statistical properties, which must comply with real
world scenarios. We see the advantages of adopting the Tweedie model in
several data sets which are particularly relevant in the anti-fraud context
and which show non-trivial features. We also provide a systematic outline of
the genesis of the Tweedie distribution and we address a number of relevant
statistical and computational issues, such as the development of efficient
algorithms both for parameter estimation and for random variate generation.
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1. Introduction

The regulatory framework of the European Union (EU) reserves to the
EU institutions the responsibility of trade relations between the EU Member
States and the non-EU countries (TFEU, 2012). It also gives mandates
to both institutions and Member States to counter fraud and protect the
financial interests of the Union (Council, 1995). This article is grounded on
more than fifteen of work conducted in the anti-fraud context by the Joint
Research Centre (JRC) of the European Commission (EC), in collaboration
with the European Anti-fraud Office (OLAF), academic partners and relevant
authorities in Member States. The ultimate target is the development of
sound statistical methods for the analysis of international trade data, in
order to detect customs frauds (e.g., under-valuation of import duties), trade-
related infringements (e.g., money laundering) and cases of circumvention of
EU trade regulations (e.g., anti-dumping and countervailing measures). The
resulting signals are used in the definition of audit plans or for initiating
investigations.

The statistical tools that the JRC has implemented for anti-fraud analysis
involve the inspection of the quantity of specific products which are imported
in, or exported from, the EU market. It is crucial to rely on flexible statistical
models for describing the distribution of these quantities for a large number
of traded products. First, such models will provide direct support to the EU
policy makers, in the form of tools for monitoring the effect of policy mea-
sures and for deciding how to react against international trade distortions
originating in and outside the EU. For example, statistical models of trade
can provide factual background for the official communications on trade pol-
icy (see, e.g., European Commission, 2012), or for the related preparatory
technical documents (Lejeune et al., 2013).

Another important goal for modelling traded quantities is the assess-
ment of the statistical performance of alternative methods used for finding
relevant patterns in international trade data. For anti-fraud purposes, out-
lier detection and robust clustering tools are typically required (see, e.g.,
Fogelman-Soulie et al., 2008; Riani et al., 2009; Cerioli, 2010; Perrotta and
Kopustinskas, 2010; Cerioli and Perrotta, 2014). It is very difficult to de-
rive analytical results for such methods in finite samples, especially when
non-Gaussian distributions are involved. Therefore, the methods need to be
compared, evaluated and eventually tuned on a large number of data sets
artificially generated with known statistical properties, which must reflect
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the distributions observed in trade data. The compliance of such models
with real world scenarios is of paramount importance, especially in the case
of legal disputes, when statistical evidence is evaluated in Court. For exam-
ple, Cerioli and Perrotta (2014) tackle the problem of assessing alternative
robust regression clustering tools in a particular anti-fraud problem. They
thus assume a Gamma distribution for simulating traded quantities, but with
a rather ad hoc and product-specific choice of parameter values. Their ap-
proach, although effective in specific applications, is thus difficult to replicate
in large-scale analyses of different products and lacks general probabilistic
motivation. The adoption of nonparametric tools for density estimation is
also problematic for similar reasons, as it does not allow for ready simulation
of artificial data sets. Furthermore, it is not straightforward how to extend
standard density estimation methods to the case of distributions with a non-
negligible mass at (or close to) zero, as it often happens in the case of trade
data.

This article concentrates on the Tweedie distribution, a flexible three-
parameter model which is fitted to the traded quantity of products of major
importance for anti-fraud purposes and trade policy support. Similar models
have been successfully adopted in different application fields, and seem to be
particularly attractive in economics and finance (Menn and Rachev, 2005;
Rachev et al., 2011; Francq and Zakoian, 2013; Babaei et al., 2015). The
main applied contribution of our work is to show that the model that we
propose is able to capture most of the basic features observed in international
trade data. Such features are not easy to analyze, due to the combination
of economic activities and normative constraints. Indeed, we typically have
to face with markedly skew empirical distributions with heavy tails, a large
number of rounding errors in small-scale transactions due to data registration
problems, and structural zeros arising because of confidentiality issues related
to national regulations. We see the advantages of adopting the Tweedie
distribution in several data sets which are particularly relevant for the tasks
sketched above. One is the category of the Petroleum oils and oils obtained
from bituminous minerals, crude, of great importance for governments and
policy makers. The second application area includes a range of fraud-sensitive
products that are regularly monitored by the anti-fraud partners of the JRC.

To achieve our applied goal we also face a number of methodological and
computational issues. First, we provide a systematic introduction to the
Tweedie distribution, unifying contributions which are currently scattered
in the literature. We emphasize the stochastic genesis of this model either
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as an exponentially tilted stable or a compound Poisson distribution. We
also describe how the Tweedie distribution can be embedded in the theory
of Lévy processes, which has direct relevance to international trade. We
argue that our systematic outline could be easily understood and provide
motivation to applied scientists analyzing trade data. Then, we suggest new
efficient computational algorithms both for estimating the parameters of the
Tweedie model from observed trade data and for random variate genera-
tion in Monte Carlo studies. Computational performance of the estimation
method represents a crucial issue in anti-fraud problems, as the model needs
to be estimated on thousands of possible products. Similarly, the availabil-
ity of efficient and easy-to-implement simulation algorithms is an important
ingredient for performing large scale assessments of the effectiveness of sta-
tistical anti-fraud tools.

The rest of the paper is organized as follows. In order to sharpen the focus
of our work, in §2 we make some connections with approaches in Operations
Research and Economic Theory dealing with international trade. The genesis
and format of the trade data that we need to model are introduced in §3.
Then, §4 gives an account of the Tweedie distribution, relates it to Lévy
processes and motivates its use for trade data. In §5 we propose an efficient
approach to parameter estimation and we provide efficient random variate
generators from the Tweedie model. In §6 we apply the model to empirical
cases of major importance in anti-fraud analysis, while §7 provides some
comparisons with respect to competing models. In §8 we assess the stability
of our models over time. Closing remarks are given in §9. Appendix A
contains the pseudo-code of our simulation algorithms, while Appendix B
reports descriptive statistics for the trade data that we analyze.

2. Trade models in Operations Research and related fields

The dynamics of international trade has been traditionally studied on
the basis of economic theory models using methodologies from different dis-
ciplines, in particular Operations Research, Information Theory and entropy
optimization principles. A classic starting point is a linear programming
cost minimization model that relates the flows of commodities between two
geographic regions to the production, consumption and costs of transporta-
tion (see, e.g., Harris, 1974). In this model, if qij is the quantity of product
shipped from an origin i to a destination j and cij is the related trans-
portation, eligible flows configurations are found by minimizing the objective
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function ∑

i

∑

j

cijqij,

subject to the constraints qij ≥ 0,
∑

j qij = Qi. for each origin i, where Qi. is
the total production at origin i (used as surrogate for the total export from i),
and

∑
i qij = Q.j for each destination j, where Q.j is the total consumption

at destination j (used as surrogate for the total import at destination j).
Additional constraints are often considered to address realistic trade patterns,
a popular one being the entropy function −∑i

∑
j qij ln qij (see e.g. Erlander,

1977, 1982).
A second research line applies entropy maximizing principles to various

sets of assumptions of typical trade frameworks, to derive the most unbiased
(or less informative) distributions for the trade quantities or for other trade
statistics of interest. This is achieved by specifying a finite number of moment
values and by choosing, out of all the probability distributions with these mo-
ment values, the one which maximizes an entropy measure. In the discrete
case this is the Shannon entropy or (in case a prior probability distribution
is also given) the Bayesian entropy. Lagrange multipliers are then used to
solve the constrained problem. The principle, originally proposed for discrete
data, was generalized to the continuous case by Jaynes (1968). Its application
to modelling transportation and international trade are described in Kapur
(1993, pp. 425–428). Other examples of use of the Maximum Entropy prin-
ciple in international trade are discussed by Wilson (1970). The approach is
flexible and can be also combined with rather complex assumptions on trade
dynamics; see, e.g., the integration of Lotka-Volterra “predator–prey” type
dynamics recently proposed by Fray and Wilson (2012), or the possibility to
include transaction costs (Zhang et al., 2012).

To give an idea of the distributions that can be derived for modelling
international trade with the Maximum Entropy principle let us now assume,
following Kapur (1993), that Q.j is the total import at destination j in the
current year; similarly, Qi. is the total export at origin i in the current year.
In addition, let

∑
i

∑
j qij = Q and define pij = qij/Q, pi· = Qi./Q and

p·j = Q.j/Q. We do not know the qij values for the current year, but we can
assume to know averages from previous years and define apriori estimates
for the unknown proportions pij, say p∗ij. In this setting, by maximizing
the entropy function under the given constraints on past averages and on
current total import/export values obtained from an external source (e.g.
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information on production/consumption, as above), we find the maximum
entropy estimates

p̃ij = p∗ijpi·p·jaibj,

where ai and bj are determined by using ai
∑
p∗ijp·jbj = 1 and bj

∑
p∗ijpi·ai =

1. The maximum entropy estimates p̃ij will be finally used to infer the
volumes qij traded in the current year between each pair of countries.

Although rooted in the same types of data, these research lines are differ-
ent from our approach. Typically the goal is to build input-output models for
the trading countries. For example, one can use the model to check if a cer-
tain policy objective, e.g. to increase GDP per capita, is feasible and what is
the best trade setting to achieve it. Then, the trade data are used to validate
the relationships between the model factors, calibrate the model parameters
and study the dependence of the initial conditions on the model dynamics.
The tools of sensitivity analysis can be an extremely useful support for such
a purpose (Saltelli et al., 2004).

On the other hand, the aims of our statistical perspective are to justify
on solid grounds the choice of a certain density function for the trade data
population and to fit its parameters on the basis of the observed trade sam-
ple data. Our selected model, i.e. the Tweedie distribution, has a clear
interpretation according to the actual value of its estimated parameter and
also a substantive motivation in terms of the generating economic process,
as shown in §§4.1–4.3 below. Furthermore, we can also verify the quality
and stability of our estimated models by checking their distribution for data
chosen according to different criteria (randomly, in different time windows,
etc.).

To understand the main links between the two perspectives we recom-
mend reading the excellent book of Kapur (1993, pp. 266–291), which also
contains elegant mathematical programming formulations of relevant entropy
maximization problems (pp. 553–564) and interesting links between the
probability distributions derived through the maximum entropy approach
and the frequencies in the cells of contingency tables (pp. 252–265). In
particular, it shows how to derive the classical χ2 test for testing the in-
dependence of attributes in contingency tables from the maximum entropy
principle. This and other relationships were brought up by Theil (1967) and,
again in relation to international trade, also by Wilson (1970).
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Table 1: A glimpse into the data set for product “Petroleum oils and oils obtained from
bituminous minerals, crude” (CN-27090090).

Import country Export country CN code Month Traded quantity

EU1 EU1 27090090 August 2008 1,401,221.0
EU1 EU2 27090090 August 2008 146,360.1
EU3 EU2 27090090 August 2008 17,422.0
. . . . . . . . . . . . . . .

3. Trade data and the related statistical challenges

Our data come from the official extra-EU trade statistics, Extrastat, ex-
tracted from the COMEXT database of Eurostat. We consider monthly
aggregates of trade quantities for each product, country of origin and coun-
try of destination, registered in the period from August 2008 to July 2012.
We construct one data set for each product. A glimpse into one of them
is provided in Table 1, where EU1,EU2, . . . denote the EU Member State
and EU1,EU2, . . . are non-EU countries. Each observation in the data set
is the amount of trade for the selected product that took place from a non-
EU country to a Member State in a given month. This observation may
be the result of a single transaction, or, more frequently, it is the aggregate
over several transactions possibly involving different traders. The aggregates
are built from the customs declarations collected from individuals or compa-
nies by the Member States, following a strictly regulated process (Eurostat,
2006). The products are specified according to a numeric code of the Com-
bined Nomenclature (CN). We model data specified at the maximum level of
accuracy generally accessible for both imports and exports, that is 8 CN dig-
its. This level of classification, containing more than 10,000 sub-headings, in
general is sufficiently detailed to distinguish the products by their material,
function and degree of processing.

Depending on the product, the traded quantities are expressed in tons of
net mass and/or in supplementary units (liters, number of items, etc.). The
weight of packaging is not included in the net mass. With the aim of sim-
plifying customs operations, small scale transactions may not be declared by
the traders. The thresholds are fixed by Member States within the maximum
limit of 1 ton for the net masses and 1000 euros for the values. However,
the national administrations have to make estimations for trade below the
thresholds, for which there are no common methodologies. In addition, when
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statistical units risk to disclose information on individual traders, the de-
clared quantities and/or values may be hidden to the user by replacing them
with a zero. Again, each Member State fixes the criteria to decide which data
units should be treated as confidential. As a result of these issues, the data
include monthly aggregates with quantity rounded to zero but of positive
value and also (but less frequently) aggregates of positive quantity but value
rounded to zero. Data quality is quite heterogeneous across countries and
products and, for this reason, is subject to constant monitoring by the sta-
tistical authorities and customs services. However, only macroscopic outliers
are removed or corrected.

The typical combination of trading factors, regulation constraints and
reporting errors (either fraudulent or not) gives rise to empirical distributions
of quantities that are markedly skew, with heavy tails and a considerable
number of transactions very close, or even equal, to zero. To be concrete,
Figure 1 reports the empirical distribution of traded quantities, in millions of
tons, for product “Petroleum oils and oils obtained from bituminous minerals,
crude” (CN-27090090) in the selected time frame (August 2008 to July 2012,
chosen to cover a sufficiently long period). This product is the most relevant
one for the EU balance sheet, covering alone around 17% of all EU trade
imports. Its distribution, which is described and analyzed in detail in §6.1, is
the result of 6,651 transactions, concerning imports of the selected product
in all Member States from non-EU countries. With a slight graphical abuse,
the black bin of the histogram depicted in the left-hand panel corresponds
to 286 transactions for which the recorded quantity is exactly zero, due to
rounding errors or – more often – to confidentiality issues. The long and
slowly decaying right-tail is paramount, as is the spike of transactions for
which the recorded quantity is positive but very close to zero. Indeed, in this
example slightly more than 20% of the observations fall in the first strictly
positive bin of the histogram, which corresponds to a traded quantity of
about 45,000 tons. The largest transaction exceeds 4,220,000 tons. The
empirical masses concentrated both at the origin and in a relatively small
neighbourhood of it have great influence on parameter estimation for the
candidate statistical models which are fitted to such data, as well as on the
assessment of model accuracy. Any credible modelling must deal carefully
and appropriately with the small values, since they comprise a large part
of the data set. We thus need a statistical model with enough flexibility to
accommodate both these masses and the tail of the distribution.

We emphasize that, although the qualitative tendency observed in inter-
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Figure 1: Left: empirical distribution of traded quantities, in millions of tons, for prod-
uct “Petroleum oils and oils obtained from bituminous minerals, crude” (CN-27090090),
recorded in COMEXT from August 2008 to July 2012. In this example 4.3% of the data
are null (black bin of the histogram). Right: zoom into the right-hand tail.

national trade data is general, the quantitative precise specification of the
features described above is product-dependent and cannot be anticipated
without visual inspection of the data, which is impossible in routine anti-
fraud applications. Therefore, our distributional model must fit adequately
well to a large number of data sets without prior specification of any tun-
ing constant. It is also impractical to model the rounding and recording
errors precisely, given the currently available information, since regulations
and controls still vary considerably from Member State to Member State.
We find that our model based on the Tweedie distribution has the required
flexibility for many products which are relevant in anti-fraud analysis.

4. Genesis of the Tweedie distribution

The Tweedie distribution has been popularized and analyzed at length by
Jörgensen (1987), following the seminal ideas of Tweedie (1984). For some
parameter values the distribution has been also introduced by Hougaard
(1986). Further discussion is contained in Aalen (1992) and Barndorff-Nielsen
and Shephard (2001). Hougaard (1986) gives the Laplace transform of the
Tweedie r.v. X with the following parametrization:

LX(s) = E[exp(−sX)] = exp[(δ/α)(θα − (θ + s)α)], Re(s) > 0, (1)

where the parameter space is given by

(α, θ, δ) ∈ {]−∞, 1]×]0,∞[×]0,∞[} ∪ {]0, 1]× {0}×]0,∞[}
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and the boundary for α = 0 has been managed for analytical continuity.
It is worth considering the family morphology as parameters vary. Since

α crucially determines the characteristics of the Tweedie distribution, we will
focus on the two fundamental subsets of its parameter space in §4.1 and §4.2,
respectively.

4.1. The Tweedie distribution as an exponentially-tilted stable distribution

We first assume that α ∈]0, 1]. Let Z be a positive Stable r.v. of index
α (see Sato, 1999, for details). The Laplace transform of the scaled r.v.
Y = (δ/α)1/αZ is

LY (s) = exp(−(δ/α)sα), Re(s) > 0.

In such a case, expression (1) may be rewritten as

LX(s) =
exp[−(δ/α)(θ + s)α]

exp(−δθα/α)
=
LY (θ + s)

LY (θ)
,

i.e. an exponentially-tilted stable r.v. X with tilting parameter θ is achieved.
See, e.g., Devroye and James (2014), Lijoi and Prunster (2014), and Favaro
and Nipoti (2014) for details on this distribution.

If fX and fY are the p.d.f.’s of X and Y with respect to the Lebesgue
measure on R, we obtain

fX(x) =
exp(−θx)fY (x)

LY (θ)
.

Since

fY (x) =
∞∑

n=1

(−1)nδn

n!Γ(−nα)αn
x−nα−1I[0,∞[(x),

where IB is the usual indicator function of a given set B (Sato, 1999), it
follows

fX(x) = exp(−θx+ δθα/α)
∞∑

n=1

(−1)nδn

n!Γ(−nα)αn
x−nα−1I[0,∞[(x).

A number of special distributions are contained in the family for α ∈]0, 1]:
the positive Stable r.v. Z is achieved for θ = 0 and δ = α, while α = 1/2
yields the inverse Gaussian distribution. In addition, the Dirac mass at
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x = δ is achieved if α = 1 for any θ ≥ 0. Finally, the Gamma distribution
with shape parameter δ and scale parameter (1/θ) is obtained as α ↓ 0.
The parameters α and θ thus rule the tail heaviness of the distribution.
Specifically, for α ∈]0, 1], in the limiting case where θ = 0 moments exist
solely for order r < α, while for θ > 0 the moments of all orders exist, even
if the right tail tends to be heavier as θ approaches zero.

4.2. The Tweedie distribution as a compound Poisson distribution

When α ∈]−∞, 0[, expression (1) may be rewritten as

LX(s) = exp[−(δθα/α)((1 + s/θ)α − 1)], (2)

i.e. the law of X may be expressed as a compound of a Poisson distribution,
with parameter (−δθα/α), and Gamma r.v.’s with shape parameter (−α)
and scale parameter 1/θ (Aalen, 1992). If {Gn}n≥1 is a sequence of copies of
such Gamma r.v.’s, while N is a Poisson r.v. with parameter (−δθα/α), X
is thus stochastically represented as

X
L
=

N∑

n=1

Gn, (3)

with the assumption that X degenerates at zero if N = 0. Hence, in this case
X displays a mixed distribution, given by a convex combination of a Dirac
distribution (with mass at zero) and an absolutely continuous distribution.
By exploiting the properties of Gamma r.v.’s, the distribution function of X
is

FX(x) = exp(δθα/α)I[0,∞[(x) + [1− exp(δθα/α)]

∫ x

−∞
gX(u)du,

where gX is the p.d.f. of X conditioned to the event {N > 0}. From (2), we
obtain

gX(x) =
exp(−θx+ δθα/α)

1− exp(δθα/α)

∞∑

n=1

(−1)nδn

n!Γ(−nα)αn
x−nα−1I[0,∞[(x).

Hence, gX coincides with fX for α ∈]0, 1] up to the factor [1−exp(δθα/α)]−1.
Again, some special distributions are contained in the family: the non-

central Gamma distribution of zero shape is achieved for α = −1, while
the Poisson distribution is obtained as α → −∞. In turn, the Gamma
distribution with shape parameter δ and scale parameter 1/θ is accomplished
as α ↑ 0.
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4.3. The Tweedie distribution embedded in the theory of stochastic processes

In order to motivate the Tweedie model for trade data, it is interesting
to provide the genesis of the distribution in the framework of Lévy processes.
Informally speaking, a non-negative Lévy process is a stochastic jump process
with non-negative, independent, time-homogeneous increments. See Sato
(1999) for a formal definition. The Laplace transform of such a process, say
Xt with t ≥ 0, is given by the Lévy-Khintchine representation

LXt(s) = E[−sXt] = exp[−tψ(s)], Re(s) > 0,

where t is the time parameter of the process, while the function

ψ(s) =

∫
(1− e−sx)ν(dx)

is referred to as the characteristic exponent of the Lévy process and ν is the
so-called Lévy measure. The family of Lévy processes encompasses many re-
markable special cases, such as the compound Poisson processes, the Gamma
processes, the Stable processes, among others. Indeed, all non-negative Lévy
processes are limits of compound Poisson processes.

In trade, an observation corresponding to a given positive variable may
be ideally seen as the result of a cumulative process in which the marginal
contributions occur independently during time and at the same rate. Indeed,
the COMEXT data introduced in §3 are precisely the result of such an ag-
gregation, involving all the imports of the selected product in a given month.
It is apparent that this concept may be modelled as a Lévy process, and
the stochastic outcome at a given time is actually the observation on hand.
Hence, it is interesting for our purposes to embed the Tweedie distribution
in the framework of Lévy processes.

When α ∈]0, 1[, by taking an exponentially-tilted stable Lévy measure
such that

ν(dx)

dx
=

λ

Γ(1− α)
x−1−α exp(−θx)I[0,∞[(x),

where λ > 0, it follows that

ψ(s) =
λ

Γ(1− α)

∫ ∞

0

(1− e−sx)x−1−α exp(−θx)dx =
λ

α
((θ + s)α − θα).

Hence, the Laplace transform of the process Xt at time t is given by

LXt(s) = exp[(λt/α)(θα − (θ + s)α)], Re(s) > 0.

13
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By letting λt = δ for a fixed t, the Tweedie r.v. for α ∈]0, 1[ may thus be
considered as the “outcome” of an exponentially-tilted stable Lévy process.
On the contrary, a non-stochastic process is actually involved in the case
α = 1, since the Tweedie distribution degenerates to a Dirac mass in that
situation (see Brix, 1999, p. 933).

Subsequently, let us take α ∈]−∞, 0[. In this case, a Poisson process of
rate λ is running on time scale t and each jump is assumed to be a Gamma r.v.
(independent of the past) with shape parameter (−α) and scale parameter
1/θ. This compound Poisson process Xt is actually the sum of the Gamma
r.v.’s up to time t. The Laplace transform of the process Xt at time t is given
by

LXt(s) = exp[λt((1 + s/θ)α − 1)], Re(s) > 0,

and hence Xt is a Lévy process with characteristic exponent given by

ψ(s) = λ(1− (1 + s/θ)α).

By letting λt = −δθα/α for a fixed t, it is apparent that the Tweedie r.v. for
α ∈]−∞, 0[ may be considered as the “outcome” of this compound Poisson
process.

4.4. Potential of the Tweedie model for trade data

It is intuitively apparent from the discussion outlined above that the
flexibility of the Tweedie distribution makes it an attractive candidate for
modelling trade data sets which follow the qualitative pattern depicted in
Figure 1. According to its actual parameter values, it can accommodate tails
of different length and thickness, as well as allowing for the height and the
position of the spike close to the origin.

We emphasize that the Tweedie model is widely applicable to data from
different countries and also of possible different quality concerning under-
reporting issues. As this model fits automatically the presence of null and
very small values, it does not require that the user specifies the actual thresh-
old for rounding errors, nor the the precise mechanism which generates under-
reporting for small trade quantities. These are clearly appealing features for
routine application to a wide range of products ranging from oil to textile
goods and food. In addition, the contribution of each Member State to trade
is often very different for each product, thus making the effect of state-specific
regulations difficult to anticipate in general terms.
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The relationship with Lévy processes provides an additional motivation
for the use of the Tweedie distribution with international trade data. In fact,
the quantities recorded in a given temporal and spatial market are obtained
as additive aggregates of transactions occurred at a smaller scale, up to the
individual company level. This cumulative trading process may be repre-
sented by sums of increments of the type Xti − Xti−1

, so that Xt becomes
the cumulative traded quantity of a given product up to time t. Therefore,
modelling the generation mechanism of trade data through the Tweedie dis-
tribution may also represent an appealing choice from an economic point of
view.

As suggested by one referee, further insights on the substantial mecha-
nism generating trade data can be achieved on the basis of the Lévy process
representation through the stochastic measure considered by Brix (1999).
Indeed, Brix (1999) emphasizes that this stochastic measure may be seen as
a sum of infinitely many terms for α ∈]0, 1[, since the Lévy measure ν does
not integrate, i.e. ν(]0,∞[) =∞. Hence in this case the Lévy process has in-
finitely many jumps and 0 is the accumulation point of the infinite sequence
of jumps. On the other hand, for α ∈]−∞, 0[ the stochastic measure is a sum
of a finite number of terms, in such a way that the jumps follow a Gamma
distribution with shape parameter (−α) and scale parameter 1/θ. The two
different features may thus be taken to represent alternative trading schemes
suitable for different markets. In fact, for many consumer goods it may be
reasonable to assume that the traded quantities arise from a large number of
transactions that take place almost instantaneously, as it happens in the case
α ∈]0, 1[. On the other hand, for products like the Petroleum oils introduced
in §3, the traded quantities are typically obtained through a limited number
of relatively large transactions, corresponding to a finite number of jumps
in the underlying stochastic mechanism, as is the case when α ∈] − ∞, 0[.
These jumps might be potentially very high, but their effect is tempered by
θ. The estimated values of α and θ in the Tweedie model can thus shed light
on the actual trade process that rules the observed quantities. Examples of
this interpretation are shown in §6.

5. Statistical and computational issues

5.1. Parameter estimation

If X1, X2, . . . , Xn represent n independent copies of a Tweedie r.v. X with
α ∈]0, 1], the likelihood function (with respect to the Lebesgue measure) is
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given by

L(α, θ, δ) = exp(nδθα/α)
n∏

i=1

exp(−θxi)
∞∑

j=1

(−1)jδjx−jα−1i

j!Γ(−jα)αj
. (4)

In contrast, when α ∈] − ∞, 0[, M observations out of n are null, where
M is a Binomial r.v. with parameters n and exp(δθα/α). By reindexing
in such a way that the first (n − m) sample realizations are non-null, the
resulting likelihood function (with respect to the Dirac measure at zero and
the Lebesgue measure) is given by

L(α, θ, δ) = exp(nδθα/α)
n−m∏

i=1

exp(−θxi)
∞∑

j=1

(−1)jδjx−jα−1i

j!Γ(−jα)αj
. (5)

Obviously, the series in (4) and (5) should be truncated at a given value
in order to practically handle the function. We may expect the resulting
approximation to be accurate with few terms, at least when the observed xi
are not too small or too large (Dunn and Smyth, 2005). Alternatively, if the
series does not converge quickly, the suggestions provided by Palmer et al.
(2008) and Dunn and Smyth (2008) for numerical inversion of the Laplace
transform may be considered.

In the analysis of international trade, data sets often contain thousands of
observations. Furthermore, hundreds or thousands of data sets typically need
to be scrutinized in sequence, both for routine inspection over different cat-
egories of products and for performance assessment of anti-fraud tools. The
computational performance of estimation methods thus becomes a crucial is-
sue. In order to set up a computationally efficient approach to the evaluation
of the likelihood functions (4) and (5), we consider the generalization of the
Inversion Theorem given by Barabesi and Pratelli (2015).

First, let us assume that α ∈]0, 1]. In this case, if h is a positive measur-
able function defined on R such that 0 < E[h(X)] < ∞ and provided that
ψh,X(t) = E[h(X) exp(itX)], where i is the imaginary unit, the expression

fX(x) =
1

2πh(x)

∫ ∞

−∞
exp(−itx)ψh,X(t)dt (6)

holds a.e. with respect to the Lebesgue measure on R. The integral in (6)
eventually represents a Cauchy principal value. In this case, if θ 6= 0 and by
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choosing h(x) = exp(cx) with c < θ, this representation reduces to

fX(x) =
exp(−cx+ δθα/α)

2π

∫ ∞

−∞
exp[−itx− (δ/α)(θ − c− it)α] dt. (7)

After a little algebra and a change of variable in the integral, expression (7)
gives rise to

fX(x) =
1

2πδ1/α
exp[−(δ1/αθ − φ)(δ−1/αx) + δθα/α] ηα,φ(δ−1/αx), (8)

where φ = δ1/α(θ − c), while

ηα,φ(u) =

∫ ∞

−∞
exp[−itu− (1/α)(φ− it)α]dt. (9)

If the real and the imaginary parts of the integrand are considered, by means
of a change of variable, expression (9) may be rewritten as

ηα,φ(u) = 2

∫ ∞

0

exp[−kα,φ(t) cos(lα,φ(t))] cos[−tu+ kα,φ(t) sin(lα,φ(t))] dt,

(10)
where

kα,φ(t) = α−1(φ2 + t2)α/2 and lα,φ(t) = α arctan(t/φ). (11)

In practice, the combination of (8) and (10) allows us to rephrase fX
in a new integral form, in such a way that the integral solely depends on
the parameter α, since φ may be pre-fixed at a given value – obviously,
by choosing c = θ − δ−1/αφ. It is clear that φ should be selected as a
convenient value for the evaluation of the integral. As an example, φ =
1 could be a compromise choice, since this selection implicitly leads us to
consider a Tweedie r.v. whose expectation equals to one in the integral part.
In addition, fX is expressed in such a way that γ = δ1/α appears as the
“natural” scale parameter. Hence, the likelihood function may be rewritten
as

L(α, θ, δ) =
exp(nδθα/α)

(2πδ1/α)n

n∏

i=1

exp[−(δ1/αθ− φ)(δ−1/αxi)] ηα,φ(δ−1/αxi). (12)

Finally, the case θ = 0 – corresponding to the positive Stable distribution –
may be handled by means of suitable methods existing in the literature.
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When α ∈] −∞, 0[, it is not possible to adopt immediately the general-
ization of the Inversion Theorem, since in this case the Tweedie r.v. displays
a mixed distribution. However, it is feasible to apply the theorem to gX .
By remarking that the Laplace transform of the r.v. X conditioned on the
event {N > 0} is given by (LX(s)− exp(δθα/α))/(1− exp(δθα/α)), gX may
expressed as

gX(x) =
1

2πδ1/α
exp[−(δ1/αθ − φ)(δ−1/αx) + δθα/α]

1− exp(δθα/α)
ϕα,φ(δ−1/αx), (13)

where

ϕα,φ(u) =

∫ ∞

−∞
exp(−itu)[exp(−(1/α)(φ− it)α)− 1]dt. (14)

In this case, (14) may be reformulated as

ϕα,φ(u) = 2

∫ ∞

0

(exp[−kα,φ(t) cos(lα,φ(t))] cos[−tu+kα,φ(t) sin(lα,φ(t))]−cos(tu))dt.

Therefore, the likelihood function reduces to

L(α, θ, δ) =
exp(nδθα/α)

(2πδ1/α)n−m

n−m∏

i=1

exp[−(δ1/αθ − φ)(δ−1/αxi)]ϕα,φ(δ−1/αxi).

(15)
We finally remark that the integral representations (8) and (13) also pro-

vide the basis for finding suitable expressions of the information matrix and
its estimated counterpart.

5.2. Random variate generation

We now discuss alternative ways of generating random values from the
Tweedie distribution. This task is an important ingredient in any Monte
Carlo study which aims at assessing the statistical properties of anti-fraud
tools (Cerioli and Perrotta, 2014), when applied to products for which the
Tweedie distribution represents a satisfactory model.

We start with the case α ∈]0, 1[, for which Hofert (2011) suggests both
a naive algorithm and an improved version of it, even if these proposals are
inefficient as δ increases. On the other hand, Devroye (2009) introduces
a more efficient – even if complex to implement – algorithm, subsequently
corrected and improved by Hofert (2011). Finally, Ridout (2009) considers
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Table 2: Rejection constant A(ρ∗1, ρ
∗
2) for Algorithm 1 and, in parenthesis, for the algorithm

of Devroye (2009).

α 0.1 0.3 0.5 0.7 0.9
δ 1 θ 1 2.33(7.32) 1.78(7.06) 1.72(6.70) 1.96(5.96) 3.47(4.25)

5 1.93(4.03) 1.43(3.91) 1.30(3.93) 1.27(7.33) 1.46(6.50)
10 1.82(3.91) 1.36(3.53) 1.25(3.30) 1.21(3.40) 1.24(7.20)

δ 5 θ 1 1.21(2.08) 1.20(2.21) 1.20(2.56) 1.21(3.41) 1.38(6.71)
5 1.19(2.04) 1.17(2.02) 1.16(2.03) 1.15(2.07) 1.16(2.80)
10 1.19(2.03) 1.16(2.00) 1.15(1.99) 1.14(1.99) 1.15(2.13)

numerical inversion of the Laplace transform. See also Bianchi and Fabozzi
(2014).

Barabesi and Pratelli (2015) propose a universal algorithm which com-
bines efficiency and simplicity if applied to the Tweedie r.v. for α ∈]0, 1[ (see
also Barabesi and Pratelli, 2014). Following their approach, let us consider
the function

a(ρ) =
exp(δθα/α)

π

∫ ∞

0

exp[−δkα,θ−ρ(t) cos(lα,θ−ρ(t))]dt,

where kα,φ(t) and lα,φ(t) are defined in (11). Note that the function a(ρ) is
defined for ρ ∈]−∞, θ[. Moreover, let

a1 = a(−ρ1), a2 = a(ρ2), v = a(0), (16)

b1 = min

(
1

ρ1 + ρ2
log

a2
a1
,

1

ρ1
log

v

a1

)
, b2 = max

(
1

ρ1 + ρ2
log

a2
a1
,− 1

ρ2
log

v

a2

)
,

(17)

w1 =
a1 exp(ρ1b1)

Aρ1
, w2 =

a2 exp(−ρ2b2)
Aρ2

, w3 =
v(b2 − b1)

A
, (18)

where

A = A(ρ1, ρ2) =
a1 exp(ρ1b1)

ρ1
+
a2 exp(−ρ2b2)

ρ2
+ v(b2 − b1) (19)

is the rejection constant of the algorithm, i.e. the expected number of itera-
tions in the algorithm. We choose ρ1 and ρ2 as (ρ∗1, ρ

∗
2) = arg minA(ρ1, ρ2),

where minimization is taken under the constraint on a(ρ).
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Our proposed algorithm for simulating the Tweedie distribution as an
exponentially tilted stable law, which makes use of the quantities defined
in Equations (16)–(19), is detailed in Appendix A as Algorithm 1. It is
apparent that our algorithm is efficient in terms of the rejection constant
A(ρ∗1, ρ

∗
2), which is computed in Table 2 for selected values of α, θ and δ.

It is seen that the rejection constant of the algorithm suggested by Devroye
(2009) is always larger (and often much more so) than that for Algorithm 1,
in spite of the fact that we have provided our method in a very basic form. In
fact, our algorithm could be further improved by using clever computational
tricks, such as “recycling” to save the generation of a uniform random variate
in the loop, and suitable “squeezes” based on the characteristic function of
X to skip the direct computation of fX most of the times. In any case, direct
evaluation of fX may be eventually avoided by means of the series method
(Devroye, 1986), even if at the cost of a more involved algorithm.

When α ∈] −∞, 0[, the stochastic representation (3) yields the efficient
algorithm given in Appendix A as our Algorithm 2. Indeed, the sum of i.i.d.
copies of Gamma r.v.’s is in turn Gamma distributed, so that Algorithm 2
only requires generation of Poisson and Gamma variates, which are widely
available.

6. Applications to international trade

This section describes two relevant sets of products on which we have
satisfactorily fit the Tweedie model. Being able to anticipate the distribution
of traded quantities for these products is important both for policy support
and anti-fraud purposes. Other distributions have also been considered for
the same data and the comparison is discussed in §7, together with additional
insights on the fit, residual analysis and some computational details. The
Matlab code that was used to analyze the data is available from the authors
on request.

6.1. Petroleum oils

International political economy is especially interested in the 27th chap-
ter of the CN, including “Mineral fuels, mineral oils and products of their
distillation; bituminous substances; mineral waxes”. In the period consid-
ered the chapter alone covered more than 27% of all EU imports. Within the
chapter, we select the product of largest share (around 17% of all EU trade
imports), i.e. “Petroleum oils and oils obtained from bituminous minerals,
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crude” (CN-27090090). The EU is highly import-dependent for this product,
with major impact on the balance of payments. There is also academic in-
terest for this product. Crude oil cannot be studied under the classical price
theory assumptions relying on perfect competition. In fact, the product is
quite heterogeneous, with an actor, OPEC, with big market power but not
behaving as a typical cartel (the OPEC members often pursue different policy
goals). The volume of available reserves is unclear and oil demand is vari-
able, even within the EU. Furthermore, oil prices are greatly influenced by
the rapid growth of demand from emerging countries and by the availability
of unconventional resources (shale oil). There is little agreement in economic
research about how all these factors impact on the demand and, therefore,
on the oil quantities imported in the EU. In this complex context, sound
empirical approaches are clearly needed to support economic modelling of
demand and supply. Our trade quantity model offers a tool for assessing and
validating different price-quantity proposals.

Descriptive statistics of the Petroleum oil quantities, reported in Ap-
pendix B, give an idea of the order of magnitude of this trade. Perhaps
surprisingly, given the nature of the product, a non-negligible amount of
quantities are recorded as zero, in order to ensure confidentiality of the
traders involved in such transactions. However, these null values cannot be
modelled from a purely economic perspective since the precise incidence of
confidentiality-related underreporting is unknown and regulations vary con-
siderably from one market to another. The null quantities, together with the
spike of transactions of relatively small quantities, are likely to influence the
fit of any distribution to such data. Figure 2 displays the fit of the Tweedie
model and the estimated parameters. Visual inspection shows the fit to be
satisfactorily good. Indeed, the Tweedie distribution is effectively able to
capture both the long tail of the empirical distribution and the considerable
mass of observations close to zero. Furthermore, the negative value of α̂ is
coherent with the qualitative interpretation of the nature of the jumps that
are expected to give rise to the traded quantities of this product. Further
quantitative insight on the fit is reported in §7.

6.2. Fraud sensitive products

Many different categories of goods were seized in the last years by OLAF
investigations and joint customs operations. We select a number of partic-
ularly sensitive products, from numerous chapters of the CN, among those
that have been object of official EU press releases, which can be retrieved
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Figure 2: Fit of the Tweedie model to the traded quantities (in million of tons) of prod-
uct “Petroleum oils and oils obtained from bituminous minerals, crude” (CN-27090090),
already shown in Figure 1.

from the database http://europa.eu/rapid of the European Commission.
We also classify the products according to the main fraud area to which they
were associated by the press releases, excluding those at risk of smuggling
(e.g., cigarettes and garlic), because the fraudulent amounts of such products
escape from the data recording process. Our first category is very hetero-
geneous, and is related to the counterfeiting problem. It includes products
such as wine (in CN-2204), alcohol (in CN-2208), textiles (from CN-50 to
CN-63), footwear (in CN-64), electrical and electronic apparatus (in CN-84
and CN-85), accessories of motor-vehicles (mostly in CN-8708) and watches
(from CN-9108 to CN-9110). A second less heterogeneous category, with
more than 80 fruit and vegetable products in CN-20, relates to the problem
of mis-declaration of product or origin.

We discuss here the findings of our empirical analysis of four products, two
for each fraud category, but the results are similar for most of the sensitive
products that we have classified. In order to study also the effect of the
zeros on the fitted model, for each fraud category we select one product for
which many null quantities are recorded and one without zeros. Combed
wools and Wines with Protected Designation of Origin (PDO) or Protected
Geographical Indication (PGI) are major products at risk of counterfeiting.
Mushrooms are often improperly classified for evading duties, or their origin
is misdeclared for bypassing the authorised exporter’s quotas. In particular,
many false classifications were reported for the ‘Agaricus’ type, even with
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implications on food safety. Cherries are an example of fruit found to contain
or being preserved with sugar or alcohol, but declared otherwise. This relates
to duty evasion but also to illicit sugar trade practices.

Descriptive statistics for the four selected fraud sensitive products are
in Appendix B, while Figure 3 shows the fit and the estimated parameters.
From the histograms it is clear that the products have different data distri-
butions. In two cases – depicted in plots (b) and (d) – there is also a non
negligible mass of exactly null quantities that determine, as in the applica-
tion to Petroleum oils, a negative estimate of parameter α. In the two other
instances – plots (a) and (c) – all quantities are strictly positive, but there
is a very large amount of observations close to the origin, thus implying that
rounding to zero and confidentiality issues have a negligible impact for these
products. As a result, we obtain positive estimates of α, which are coherent
with the idea of a large number of almost instantaneous transactions typical
of consumer goods, while the estimated values of θ are very close to zero.
This suggests a stable-type shape of the empirical distribution which is auto-
matically captured by our Tweedie model, without any tuning intervention.
We thus see that, independently of the specific data generating mechanism,
the Tweedie distribution is able to fit effectively both sides of the empirical
distribution of traded quantities in all the selected anti-fraud examples.

7. Comparison and further insights on the applications

We now compare the fit of the Tweedie and that of other five candidate
models. We define the alternative models by mixturing some popular skew
distribution functions for positive values, listed in Table 3, with a Dirac mass
at the origin. In most cases the skew distribution functions that we select
were successfully applied to describe economic patterns, such as income dis-
tribution (see, e.g., Clementi and Gallegati, 2005; Fisk, 1961). The Gamma
distribution is one of such alternative candidates. As described in §4, it is
also a special case of the Tweedie model and, for that reason, it has been
considered as a potential competitor in several application fields (see, e.g.,
Palmer et al., 2008).

Classical models for skew distributions cannot be directly applied to prod-
ucts for which null quantities are observed. Since our goal is to provide com-
parison among models that could be routinely applied to international trade
data without tuning intervention, we augment the standard two-parameter
models with a spike at the origin. We thus fit the three-parameter mixture
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(b) Wool – CN-51052100
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(c) Mushrooms – CN-20031030
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(d) Cherries – CN-20086090

Figure 3: Fit of the Tweedie model to the traded quantities of fraud sensitive products.
Product (a) is measured in liters, (c) in kilogram drained net weight and the other two
products in tons. Data for products (a) and (c) do not contain null quantities. Products
(b) and (d) contain, respectively, 23% and 8.9% of nulls (black bin of each histogram).
The fitted parameters are highlighted in each plot.
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distribution
FX(x) = πI[0,∞[(x) + (1− π)GX(x), (20)

where GX is the distribution function of any of the two-parameter random
variables listed in Table 3 and π ∈]0, 1[ is an additional parameter which
represents the probability of observing a quantity rounded to zero. Therefore,
this mixture may be seen as a somewhat ad hoc three-parameter extension
of traditional models for skew distributions, defined in view of the specific
structure of trade data and mimicking the stochastic representation (3) of
the Tweedie distribution.

We stress that it would be unfair to compare our approach with the stan-
dard two-parameter versions of the distributions given in Table 3, since they
would not be able to allow for the presence of null values in many data sets.
On the other hand, we frame our comparison in a “worst-case” scenario for
the Tweedie model, since mixture (20) exploits some prior information about
the structure of the data which is not available for the Tweedie distribution,
placing the Dirac mass exactly where it is required, i.e. at the origin. Our
reference distribution is also more parsimonious than the four-parameter gen-
eralized skew normal distribution proposed by Mazzuco and Scarpa (2015)
to allow for bimodality in asymmetric patterns, which cannot model in any
case the probability mass at zero. Incidentally, it should be remarked that
the Tweedie distribution may even display bimodality, in addition to the au-
tomatic modelling of the zero mass for α ∈] −∞, 0] (see Aalen, 1992). The
Tweedie distribution itself could be used as an ingredient in mixture (20), if
a less parsimonious four-parameter model is required due to the complexity
of data. However, we do not investigate this possibility in detail since our
goal is to compare relatively simple three-parameter alternatives for routine
analysis of trade data sets.

We estimate the three parameters in mixture (20) by means of Maximum
Likelihood. We compare all models in terms of their maximized loglikelihood
values and well-known divergence measures in Table 3, where the best values
for each criterion are highlighted in bold. This allows an exhaustive analysis
of the accuracy of the fit. In fact the likelihood evaluates the quality of the
fit of the density function, while the other measures evaluate the divergence
in terms of the distribution function. In particular, we use the Kolmogorov-
Smirnov distance, which is perhaps the most natural candidate in the present
context, and the Anderson-Darling distance, which places more weight on
observations in the tails of the distribution. Since the Tweedie distribution
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function cannot be written in closed form, it is computed from samples of
10,000 randomly generated observations, simulated using the random number
generator described in §5.2 and the parameter estimates obtained for each
product. Note that the optimal model in terms of Maximum Likelihood also
optimizes the BIC and AIC comparison criteria, given that all the alternative
models considered in our comparison have the same number of parameters
and that the sample size is fixed for each product. Moreover, since mixture
(20) is not nested in the Tweedie model, the likelihood ratio tests of Palmer
et al. (2008) cannot be carried out to formally compare the Tweedie model
to its competitors.

In terms of maximized loglikelihood, our results show that the Tweedie
distribution provides the best fit, and in some cases by a large extent, while
there is no clear evidence on the ranking of alternative models. For Combed
Wool and Preserved Cherries, the fit of the Gamma version of the three-
parameter mixture (20) is very close to that of the Tweedie distribution.
However, in other cases it is the Weibull distribution which comes second,
thus showing that it is not straightforward to specify a flexible and simple
alternative to the Tweedie model which holds for all these data. Divergence
measures confirm the general good fit of the Tweedie model. It is undoubt-
edly the best model for Combed Wool and Preserved Cherries. It can be
considered the best performer also for Mushrooms Agaricus, since it opti-
mizes the Anderson-Darling distance, which places more importance on the
tail of the distribution, and it is very close to the best values for the other
two divergences. For the remaining two products, the performance of the
Tweedie fit is very close to the correspondent best model.

As a further drawback of mixture (20), we note that for two products
(Wine and Mushrooms) and the Lognormal version of mixture (20) the Mat-
lab estimation algorithm failed to converge, despite our careful tuning of
tolerance options. We take this outcome as a further drawback of standard
Maximum Likelihood when applied to mixture (20), where there is a signifi-
cant mass probability at one point in the domain of the distribution and the
method may become unstable.

On the other hand, the Maximum Likelihood approach to the Tweedie
model described in §5.1 did not suffer from computational problems. Specif-
ically, we truncated the series involved in (5) at 170 terms, although a much
smaller number – such as 20 or 30 – was generally sufficient for achieving
convergence in most of the simulations we performed and data sets we ana-
lyzed. The Matlab function “mle” with options ‘MaxIter’=1000 and ‘MaxFu-
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Table 3: Comparison of maximized loglikelihood values and divergence measures for the fit
on the Petroleum oils and fraud-sensitive data sets, based on different skew distributions
GX in (20) and on the Tweedie distribution (LL = Loglikelihood, AD = Anderson-Darling
distance, KS = Kolmogorov-Smirnov distance).

Distribution GX in (20)
Inverse

Gamma Lognorm. Gamma Loglog. Weibull Tweedie
Wine PDO LL -7,936.7 - -8,329.7 -8,047.6 -7,959.1 -7,930.7

or PGI AD 4.145 - 11.299 24.419 91.791 4.956
(22042994) KS 0.081 - 0.110 0.127 0.331 0.088

Combed LL -900.7 -938.4 -1,024.8 -929.8 -901.6 -897.6
wool AD 10.361 14.233 10.226 12.005 26.863 9.572

(51052100) KS 0.234 0.234 0.234 0.234 0.234 0.229
Mushrooms LL -6,638.8 - -6,921.3 -6,674.8 -6,627.6 -6,621.0

agaricus AD 3.644 - 1.262 7.594 70.920 1.090
(20031030) KS 0.071 - 0.043 0.071 0.279 0.054
Preserved LL -1,255.6 -1,301.5 -1,381.8 -1,305.0 -1,263.4 -1,255.1

cherries AD 8.599 17.380 10.446 14.776 29.870 6.924
(20086090) KS 0.196 0.258 0.210 0.213 0.307 0.165
Petroleum LL -87,545.3 -89,454.6 -97,597.6 -88,003.9 -87,539.8 -87,526.1

oils AD 58.961 292.709 46.650 51.367 1,905.606 75.726
(27090090) KS 0.072 0.164 0.074 0.064 0.463 0.078

nEvals’=2000 was used to maximize the likelihood. The starting values of the
parameters were selected according to the moments of the empirical distri-
bution, and eventually perturbed in case of no convergence of the algorithm.
With these settings we did not experience convergence problems in the fitting
process of the Tweedie distribution. Furthermore, we double-checked our re-
sults by implementing the likelihood equations as Mathematica functions.
Equations (12) and (15) obviously involve integrals whose integrands are os-
cillating functions, in such a way that their oscillating behaviour is ruled by
the parameter φ. As suggested in §5.1, this parameter was generally set to
unity and the required integrals were computed by means of the numerical
integration routines provided by Mathematica in the standard setting (i.e.,
without adopting special tunings or options for oscillating integrands). The
achieved values of the Maximum Likelihood estimates consistently matched
for the two softwares, also in the case of quite extreme data sets with a con-
siderable mass at zero. Therefore, we argue that the Tweedie model appears
to be more stable than mixture (20) also from a computational point of view.

We supplement our comparisons through some residual analysis on the
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Figure 4: QQ-plots for the six fitted models against the quantiles of the empirical distri-
bution function (the dashed straight line on the diagonal) for two products: Combed wool
(left panel) and Petroleum oils (right panel).

fit of the different models. Figure 4 reports the estimated quantiles under
the six fitted models against the quantiles of the empirical distribution func-
tion (reported as the dashed straight line on the diagonal of each plot) for
two products: Combed wool and Petroleum oils. Due to the spike at the
origin, we do not plot the quantiles associated to probabilities smaller than
0.2. Furthermore, to facilitate interpretation, the estimated quantiles of the
Tweedie model are represented with a thick black solid curve. Again, the
Tweedie quantiles are computed from samples of 10,000 randomly generated
observations, simulated using the random number generator described in §5.2
and the parameter estimates obtained for each product.

We cannot expect one single model to uniformly dominate all the others
over the entire support of the distribution. Nevertheless, it is seen that the
fit of the Tweedie distribution is generally good and it is especially so in the
right tail of the empirical distribution, even in the case of Petroleum oils
for which other candidate mixtures (20) exhibit slightly lower divergences.
These QQ-plots thus provide visual confirmation that the excellent global
performance of the Tweedie model in in Table 3 is not marked by isolated
deviations due to some specific transactions.

From our comparisons, we conclude that the Tweedie distribution offers
an effective modelling solution even when compared to mixtures that incor-
porate prior information on the structure of the data, and that may be thus
favoured in the analysis of traded quantities. Its very flexible parametrization
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allows a simple and statistically sound representation of empirical data which
can be useful in many anti-fraud and policy support settings. It also qualifies
the Tweedie distribution as an ideal candidate for Monte Carlo simulations
mimicking the real structure of international trade data.

8. Stability over time

The Tweedie parameters estimated in §6 for Petroleum oils and the other
fraud-sensitive products are based on data covering a four-years period (i.e.
August 2008 - July 2012). This time-length interval is usually classified in
economics as “middle-term”. In order to validate the good behaviour and
the proper fitting of the Tweedie model also in the short-term, we have
repeated the analysis on five shorter and consecutive sub-periods, at least
for the products that guarantee a sufficient number of observations in each
sub-period (namely Petroleum oils, Wine PDO and PGI protected and Mush-
rooms Agaricus). We provide here only the case of Petroleum oils (Table 4),
since results and conclusions for the other products are very similar.

The sub-period analysis highlights two important facts. First, the Tweedie
model still offers the best fitting in terms of maximized loglikelihood (and
then also in terms of BIC and AIC) in most of the sub-periods considered,
when compared to the alternative candidate mixtures (20). Moreover, it
guarantees also the highest average loglikelihood per observation, a value
that can be considered for summarizing the general performance of a model
over the five sub-periods. Second, the parameter estimates remain stable and
do not appreciably differ from the values estimated for the whole period (see
Figure 2). This limited volatility of the coefficients reflects the substantial
stability of the quantity distribution over the five sub-periods, as the minor
changes in the descriptive statistics proves. Furthermore, following the dis-
cussion at the end of §4.4, it confirms that the trade mechanisms operating
in these markets are essentially stable over time. So we can conclude that
the choice of a specific time window does not affect the main substantial
findings, as is desirable in our operative context.

9. Conclusions

We have shown the wide applicability to international trade data of a
flexible parametric model based on the Tweedie distribution. Our proposal
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Table 4: Annual estimates and comparison of maximized loglikelihood values for the fit on “Petroleum
oils and oils obtained from bituminous minerals, crude”.

2008a 2009 2010 2011 2012a

Descriptive statistics
# of obs. 717 1618 1667 1702 947

# of zeros 12 29 66 109 70
mean 318,971.3 313,040.8 305,010.4 282,145.3 296,727.4

std dev. 469,937.2 472,347.1 485,961.8 436,475.4 448,494.1
skewness 3.44 3.68 3.79 3.83 3.58
kurtosis 17.78 19.74 20.76 22.87 19.63

Tweedie parameters estimates
α̂ -0.1974 -0.2155 -0.2583 -0.2795 -0.2820

θ̂ 2.68 · 10−6 2.82 · 10−6 2.64 · 10−6 2.88 · 10−6 2.64 · 10−6

δ̂ 0.0679 0.0606 0.0317 0.0229 0.0209
Mean Loglik.

Annual comparison per obs.b

Gamma -9,643.5 -21,800.5 -22,024.4 -21,904.8 -12,113.8 -13.159
Lognormale -9,836.2 -22,044.1 -22,412.5 -22,484.2 -12,482.4 -13.436

Weibull -9,643.9 -21,781.0 -22,010.4 -21,919.2 -12,133.1 -13.161
Loglogistic -9,699.5 -21,815.3 -22,088.8 -22,079.0 -12,246.1 -13.233

Inv.Gamma -10,741.8 -24,103.2 -24,532.1 -24,392.8 -13,481.5 -14.633
Tweedie -9,641.5 -21,835.8 -22,042.8 -21,876.5 -12,083.0 -13.156

a For 2008, data cover the period August 2008 - December 2008, whereas for 2012 data refer to the
period January 2012 - July 2012.
b This value is given by the mean over the five sub-periods of the ratios between the value of the
loglikelihood and the number of observations.

is particularly suitable for products of paramount importance in the EU mar-
ket, especially for anti-fraud purposes. To this aim, we have solved a number
of tricky statistical issues concerning model parametrization, estimation and
random variate generation. These issues are important both for practical
routine implementation of our model and for performing Monte Carlo eval-
uation of the properties of anti-fraud tools.

We have developed this work in support of the EU decision-makers and
law enforcement services. Nevertheless, we believe that the applicability of
our model is much wider. For example, the precise description of the trade
dynamics that it provides can help both national services in estimating trade
balance and private companies in simulating the effect of market dynamics.
Our focus has been on modelling the trade quantity, but this variable has di-
rect, often linear, relation with capital flows and prices. Economic theory has

30



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

widely studied how sensible fluctuations in the exchange rates can determine
reactions in the trade prices and, in turn, changes in the trade quantities
(see, e.g., Goldberg and Knetter, 1997; Arkolakis et al., 2012; Burstein and
Gopinath, 2015). Economic research has addressed these relationships with
particular attention to strategic trade areas affected by imperfect compe-
tition, such as the petroleum oils. To be concretely applicable to trade,
monetary and inflation policies, these studies need to be supported by em-
pirical evidence that we argue can be found in data and models such as those
addressed in this paper.

In addition to the stated goals of policy support and data simulation,
the availability of a close-to-reality model for trade quantities can also help
to investigate how different conditions, or structural changes, in the inter-
national economy affect transactions in the EU market. As we have shown,
this goal can be achieved through seeing whether the estimated values of the
parameters of the Tweedie distribution remain stable over time, especially
when different economic phases are considered. Similarly, the estimated pa-
rameters of the Tweedie model could be used to check homogeneity of trade
within the same CN chapter.

We close this discussion of other potential applications of our model with a
mention of the COMTRADE database (http://comtrade.un.org), also formed
by monthly aggregates built on the basis of the UN protocols. COMTRADE
is geographically broader than COMEXT, as it collects data from all mem-
bers of the United Nations, but the products are defined only at 6-digits level
in the Harmonised System (HS) classification. Therefore, COMTRADE con-
tains less sub-headings than COMEXT (about 6000). It will be an interesting
task for future research to investigate whether the approach presented in this
work is applicable to these “less precise” aggregates or, in other words, to
check at what extent the granularity of the classification impacts on the
estimated model.
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Appendix A: Simulation Algorithms

Algorithm 1: Tweedie distribution with α ∈]0, 1[

compute v, ρ∗1, ρ
∗
2

compute a1, a2, b1, b2

compute w1, w2, w3

repeat

generate U1, U2, U3 uniformly on ]0, 1[

if U1 > w1 + w2 set X := b1 + (b2 − b1)U2

else

if U1 ≤ w1 set X := logU2/ρ
∗
1 + b1

else

set X := − logU2/ρ
∗
2 + b2

until fX(X) < min {a1 exp(ρ∗1X), a2 exp(−ρ∗2X), v}U3

return X

Algorithm 2: Tweedie distribution with α ∈]−∞, 0[

input α,θ,δ

set X = 0

generate N Poisson with parameter (−δθα/α)

if N > 0 generate X Gamma with shape parameter (−Nα) and scale parameter
(1/θ)

return X

Appendix B: Descriptive statistics for ‘Petroleum oils’ and other
four fraud-sensitive products in the whole time window August
2008 – July 2012

The statistics in the table below are computed on imports in the EU in
the period from August 2008 to July 2012. Petroleum oils, Combed wool
and Preserved cherries are measured in tons, Wine in liters and Mushrooms
in kilogram drained net weight. The first two fraud-sensitive products are
at risk of counterfeiting while the last two are at risk of origin or product
mis-declaration.
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Description CN8 Number Number mean std skewness kurtosis
code of obs. of zeros dev. coeff. coeff.

Petroleum 27090090 6651 286 301440 463360 3.7145 20.5782
oils

Wine PDO or 22042994 633 0 323165.65 694815.51 3.98 21.34
PGI protected
Combed wool 51052100 295 69 7.50 8.93 1.53 5.12
in fragments
Mushrooms 20031030 567 0 135883.13 321331.56 4.35 26.59

agaricus
Preserved 20086090 314 28 23.19 32.17 3.24 18.07
cherries
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