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We present a solution method that, compared to the traditional Gauss-Seidel
approach, reduces the time required to simulate the dynamics of large sys-
tems of rigid bodies interacting through frictional contact by one to two or-
ders of magnitude. Unlike Gauss-Seidel, it can be easily parallelized, which
allows for the physics-based simulation of systems with millions of bodies.
The proposed Accelerated Projected Gradient Descent (APGD) method re-
lies on an approach by Nesterov in which a quadratic optimization problem
with conic constraints is solved at each simulation time step to recover the
normal and friction forces present in the system. The APGD method is vali-
dated against experimental data, compared in terms of speed of convergence
and solution time with the Gauss-Seidel and Jacobi methods, and demon-
strated in conjunction with snow modeling, bulldozer dynamics, and several
benchmark tests that highlight the interplay between the friction and cohe-
sion forces.
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1. INTRODUCTION

The literature on the topic of frictional contact in multibody dy-
namics is vast, yet at a high level most of the existing methods
can be grouped into two categories. First, and most common, are
approaches that use a penalty, or regularization, approach in han-
dling contact between bodies. Second, there are approaches built
around a methodology that extends the concept of equations of mo-
tion to include differential inclusions [Filippov 1967]. For frictional
contact, this methodology leads to differential variational inequal-
ity (DVI) problems, which upon discretization assume the form
of mathematical programs with equilibrium and complementarity
constraints.

Despite being used in the context of rigid body dynamics, the
penalty method (PM) assumes the bodies deform just slightly at the
contact point. Employing the finite element method to characterize
this deformation would incur a stiff computational cost. Therefore,
at each time step, the deformation of the bodies is approximated
during the collision detection stage of the solution by relating it to
the amount of interpenetration between the otherwise rigid bodies.
The process of defining a surrogate deformation of the contacting
bodies leads to a plethora of algorithms for handling frictional con-
tact in the penalty method. Although the geometry of the bodies in
contact might be overly complex, it is customary to combine the
surrogate deformation to the Hertzian theory for sphere-to-sphere
or sphere-to-plane contact, see for instance [Johnson 1987], in or-
der to yield a methodology to produce the contact force. With the
contact force in hand, various approaches have been proposed to
produce a friction force at the point of contact. This regulariza-
tion of the contact discontinuity comes at the price of (i) a difficult
and somewhat ad-hoc process of identifying model parameters, (ii)
small integration time steps limited in size on numerical stability
grounds, and (iii) a perceived randomness in the contact force. For
(i), there are model parameters, e.g.: stiffness, damping, creep, etc.,
that are not always constant over time and might depend on the ge-
ometry of the bodies in contact, the strategy adopted to compute the
surrogate deformation, and even the choice of time-discretization
scheme. Choosing the values of these parameters is not straight-
forward and it is one aspect that challenges the predictive attribute
of the penalty method. Nonetheless, this has been the approach of
choice in the vast majority of the numerical studies of the dynamics
of large rigid body systems, see for instance [Cundall 1971; Cun-
dall and Strack 1979; Cundall 1988; Jaeger et al. 1996; Brilliantov
et al. 1996; Vu-Quoc and Zhang 1999; Vu-Quoc et al. 2004; Lud-
ing 2005; Pöschel and Schwager 2005]. Finally, in terms of (iii),
the randomness can be tied back to the undesired influence that the
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integration step-size has on the surrogate deformation at the next
time step, see discussion in [Kaufman and Pai 2012].

A wealth of methodologies approach the frictional contact prob-
lem within the DVI framework. Methods proposed in [Bertails-
Descoubes et al. 2011; Daviet et al. 2011; Acary et al. 2011] use a
nonsmooth Newton approach to solve a fixed point iteration prob-
lem. The solution of a frictional contact induced nonlinear com-
plementarity problem (NCP) is pursued in [Daviet et al. 2011] by
means of a Newton method applied in conjunction with an appro-
priately defined Fischer-Burmeister complementarity function, an
approach that is backed up as a fail-safe by a more robust albeit
costlier local solver [Bonnefon and Daviet 2011]. The DVI ap-
proach has been modified beyond sliding friction to model rolling
and spinning friction by introducing new constraints for each con-
tact, see for instance [Tasora and Anitescu 2013]. A mass splitting
procedure was embedded into a DVI formulation to improve nu-
merical stability and reduce jitter for piles and stacks of objects
in [Tonge et al. 2012]. The overall solution methodology adopted
herein shares several traits with the one proposed in [Kaufman and
Pai 2012]: both impose complementarity between normal force and
the distance gap instead of bringing into the discussion the relative
velocities at the contact point. Furthermore, like in [Kaufman and
Pai 2012], symplectic integration is considered for numerical dis-
cretization of the equations of motion. While here the discretization
is based on a half-implicit Euler method, [Kaufman and Pai 2012]
present an approach that accommodates a spectrum of formulas:
implicit midpoint, Newmark, and an implicit-explicit formula due
to [Kane et al. 1999]. In handling impact and constraint drift the
approach of [Kaufman and Pai 2012] is more versatile compared to
the our approach which in the current implementation handles in-
elastic collision and relies on a Baumgarte-style penalty to prevent
constraint violation or drift. However, on the upside, the approach
herein handles friction and is guaranteed to produce a global solu-
tion for systems with friction and contact.

This paper concentrates solely on the DVI-based approach for
the following reasons: (a1) it allows for large integration times
steps, (b1) it handles the stick-slip conditions in an effective way,
(c1) it integrates well into the rigid-body model embraced in formu-
lating the equations of motion, and (d1) it can be easily modified to
account for cohesion. The DVI approach is not without its own is-
sues: e.g., (a2) it displays a lack of uniqueness in the frictional con-
tact force distribution as the rigid body model in conjunction with
the classical dry-friction model of Da Vinci-Amontons-Coulomb
can lead to an under constrained problem [Delannay et al. 2007];
(b2) it calls for the solution of a large optimization problem that
poses scalability challenges; and (c2) unless special measures are
taken, see for [Smith et al. 2012], most DVI approaches render im-
pact phenomena as zero coefficient of restitution events; i.e., the
impacts are plastic.

This paper is concerned with (b2). It proposes a method aimed
at speeding up the solution of the optimization problem that repre-
sents the manifest computational bottleneck of the DVI approach.
Beyond being instrumental in the context of the frictional-contact
solution approach embraced herein, the method can be used in
numerous other graphics-specific applications: for handling fluid-
solid interaction problems [Bodin et al. 2012], in an approach like
the one proposed in [Smith et al. 2012] to handle friction, con-
tact, and impact phenomena [Smith et al. 2012], or in a mass split-
ting framework aimed at increasing robustness [Tonge et al. 2012].
Broadly speaking, the method proposed can replace Gauss-Seidel
or Jacobi-based solutions in variational approaches to handling fric-
tion and contact where a global complementarity problem can be
equivalently formulated as a constrained minimization problem.

The paper is organized as follows. Section 2 poses the multi-
body dynamics problem and outlines the DVI-based solution pro-
cess. This discussion provides the backdrop for the APGD solution
method introduced in Section 3. In Section 4 we validate the APGD
method against experimental data and compare its efficiency with
that of the Gauss-Seidel approach and other established methods
that build on the Mosek and PATH solvers [Andersen and Andersen
2000; Andersen et al. 2003; Dirkse and Ferris 1995]. This section
also demonstrates the performance of the APGD method in con-
junction with snow/clay modeling, bulldozer dynamics, and sev-
eral benchmark tests that highlight the interplay between friction
and cohesion. The discussion in Section 5 places the APGD method
and the overall solution approach in the frictional contact numerical
solution landscape familiar to the computer graphics audience. Sec-
tion 6 summarizes directions of future work and our contributions,
which are identified as being (1) the APGD method for DVI–based
handling of frictional contact in rigid multibody dynamics, and (2)
an expeditious way of adding cohesion into the contact model.

2. BACKGROUND

Herein, the set of generalized coordinates used to position and ori-
ent a rigid body j in the 3D Euclidean space are rj ∈ R3 and
εj ∈ R4 [Haug 1989]. The former provides the absolute position of
the center of mass of body j, while the latter represents a set of Eu-
ler parameters (quaternions) that characterize body orientation in a
global reference frame. The set of generalized coordinates for a sys-
tem of nb bodies works out to be q =

[
rT1 , ε

T
1 , . . . , r

T
nb
, εTnb

]T ∈
R7nb and their time derivatives q̇ =

[
ṙT1 , ε̇

T
1 , . . . , ṙ

T
nb
, ε̇Tnb

]T ∈
R7nb . Rather than using q̇ to pose the Newton-Euler equations of
motion, the array v =

[
ṙT1 , ω̄

T
1 , . . . , ṙ

T
nb
, ω̄Tnb

]T ∈ R6nb is used
since it leads to: (i) a smaller problem; and (ii) a constant, sym-
metric and positive definite mass matrix. There is a simple linear
transformation that for each body B relates its angular velocity ex-
pressed in the body-fixed reference frame, ω̄B , to the time deriva-
tives of the Euler parameters ε̇B . Specifically, ω̄B = 2G(εB)ε̇B ,
where the entries in the matrix G ∈ R3×4 depend linearly on
the Euler parameters εB [Haug 1989]. Defining the block diago-
nal matrix L(q) ≡ diag

[
I3×3,

1
2
GT (ε1), . . . , I3×3,

1
2
GT (εnb

)
]
∈

R7nb×6nb , where I3×3 is the identity matrix, yields q̇ = L(q)v.

2.1 Modeling Aspects

Consider the contact between two bodies A and B represented in
Fig. 1. Assuming that the body geometries are regular at the con-
tact point, the contact point along with the shared tangent plane are
used to define two local reference frames, one for each body. For
body A, the normal ni,A at contact point i is chosen to be per-
pendicular on the tangent plane at the shared contact point and to
point towards the exterior of body A. Two mutually perpendicular
unit vectors ui,A and wi,A are chosen to define a right-hand lo-
cal reference frame associated with contact i on body A. A similar
sequence of steps is followed to define a local reference frame for
body B based on ni,B , ui,B , wi,B ∈ R3. The Lagrange multiplier
γ̂ associated with contact i is used to pose a complementarity con-
dition in relation to the gap (distance) Φ between bodies A and B:
0 ≤ γ̂i,n ⊥ Φi(q) ≥ 0. When the bodies in contact have a smooth
convex geometry, producing the gap function is straightforward.
For complex and/or nonconvex geometries defining Φi(q) might
pose difficulties [Anitescu et al. 1996; Flickinger et al. 2013], an
issue not addressed herein.
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Fig. 1. Contact i between two bodies A,B ∈ {1, 2, . . . , nb}.

In what follows, by convention, αi ≡ αi,A, for α ∈ {n,u,w}.
The force associated with contact i can then be decomposed into the
normal component,F i,N = γ̂i,nni, and the tangential component,
F i,T = γ̂i,uui + γ̂i,wwi, where the multipliers γ̂i,n > 0, γ̂i,u,
and γ̂i,w represent the magnitude of the force in each direction.
The friction forces are assumed to satisfy the Coulomb dry-friction
model, which can be expressed as [Stewart and Trinkle 1996; Stew-
art 2000]

√
γ̂2
i,u + γ̂2

i,w,≤ µiγ̂i,n

‖vi,T ‖
(√

γ̂2
i,u + γ̂2

i,w − µiγ̂i,n
)

= 0, (1)

〈F i,T ,vi,T 〉 = −‖F i,T ‖‖vi,T ‖ ,

where vi,T represents the relative tangential velocity between bod-
ies A and B at the point of contact. These equations represent the
first order Karush-Kuhn-Tucker optimality condition for the fol-
lowing optimization problem in two dummy variables y, z ∈ R:

(γ̂i,u, γ̂i,w) = argmin√
y2+z2≤µiγ̂i,n

vTi,T (yui + zwi) . (2)

The force at the ith contact point can be expressed asF i = F i,N+
F i,T = γ̂i,nni + γ̂i,uui + γ̂i,wwi ∈ Υi, where Υi is a 3D cone
of slope tan−1 µi, i.e., Υi = {[x, y, z]T ∈ R3|

√
y2 + z2 ≤ µix},

oriented along ni and with its tip at the contact point.

The Newton-Euler equations of motion [Stewart and Trinkle
1996] then assume the following expression:

q̇ = L(q)v

Mv̇ = f (t,q,v)

+
∑

i∈A(q,δ)
(γ̂i,nDi,n + γ̂i,uDi,u + γ̂i,wDi,w)

i ∈ A(q(t), δ) : 0 ≤ γ̂i,n ⊥ Φi(q) ≥ 0

(γ̂i,u, γ̂i,w) = argmin√
y2+z2≤µiγ̂i,n

vT (yDi,u + zDi,w) .

(3)

The tangent space generators Di = [Di,n, Di,u, Di,w] ∈
R6nb×3 are defined as

DT
i =

[
0 . . . −AT

i,p AT
i,pAA˜̄si,A 0 . . . 0

AT
i,p −AT

i,pAB˜̄si,B . . . 0
]
,

(4)

where Ai,p = [ni,ui,wi] ∈ R3×3 is the orientation matrix asso-
ciated with contact i; AA = A (εA) and AB = A (εB) are the
rotation matrices of bodies A and B respectively; and the vectors
s̄i,A and s̄i,B represent the contact point positions in body-relative
coordinates as illustrated in Fig. 1. Finally, the set of active and po-
tential unilateral constraints is denoted by A(q, δ) and is defined
based on the bodies that are mutually less than a distance δ apart.

2.2 Numerical Solution Methodology

The numerical solution methodology for the aforementioned DVI
problem is built around the following two decisions: (D1) follow-
ing the approach proposed in [Stewart and Trinkle 1996], a sym-
plectic half implicit Euler methods is used to discretize the dynam-
ics; and (D2) a zero gap nonpenetration condition between bodies
in mutual contact is enforced at the new time step t(l+1). Given a
consistent position q(l) and velocity v(l) at time t(l), the numer-
ical solution at t(l+1) = t(l) + h is obtained by solving the fol-
lowing mathematical programming problem with complementarity
and equilibrium constraints:

M(v(l+1) − v(l)) = hf

+
∑

i∈A(q(l),δ)

(γi,nDi,n + γi,uDi,u + γi,wDi,w) (5)

i ∈ A(q(l), δ) : 0 ≤ 1

h
Φi(q

(l)) + DT
i,nv

(l+1) ⊥ γin ≥ 0

(6)

(γi,u, γi,w) = argmin√
y2+z2≤µiγi,n

vT (yDi,u + zDi,w)

(7)

q(l+1) = q(l) + hL(q(l))v(l+1). (8)

Here, γi,s represents a constraint impulse associated with contact
i: γi,s = hγ̂i,s, for s = n, u,w. The superscript (l + 1) on γs
was dropped for notational brevity. All forces acting on the system
except the frictional contact forces are evaluated at time t(l) and
denoted by f ≡ f(t(l),q(l),v(l)). The term 1

h
Φi(q

(l)) achieves
constraint stabilization by eliminating any penetration within one
time-step.

For large models with millions of contacts, no effective meth-
ods are available for solving the numerical problem in Eqs. (5)–(7).
This observation motivated a third decision (D3), which was to re-
cast the aforementioned numerical problem into a more amenable
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one by a convexification of the NCP; i.e., by relaxing the comple-
mentarity condition in Eq. (6) [Anitescu and Hart 2004] to

i ∈ A(q(l), δ) : 0 ≤ 1

h
Φi(q

(l)) + DT
i,nv

(l+1)

−µi
√

(vT Di,u)2 + (vT Di,w)2 ⊥ γin ≥ 0 .

(9)

Owing to this relaxation, the resulting set of equations become
a cone complementarity problem (CCP). Specifically, solving for
v(l+1) from Eq. (5) and plugging its expression in Eq. (9) yields
a mathematical programming problem with complementarity con-
straints formulated exclusively in the set of Lagrange multipli-
ers γ [Anitescu 2006]. To pose the CCP, the following nota-
tion is used: the number of contacts in A(q, δ) is nc; D ≡
[D1, · · · ,Dnc ] ∈ R6nb×3nc is the generalized contact transfor-
mation matrix; Di ≡ [Di,n,Di,v,Di,w] ∈ R6nb×3 is the con-
tact transformation matrix associated with contact i ∈ A(q(l), δ);
ri ≡ bi + DT

i M
−1f ∈ R3 is the generalized contact velocity for

contact i; bi ≡
[
1
h

Φi(q
(l)), 0, 0

]T ∈ R3 is the unilateral con-
straint stabilization term; and N ≡ DTM−1D ∈ R3nc×3nc is
the contact associated symmetric positive-semidefinite Schur com-
plement matrix, which is typically very sparse. The new quantities
introduced – nc, D, Di, ri, bi, andN – should be further qualified
by a superscript (l) to indicate that they are evaluated in the system
configuration corresponding to t(l). For brevity, the superscript was
omitted. The CCP then assumes the form

Find γ(l+1)
i , for i = 1, . . . , nc

such that Υi 3 γ(l+1)
i ⊥ −

(
Nγ(l+1) + r

)
i
∈ Υ◦i (10)

where Υi = {[x, y, z]T ∈ R3|
√
y2 + z2 ≤ µix}

and Υ◦i = {[x, y, z]T ∈ R3|x ≤ −µi
√
y2 + z2} .

This CCP represents the first order optimality condition of a
quadratic optimization problem with conic constraints whose solu-
tion provides the set of normal and friction forces associated with
the set of contacts in A(q, δ):

min f (γ) =
1

2
γTNγ + rTγ (11)

subject to γi ∈ Υi for i = 1, 2, . . . , nc .

The overall approach is summarized as follows: a multibody dy-
namics frictional contact application is formulated as a DVI prob-
lem, which based on decisions (D1) and (D2) morphs into an NCP.
The latter is convexified based on (D3) to become a CCP. The
CCP is solved by considering an equivalent quadratic optimiza-
tion problem with conic constraints, whose solution is the desired
γ ∈ R3nc . Equation (5) is then used to expeditiously compute the
velocity v(l+1). The generalized coordinates q(l+1) are recovered
using Eq. (8) and the simulation is advanced at t(l+1).

The solution methodology adopted raises two concerns. First,
the CCP was obtained through a relaxation of the nonpenetration
complementarity condition, see Eqs. (6) and (9). As h → 0, the
solution of the modified time-stepping scheme approaches the so-
lution of the same measure differential inclusion as the original nu-
merical scheme [Anitescu 2006]. However, at large step-sizes h the
results might display artifacts that can be traced back to the convex-
ification decision. Second, the CCP-based solution methodology
fails to produce a unique solution to the frictional contact prob-
lem since the coefficient matrix N is positive semidefinite. This

does not come as a surprise. Just like any other solution method
for rigid body dynamics that relies on a DVI formulation, see for
instance, [Moreau and Jean 1996; Stewart and Trinkle 1996; An-
itescu 2006; Glocker and Pfeiffer 2006; Preclik et al. 2009; Sho-
jaaee et al. 2012], the CCP approach lacks the uniqueness attribute
in force and velocity distributions [Stewart 2000; Delannay et al.
2007; Preclik and Rüde 2011]. This issue can be traced back to the
interplay between Coulomb’s dry friction model and the rigid body
model. The simplest illustration that does not even bring friction
into discussion is the case of a perfectly rigid four-legged stool that
is symmetric; there is a lack of uniqueness in relation to the reaction
force distribution in the four legs. For frictionless problems the lack
of uniqueness is of secondary importance since it can be shown that
the change in velocity is unique [Anitescu 2006]. Unfortunately, a
similar statement cannot be made in the presence of friction.

2.3 Convexification Artifacts

One drawback of the methodology adopted is that at high sliding
velocity the relaxation in Eq. (9) introduces numerical artifacts.
Consider for instance a simple benchmark test – a 3D rigid ball
sliding fast. The ball is in contact with a plane; i.e., the ground,
and has an initial velocity of −2 m/s in the x direction. It has a
radius of 1 m and the contact has a friction value of µ = .2. The
ball, which is initially sliding, slowly begins to roll due to fric-
tion and eventually gets into a steady state rolling motion. The time
it takes to get to this state is trolling = 2v0

7µg
[Trinkle 2003]. For

an initial velocity of 2 m/s and g = 9.81m/s2, the ball will be
fully rolling at trolling = .291s. A numerical integration step size
of h = 0.0025 s was used to capture these dynamics. Figure 2
shows the response obtained with an unrelaxed approach and as
such displays no artifacts. The “primal approach” is that proposed
in [Cadoux 2009; Acary et al. 2011]. The dual formulation is the
one described herein if no relaxation is considered. The resulting
NCP is solved both with the PATH solver [Dirkse and Ferris 1995]
or via a CCP using a fixed point iteration, the latter being called
the “dual approach”. Both the primal and the dual approaches are
solved using Mosek [Andersen and Andersen 2000; Andersen et al.
2003], which relies on an interior point method. Although a fixed
point iteration typically fails to converge in the solution of the non-
relaxed formulation, which justifies the use of a nonsmooth Newton
step in [Cadoux 2009; Acary et al. 2011], for the simple problem at
hand the fixed point iteration worked fine. Numerical experiment
details are provided in [Mazhar et al. 2014], where the connec-
tion between the primal and dual formulations is also highlighted:
a relaxation of the primal approach in [Cadoux 2009; Acary et al.
2011] leads to a convex program with conic constraints whose dual
is practically the approach adopted herein.

Figure 3, which shows results obtained with the relaxed
methodology, displays one artifact in the high sliding regime
that can be traced back to changing the expression of the rel-
ative normal contact velocity by subtracting the relaxation term
µi
√

(vT Di,u)2 + (vT Di,w)2; i.e., µ||vT ||. Subtracting this term
ends up canceling out the last term in the expression of the general-
ized relative contact velocity v + µ||vT ||n used in [De Saxcé and
Feng 1998] to set up the NCP (n denotes the unit normal vector at
the point of contact). The immediate consequence of this serendip-
itous cancellation is that the general NCP becomes a much more
easily solved quadratic program with conic constraint. The NCP
to CCP relaxation affects the response since the complementarity
problem will be posed relative to a slightly different relative contact
velocity, which in turn slightly changes the direction and magni-
tude of the resulting frictional contact force. In regimes with large
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Fig. 2. Translational velocity of 3D ball decreases steadily until the mo-
ment it starts rotating with no slip. Solution obtained with non-relaxed ap-
proaches: primal, dual, and straight NCP. The first two use Mosek and a
fixed point iteration; the latter uses PATH.

Fig. 3. Solution artifact creeps into the translational velocity of 3D ball at
large slip speed.

relative sliding velocities and friction values this artifact results in
“jitter” at the contact point as illustrated in Figure 3. Note that such
an artifact exists independent of the approach used to solve the opti-
mization problem in Eq. 11. Consequently, the APGD method will
not eliminate it. Further details and numerical experiments are pro-
vided in [Mazhar et al. 2014].

2.4 Embedding a Simple Cohesion Model

The ability of the DVI formulation to accommodate cohesion was
postulated in [Tasora et al. 2013], yet no equations or simulation
results were provided therein. Following [Tasora et al. 2013], three
observations suffice to explain how a cohesion model can be em-
bedded into the solution framework. First, the condition in Eq. (3),
0 ≤ γ̂i,n ⊥ Φi(q) ≥ 0, is replaced by 0 ≤ γ̂i,n+ ĉi ⊥ Φi(q) ≥
0, where for contact i, ĉi > 0 represents a user prescribed param-
eter, expressed in Newtons, that controls the amount of cohesion.
Effectively, this relaxes the formulation by allowing γ̂i,n to assume
negative values; i.e., pulling at the point of contact, with the pulling
force capped at the value ĉi > 0. Second, note that the actual nor-
mal force at the interface between the two bodies in contact contin-
ues to be γ̂i,n, so the generalized force associated with this interac-
tion enters the equations of motion unchanged; i.e., as γ̂i,nDi,n in
Eq. (3). Lastly, the Coulomb dry friction model is amended to re-
flect the presence of the cohesion force. To this end, the cone con-
straint

√
y2 + z2 ≤ µiγ̂i,n is posed as

√
y2 + z2 ≤ µi(γ̂i,n + ĉi)

in the minimization problem of Eq. (3). The discretization proceeds
just like in Eqs. (5) through (8), subject to the three observations
above.

3. THE ACCELERATED PROJECTED GRADIENT
DESCENT METHOD

In introducing Nesterov’s method in conjunction with this problem,
the discussion concentrates first on the task of minimizing a generic
cost function f(x). The use of x instead of γ is meant to empha-
size that Nesterov’s method is a general purpose minimization ap-
proach. The particular expression of f ; i.e., a quadratic function,
the projection onto the friction cones, and the large number of vari-
ables represent traits specific to the multibody dynamics context
in which Nesterov’s method is subsequently applied. For a typical
granular dynamics system with one million bodies, the quadratic
problem with conic constraints in Eq. (11) has approximately 12
million variables and four million constraints.

3.1 Preamble: Nesterov’s Method

Nesterov first proposed accelerated gradient schemes in 1983 [Nes-
terov 1983]. Accelerated gradient descent methods can be seen as
simple gradient descent methods with the introduction of ‘momen-
tum’ in the search direction. Momentum refers to the the concept
that the search direction should depend on past iterations in addi-
tion to the current iteration. Instead of taking the search direction to
be opposite of the gradient direction at the current iteration, the in-
troduction of momentum effectively uses a weighted combination
of the current and past gradient directions.

The original gradient descent method, often attributed to Cauchy
[Cauchy 1847], is expressed as

xk+1 = xk − αk∇f (xk) (12)
with αk = arg min

α
f (xk − α∇f (xk)) , (13)

where f (x) is a smooth function to be minimized and αk is a step
size for iteration k. Under certain conditions, for example if f (x)
is convex and Lipschitz continuous, convergence to the global so-
lution can be guaranteed.

The scheme in Eqs. (12)–(13) solves an unconstrained optimiza-
tion problem. The gradient descent method can be extended to
solve constrained optimization problems under certain conditions
[Bertsekas 1976]. The resulting projected gradient descent method
takes the following form, where ΠC represents projection onto the
feasible convex set C and αk is the step size that should satisfy a
sufficient decrease condition:

xk+1 = ΠC (xk − αk∇f (xk)) . (14)

The projected gradient descent method can be shown to have a
sub-linear rate of convergence when the objective function f (x) is
convex and C is a convex set:

f (xk)− f (x?) ' O (1/k) . (15)

Nesterov’s method has an improved convergence rate of
O (1/k2). In fact, it was shown to be an ‘optimal’ first-order
method for smooth problems in terms of its performance among
all first-order methods, up to a constant [Nemirovsky and Yudin
1983].

The following set of equations represents one iteration of the
accelerated gradient descent (AGD) scheme [Nesterov 2003]. Note
that y0 = x0 ∈ Rn, θ0 = 1, q ∈ [0, 1] is a tuning parameter, and
tk is the step size for the current iteration.
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xk+1 = yk − tk∇f (yk) (16)
θk+1 solves θ2k+1 = (1− θk+1) θ2k + qθk+1 (17)

βk+1 =
θk (1− θk)

θ2k + θk+1

(18)

yk+1 = xk+1 + βk+1 (xk+1 − xk) . (19)

Assume f (x) is convex and Lipschitz continuous with constant
L; i.e., ||∇f (x)−∇f (y) ||2 ≤ L||x−y||2,∀x,y ∈ Rn. Then, the
method described by Eqs. (16)–(19) converges for any tk ≤ 1/L.
Note that q = 1 leads to θk = 1, βk = 0, and yk = xk for
all k ≥ 0, which reduces to the gradient descent method. In gen-
eral, the parameter q can tune the performance of the method de-
pending on the specifics of the objective function f (x). For ex-
ample, if f (x) is also strongly convex, i.e., ∃µ > 0 : f (x) ≥
f (x?) + (µ/2) ||x − x?||22,∀x ∈ Rn, then the optimal value is
q = µ/L. If the objective function is not strongly convex, or the
strong convexity parameter µ is unknown, then it is often assumed
that q = 0. Since the original statement of the accelerated method
in [Nesterov 1983] had q = 0, the convergence rate of O (1/k2) is
still valid.

The AGD scheme can be extended to constrained optimization
in the same way that gradient descent was extended to projected
gradient descent. The resulting algorithm, called Accelerated Pro-
jected Gradient Descent (APGD) can be expressed by the following
sequence of steps performed at each iteration k ≥ 0. Once again,
let y0 = x0 ∈ Rn, and θ0 = 1.

xk+1 = ΠC (yk − tk∇f (yk)) (20)
θk+1 solves θ2k+1 = (1− θk+1) θ2k (21)

βk+1 =
θk (1− θk)

θ2k + θk+1

(22)

yk+1 = xk+1 + βk+1 (xk+1 − xk) . (23)

If f (x) is convex and Lipschitz continuous with constant L, the
method described by Equations (20)–(23) converges for any tk ≤
1/L. An equivalent algorithm was proved in [Beck and Teboulle
2009] to converge with the sameO (1/k2) rate as the AGD method.

3.1.1 Adaptive Step Size. The global Lipschitz constant may
be unknown or too restrictive, implying that choosing a constant
t < 1/L may not achieve best performance. The APGD method
was therefore adjusted to allow the step size, tk, to vary at each it-
eration while still guaranteeing convergence. Two possible adaptive
strategies are considered, both adapted from [Becker et al. 2011].

In the first, a local estimate of the Lipschitz parameter, Lk, is
computed and used as long as the associated step, tk = 1/Lk, is
appropriate to preserve convergence; i.e., the following condition
is satisfied:

f (xk+1) ≤ f (yk) +∇f (yk)T (xk+1 − yk)

+
Lk
2
||xk+1 − yk||22 .

(24)

Backtracking is performed as long as Eq. (24) is violated. Specif-
ically, set Lk = 2Lk until Eq. (24) is satisfied and proceed with the
new estimate. With this approach, the step length tk will shrink as
Lk increases. Once Lk ≥ L, no more backtracking steps will be
needed and tk will be constant for the remaining iterations. To start
off, L0 can be estimated as L0 = ||∇f (z0)−∇f (z1) ||2/||z0 −
z1||2, for z0 6= z1.

The second strategy allows the step to both grow and shrink
throughout the iterative process. The same backtracking is used to
increase Lk, yet it may also decrease to lead to larger steps when
feasible. Specifically, Lk is decreased at each iteration according
to Lk+1 = 0.9Lk, and increased if needed to satisfy Eq. (24). The
approach may result in slightly more total backtracking steps, but
may allow longer steps and improved overall performance.

3.1.2 Adaptive Restart. Depending on the nature of the prob-
lem solved, Nesterov’s method can yield a numerical solution se-
quence in which the amount of momentum applied adversely im-
pacts the solution time. In [O’Donoghue and Candes 2012], it is
shown that high momentum leads to rippling in the objective func-
tion value and decreased performance of the iterative method. In
Eqs. (20)–(23), note that βk → 1, is characterized as high momen-
tum. This is addressed through a restarting of the method, that is,
a resetting of the momentum [O’Donoghue and Candes 2012]: if
∇f (yk−1)T (xk − xk−1) > 0 at iteration k, then set θk = 1 and
yk = xk. In other words, the momentum is reset whenever the
projection of the momentum term, βk (xk − xk−1), onto the nega-
tive gradient, −∇f (yk−1), is negative. This would imply that the
momentum opposes the negative gradient, which is known to be a
descent direction and therefore not helping the method.

3.1.3 Fallback. If a non-monotone iterative method is termi-
nated prematurely at iteration k, it is possible that the current iter-
ate, xk, is not the best approximation of the solution. A fall-back
strategy has been adopted herein to achieve monotone behavior
in terms of a selected metric r (xi) ∈ R. The fall-back strategy
should return x̂, the ‘best’ candidate according to the selected met-
ric: x̂ = xi, where i = arg minj∈[0,k] r (xj).

3.2 The Overall Algorithm

The generic multibody dynamics CCP of Eq. (11) is solved with the
APGD method augmented with adaptive step size, adaptive restart,
and a fall-back strategy, see Algorithm 1. The input for the algo-
rithm is the matrix N and vector r, the tolerance τ , the maximum
number of iterations Nmax, and the initial guess for the vector of
unknowns, usually taken as γ0 = 0.

Of several alternatives discussed in [Heyn 2013], the fall-back
metric selected is

r = ||ψ||2,ψ =
1

3ncgd
(γ −ΠC (γ − gd (Nγ + r))) ∈ R3nc ,

(25)
where gd is a small constant parameter, for example gd =
1× 10−6. To justify this selection, first note that if γ = γ∗ is op-
timal, then ΠC (γ∗ − gd (Nγ∗ + r)) = γ∗, so ψ = 0. Second,
consider the case when γ is not optimal. Then, it can be verified
that

ΠC (γ − gd (Nγ + r)) = γ − gdψ . (26)

The left hand side is equivalent to taking a step of length gd in
the negative gradient direction and projecting back to the feasible
region. The right hand side says that the same point can be reached
by taking a step of length gd in the direction opposite of ψ. In the
limit, as gd → 0, the direction ψ approaches the plane tangent
to the constraint manifold. Note that r could be used to measure
convergence for any value of gd, but a small value was used in
practice for the reasons just stated.
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Algorithm 1 APGD (N , r, τ , Nmax, γ0)
1: γ̂0 = 1nc

2: y0 = γ0

3: θ0 = 1
4: Lk = ||N(γ0−γ̂0)||2

||γ0−γ̂0||2
5: tk = 1

Lk

6: for k := 0 toNmax do
7: g = Nyk + r
8: γk+1 = ΠC (yk − tkg)

9: while 1
2
γTk+1Nγk+1 + γTk+1r ≥ 1

2
yTkNyk + yTk r +

gT
(
γk+1 − yk

)
+ 1

2
Lk||γk+1 − yk||22 do

10: Lk = 2Lk
11: tk = 1

Lk

12: γk+1 = ΠC (yk − tkg)
13: end while
14: θk+1 =

−θ2k+θk
√
θ2
k
+4

2

15: βk+1 = θk
1−θk

θ2
k
+θk+1

16: yk+1 = γk+1 + βk+1

(
γk+1 − γk

)
17: r = r

(
γk+1

)
18: if r < rmin then
19: rmin = r
20: γ̂ = γk+1

21: end if
22: if r < τ then
23: break
24: end if
25: if gT

(
γk+1 − γk

)
> 0 then

26: yk+1 = γk+1

27: θk+1 = 1
28: end if
29: Lk = 0.9Lk
30: tk = 1

Lk

31: end for
32: return Value at time step t(l+1), γ(l+1) := γ̂ .

4. NUMERICAL EXPERIMENTS

The numerical experiments reported herein were carried out us-
ing Chrono, a library for rigid and flexible body dynamics
[Mazhar et al. 2013]. Chrono is an open source BSD-3 licensed
C/C++ physics-based dynamics engine that relies on multi-core and
GPU parallelism to handle simulations of rigid bodies interacting
through friction and contact. It aims at modeling mechanical sys-
tems, e.g., cars, trucks, tracked vehicles, granular flow, etc., that in-
clude elements such as joints, driving constraints, force elements,
user defined controllers, etc. Chrono comes with several solvers for
rigid and flexible body dynamics including projected Gauss-Seidel
(GS), Jacobi and Krylov-based. This numerical solution portfolio
was augmented herein with a solver based on the APGD method.
The numerical experiments carried out to compare APGD against
projected GS and Jacobi are thus drawing on the same equation for-
mulation framework. Any efficiency and/or robustness differences
can be traced back solely to how the CCP in Eq. (11) is solved by
APGD, Jacobi, and GS. The latter is the default sequential solver in
Chrono and the benchmark method in this paper. Parallel solutions
in Chrono rely on Jacobi.

4.1 APGD Performance Analysis

Projected Gauss-Seidel, or variants thereof, represent the most
commonly used algorithms in the DVI-based solution of the
frictional contact multibody dynamics problem, see for instance
[Moreau and Jean 1996; Glocker and Pfeiffer 2006; Preclik et al.
2009; Shojaaee et al. 2012]. The GS algorithm employed herein
is based on work reported in [Anitescu and Tasora 2010]. It has
successive over-relaxation and a projection step that enforces fea-
sibility at each iteration. The algorithm relies on block diagonal
preconditioning and uses the matrices Bi = 1

gi
I3 ∈ R3×3, where

for each contact i ∈ [1, nc]

gi =
tr
(
DT
i M

−1Di

)
3

. (27)

The convergence is controlled through r, computed in line 8 of
Algorithm 2. A Jacobi algorithm is very similar, essentially Algo-
rithm 2 minus the update at line 6. While slower than GS to con-
verge, parallelizing Jacobi is straightforward.

Algorithm 2 Gauss-Seidel (N , r, τ , Nmax, γ0)
1: for k := 0 to Nmax do
2: γ = γk
3: for i = 1 to nc do
4: γ̂i,(k+1) = ΠC

(
γi,(k) − ωBi (Nγ + r)i

)
5: γi,(k+1) = λγ̂i,(k+1) + (1− λ)γi,(k)
6: γi = γi,(k+1)

7: end for
8: r = r

(
γk+1

)
9: if r < τ then

10: break
11: end if
12: end for
13: return Value at time step t(l+1), γ(l+1) := γ(k+1) .

4.1.1 Speed of Convergence Study: APGD vs. Gauss Seidel vs.
Jacobi. In this study, a container with a width and depth of 3 m was
filled with 4000 equally sized spheres of radius 0.15 m and mass
1 kg. A heavy slab was placed on top of the bed of spheres and al-
lowed to settle using the GS solver to a ‘reference’ configuration as
illustrated in Fig. 4. The friction coefficient between all bodies in
the model was µ = 0.1. The reference configuration of the system
was subsequently used as the initial state for the APGD, GS, and
Jacobi convergence analysis. This type of stacking problem is chal-
lenging since there are numerous force chains forming within the
granular material that couple the distribution of normal and friction
forces well beyond several layers of neighbor bodies. The presence
of a heavy slab exacerbates this force chain formation.

Mimicking the process of advancing the simulation by one step,
each of the three solvers was cold started with γ0 = 0 from the
GS-determined reference configuration. As illustrated in Fig. 5, for
a slab mass of 1000 kg, the APGD method converges at the fastest
rate and has the lowest objective function value after 1000 iterations
when advancing the simulation by one step. Within this iteration
budget, both Jacobi and GS approach a residual of r =1.2× 10−5,
while APGD reaches a residual one order of magnitude lower,
r =1.1× 10−6. Finally, APGD has an objective function value
twice as small as GS and almost seven times smaller than Jacobi.
The data in Fig. 5 after 1000 iterations is also provided under the
1000 kg rows in Table I. The table reports similar information and
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Fig. 4. ‘Reference’ configuration for convergence test involving APGD,
GS and Jacobi.
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Fig. 5. APGD vs. GS vs. Jacobi: Residual r and Objective Function f(γ)
after 1000 iterations for the pressure test with a slab of 1000 kg, see Fig 4.

captures a similar trend; i.e., better convergence for APGD, for slab
masses up to 1 000 000 kg

For a second numerical experiment using a 1000 kg slab, Table II
reports the amount of time it took each solver when cold started
from the reference configuration to reach r =7.0× 10−6. The re-
sults show that for small tolerances, GS had a difficult time con-
verging, while Jacobi failed to converge after 500 000 iterations.
For this tolerance, APGD was more than an order of magnitude
faster than GS in reaching the set tolerance.

4.1.2 APGD Scaling Analysis. APGD has been implemented
for parallel execution in Chrono using OpenMP. The collision
detection stage is parallelized following an approach described in
[Mazhar et al. 2011]. The scaling analysis of the parallel APGD im-
plementation is carried out using a mixer model: a cylindrical con-
tainer inside of which a four blade mixer rotates counter-clockwise
at a rate of π/2 rad s−1, see Fig. 6. The mixture in the container is
made up of spheres, ellipsoids, cylinders and cubes with a density
of 1000 kg m−3 and an average radius/half-width of 0.05 m. The
friction coefficient was µ = 0.5 and the cohesive force parameter,
discussed in detail in the next section, was ĉ =200 N. Using this

Table I. APGD vs. GS vs. Jacobi: Residual r and
Objective Function f(γ) after 1000 iterations for

different slab masses.
Residual r

Mass Jacobi Gauss Seidel APGD

1× 103 1.27× 10−5 9.43× 10−6 1.10× 10−6

1× 104 1.48× 10−5 1.27× 10−5 3.18× 10−6

1× 105 1.52× 10−5 1.36× 10−5 9.09× 10−6

1× 106 1.53× 10−5 1.37× 10−5 1.18× 10−5

Objective Function f(γ)

Mass Jacobi Gauss Seidel APGD

1× 103 −28.29 −117.70 −220.14
1× 104 −35.63 −162.99 −883.54
1× 105 −37.02 −176.94 −3199.27
1× 106 −37.15 −210.23 −4696.48

Table II. APGD vs. GS vs. Jacobi: Number of iterations
and time taken to converge to a tolerance of r =7× 10−6

for a slab of 1000 kg. Jacobi was unable to converge
(UtC) within 500 000 iterations.

Solver Residual Iterations Time[s]

Jacobi 7.54× 10−6 (UtC) 500 000 24 300

Gauss Seidel 6.99× 10−6 11 485 494.8

APGD 6.97× 10−6 202 10.6

Table III. Parallel APGD scaling with eight cores. Time
taken by solver to resolve one time step at blade steady

state rotation.
Objects Contacts Residual r Solution Time [s]

101 506 355 551 6.08× 10−5 3.97
200 270 804 768 6.42× 10−5 8.13

301 790 1.33× 106 5.36× 10−5 12.53

400 555 1.89× 106 4.58× 10−5 17.23

setup, several simulations were run with an increasing number of
objects. All simulations used a time step of 5× 10−4 s. The tests
were run on an eight core Intel Xeon E5520 processor. Table III
reports the timing results for a single time step when the mixer has
reached steady state. The number of objects ranges from approxi-
mately 100 000 to 400 000. The results indicate that the simulation
time scales linearly with the number of bodies, and therefore con-
tact events, in the model.

4.1.3 Comparison with Other Solvers. For large stacking
and/or granular dynamics problems with hundreds of thousands of
contacts, run times of the APGD method embedded into a dual re-
laxed frictional contact formulation (i) increase linearly with the
number of bodies/contacts; and (ii) are one to two orders of mag-
nitude shorter than those associated with existing Chrono solvers
built around the projected Gauss-Seidel or Krylov-subspace ap-
proaches [Heyn et al. 2013]. These two observations are backed
by results shown in Tables II and III, as well as a range of analyses
carried out elsewhere [Mazhar et al. 2013; Mazhar et al. 2014].

If the comparison against projected Gauss-Seidel or Krylov-
subspace; i.e., first order approaches, is favorable, what can one
say when second order, Hessian-based, methods are brought into
the discussion? Second order methods, such as interior point or
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Fig. 6. Mixer simulation with cohesive material made up of several differ-
ent geometries. The mixer blade rotates counter-clockwise pulling material
down.

other Newton method-based, are expected to converge in fewer yet
costlier iterations as they are more expensive to setup at each time
step and require the solution of a sparse linear system at each it-
eration. When simulating the dynamics of granular material, for
instance, the size of these linear systems is large and the struc-
ture of the coefficient matrix changes at each time step owing to
the making and braking of contacts. The sparse linear solvers used
can be direct or iterative, parallel or sequential. If they are parallel,
there are OpenMP, MPI, and GPU-based flavors, see for instance
[Schenk and Gärtner 2004; Demmel 2011; Li et al. 2013]. If they
are iterative, a preconditioner typically comes into play. Moreover,
the APGD approach takes many inexpensive iterations and can be
stopped early in the convergence process if visually pleasing ani-
mations are the only matter of concern.

It becomes manifest that a full-blown APGD vs. second order
methods comparison rapidly escalates and a comprehensive discus-
sion falls outside the scope of this paper. An investigation into this
topic is shown in [Mazhar et al. 2014] wherein, a comparison of
several reference solvers all used in conjunction with the dual and
relaxed approach that led to Eq. (11) was performed. The lessons
learned so far are as follows: (a) benchmark tests indicate that the
results obtained with Mosek, PATH and APGD are the same – both
in the relaxed as well as the unrelaxed dual approaches, albeit there
will be differences between the relaxed and non-relaxed results; and
(b) the run time comparison is somewhat inconclusive since run
times are comparable to the point where implementation details;
i.e., software design issues and the underlying sparse linear solver,
dictate the overall solution time. An APGD-Mosek efficiency com-
parison in [Mazhar et al. 2014] indicates that APGD is faster for

problems with thousands of contacts but that Mosek it is slowly
closing the performance gap. It is not clear at this point whether for
very large problems the embedded parallel sparse linear solver will
pose a computational bottleneck in Mosek or whether the Mosek
solver will eventually become more effective.

As a side note, even for small benchmark problems the APGD
and Mosek were significantly yet unsurprisingly faster than PATH.
The latter solves the full mathematical program with equilibrium
constraints problem; i.e., no reduction to a CCP is undertaken and
the dimension of the resulting problem is large and poised to in-
crease much faster with the model size when compared to the CCP
dual approach adopted here.

4.2 Other APGD Simulations

4.2.1 Snow - Clay Simulation. The purpose of this test was
twofold: illustrate how a cohesion model can be embedded in the
overall simulation framework, and show how APGD handles the
modified CCP. In Fig. 7 several balls of material, each consisting
of approximately 75 000 equally sized spheres, are dropped with
an initial velocity of 10 m/s onto the edge of a cube rotated 45°.
The friction value for contact between the spheres was µ = 1.0
and for contacts with the walls it was µ = 0.1. The cohesion was
increased from ĉ =500 N to ĉ =20 000 N to demonstrate different
types of materials. For a cohesion value of ĉ =500 N the material
behaves like heavy snow. Increasing it to ĉ =4000 N makes the
material behave like clay, while for a cohesion of ĉ =20 000 N ma-
terial fractures rather than deforming under large forces. For each
case, the integration time step was h =0.0005 s. Fig. 8 shows two
cases, ĉ =500 N and ĉ =4000 N, after several time frames. The
final frames for both cases contain approximately 1.6 million rigid
spheres and more than six million contacts, which leads to a CCP
in approximately 20 million variables.

4.2.2 Bulldozer Dynamics. The purpose of this test was
twofold. First, it posed a challenging numerical problem since the
mass of the bulldozer is approximately five orders of magnitude
larger than the mass of a pebble that the bulldozer operates on. The
multi-scale attribute of the model leads to ill conditioned N ma-
trices. Second, the model uses several kinematic joints to connect
idlers and sprockets to the chassis of the bulldozer, and track shoes
to each other. These joints translate into kinematic geometric con-
straints of the form g(G)(q) = 0b, where g ∈ Rb is a function
specific to each joint type [Haug 1989]. For instance, b = 3 for a
spherical joint, b = 5 for a revolute joint, b = 5 for a translational
joint, etc. There are also kinematic driving constraints, which as-
sume the form g(D)(q, t) = 0b. These geometric and driving kine-
matic constraints result in nonlinear algebraic equations added to
the set in Eq. (3). Their presence slightly obfuscates the numeri-
cal algorithm by marginally increasing the size and complicating
the structure of N and r but otherwise does not change the nature
of the optimization problem in Eq. (11) [Anitescu and Hart 2004].
APGD was used to solve this optimization problem, a snapshot of
the simulation being shown in Fig. 9.

The tracked vehicle has a curved blade attached to the front. Two
sets of tracks are attached to the 5000 kg chassis. Each track has
a 250 kg sprocket that drives the track as well as five cylindrical
rollers, each with a mass of 250 kg. Each of the 50 track shoes
has a mass of 20 kg. The total mass of the vehicle is 7300 kg. The
track model is created using revolute joints to connect the track
shoes. Revolute joints are also used to attach rollers and sprockets
to the chassis. Each sprocket is driven at a constant angular velocity
of 4 rad/s. The frictional value between the ground and the track
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Fig. 7. Comparison between balls with different cohesion values ranging
from ĉ =500N to ĉ =20000N.

shoe is µ = 1.0; the blade is considered frictionless. In total there
are 114 rigid objects and 111 constraints joining the vehicle parts
together.

The bulldozer drives towards and engages a pile of elliptical
granular material with a density of 2000 kg/m3 and cohesion
ĉ =500 N. Inter-particle friction is µ = 0.2. There are 160 000
0.067 kg ellipsoids representing the soil elements that interact
through approximately 0.5 million contacts at each step of the sim-
ulation. The integration time step was h =0.0001 s.

4.2.3 Modeling Deformation and Brittleness Using Cohesion.
The largest Chrono simulation used 10 million elements to model
the motion of a tire provided with a detailed tread geometry over
deformable terrain. The tire deformation was neglected and the in-
terest was in understanding the deformation of the terrain. The abil-
ity of the APGD method to analyze the dynamics of millions of
bodies interacting at the interface provides an opportunity to ap-
proach old problems from a new perspective. For instance, Fig. 10
provides a sequence of snapshots from the deformation of a teapot
that hits a wall. At this point there is no claim of physical behav-
ior in the plastic deformation of the pot. Nonetheless, the use of
cohesion in conjunction with the representation of a part as a very
large number of discrete elements that, up to a point, stick together
thanks to the cohesion force can provide a different perspective on
the topic of plasticity and fracture.

This idea is also illustrated in Fig. 11. At a cohesion value of
ĉ =1× 104 N, the object behaves in a highly brittle manner and
quickly loses structural integrity upon contact with the wall. At
ĉ =1× 105 N, the object is strong enough to maintain its shape
and only fractures at internal weak points.

4.2.4 Granular Flow. The results in Fig. 3 suggest that the
convexification process can produce artifacts. However, the solu-
tion methodology adopted has merit – a solution always exists and
one has a clear idea when the method ought to work and when a dif-
ferent approach must be considered. For instance, in granular dy-
namics when handling stacks of bodies the relative sliding velocity
between bodies is small and the relaxation approach is expected to
yield good results. Indeed, the results reported in this and the next
subsection confirm the predictive attributes of the APGD algorithm
in Chrono.

The first validation setup is similar to that of an hourglass: granu-
lar material is placed in a trough and one of the walls slides slightly
producing a gap through which the bodies move out. The gap width
controls the rate of flow, which is first established experimentally.
In the setup discussed, see Fig. 12, the moving wall is on the right.
In the experiment, the granular material was composed of approxi-
mately 39,000 glass spheres with diameter of 0.5 mm and mass of
1.6315× 10−7 kg based on a material density of 2500 kg/m3. The
moving wall was angled at 45° and its position could be precisely
controlled through a linear actuator.

In the experimental test and associated simulation the spheres
were first dropped into the trough and allowed to settle. The linear
actuator then slid the moving wall to the right producing a different
gap for each of three experiments: 2.0 mm, 2.5 mm, and 3.0 mm.
The 2.0 mm gap experiment was used for calibration purposes to
evaluate the value of the friction coefficient. The value µ = 0.3
was identified as producing a simulation a flow rate that matched
the experimental case. This value was subsequently used for the
2.5 mm and 3.0 mm simulations. At no point during the duration
of the flow and for neither of the two gap scenarios was the error
between experiment and simulation larger than 3% [Heyn 2013].

4.2.5 Impact Problem. The discretization process that yields
Eqs. (5) through (7) starting from Eq. (3) is one of several ways to
produce a numerical solution of the DVI problem associated with
frictional contact in multibody dynamics. One can argue that the
very form of the equations of motion in Eq. (3) can and should
be improved. A compelling case is made in [Smith et al. 2012],
where the CCP approached adopted herein is shown to yield incor-
rect dynamics for certain impact problems. The issue can be traced
to the left side of the complementarity condition in Eq. (6), which
upon multiplication by h contains the first two terms of a Taylor
series expansion of the gap function evaluated at q(l+1). The con-
sequence of this numerical discretization choice is that impacts are
always inelastic, since with no additional physics brought into the
model, the very condition Φi(q

(l+1)) implies the inelastic attribute
of the discretization scheme. How big of a problem this represents
is the focus of this subsection. Clearly, the answer is independent
of the method to solve the CCP that leads to the optimization prob-
lem in Eq. (11). At that point in the solution sequence, any method
to solve the optimization problem, APGD or GS, should produce
roughly the same solution albeit at different computational costs.
We used APGD and a ball drop test, see Fig. 13, to gauge the ex-
tent of the error in this benchmark test problem in which balls of
three materials – polypropylene, wood, and teflon – are dropped
one at a time onto a bed of granular material made up of 500,400
spherical bodies with 1.0 mm diameter and material density of
2.5 g/cm3. Figure 13 shows four snapshots from the impact simu-
lation at t =0.0008 s, t =0.0128 s, t =0.0248 s, and t =0.0368 s
respectively. The last snapshot represents the instant of deepest
penetration. The images show a cut-away through the center of the
ball that exposes the profile of the crater.
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Fig. 8. Balls made up of spheres are dropped onto a cube rotated 45◦ in an enclosed container have different cohesion parameters: ĉ =500N and ĉ =4000N.
The final frame contains approximately 1.6 million rigid spheres and 6-7 million contacts, which leads to a CCP in approximately 20 million variables.

Fig. 9. A 7300 kg bulldozer interacting with a cohesive material for which
ĉ =500N.

It was shown in [Uehara et al. 2003] and confirmed in [Ambroso
et al. 2005] that the penetration depth d reached by the bottom of
the ball had the following empirical formula:

d =
0.14

µ

(
ρb
ρg

)1/2

D
2/3
b H1/3 , (28)

where h represents the height from which the ball is dropped (rel-
ative to the bottom of the ball and with respect to the granular
testbed), H = h + d, µ = 0.3 is the friction coefficient, ρb is
the density of the ball, ρg is the density of the material that makes

Fig. 10. Walled teapot made up of 80 000 spheres with a cohesion value
of ĉ =5× 106 N. The integration time step was h =0.001 s.

up the granular bodies, and Db is the diameter of the ball. All
experiments performed in [Ambroso et al. 2005] used a granu-
lar medium composed of glass spheres with a diameter range of
0.25 mm-0.35 mm and material density of 2.5 g/cm3. In [Uehara
et al. 2003], a variety of granular materials were used, ranging from
popcorn kernels of size 4 mm × 6 mm × 7 mm to beach sand of
size 0.5 ± 0.4 mm.

The linear fit based on the simulation results suggests that the
penetration depth satisfies the following scaling:
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Fig. 11. Two objects made up of 154 000 spheres with cohesion values of
ĉ =1× 104 N (top) and ĉ =1× 105 N (bottom). The integration time step
was h =0.001 s.

Fig. 12. Schematic of mass flow rate validation experiment. The colors
indicate the speed magnitude of each rigid body.

d =
0.1221

µ

(
ρb
ρg

)1/2

D
2/3
b H1/3 , (29)

which suggests that the empirical constants determined from
simulation and experiments for these impact tests show a 13.7%
difference.

Fig. 13. Snapshots from impact simulation with h =20 cm and
ρs =0.7 g/cm3 (wood). Simulation time shown in the upper left corner.

5. DISCUSSION

This paper makes two points. For the first time, an approach for
handling cohesion outlined in [Tasora et al. 2013] and summarized
in Section 2.4 has been demonstrated to work in practice for prob-
lems with millions of contacts. To the best of our knowledge, this
treatment of cohesion in rigid multibody dynamics is new. While
leading to visually pleasing results, it remains to gauge to what
extent this cohesion model can reproduce physical behavior in ap-
plications such as snow dynamics, deformable terrain modeling, or
crack propagation. Second, a new algorithm called APGD has been
shown to effectively solve an optimization problem that yields the
set of frictional contact forces at each integration time step.

Substituting the projected Jacobi and/or GS steps with APGD
can in principle both simplify and accelerate the solution of the
velocity-based shock propagation method proposed in [Cottle et al.
2009; Erleben 2007]. Therein, upon partitioning the problem at
each time step into blocks, the iterative solution proceeds using an
unconventional block-level mixture of Jacobi and GS that draws on
ideas proposed in [Bridson et al. 2002; Guendelman et al. 2003]. In
[Guendelman et al. 2003], the resolution of the collision and con-
tact events is local and treats each pairwise event independently,
first for collisions and subsequently for contacts. The events are
visited in random fashion to yield a relaxation that is similar to
Moreau’s Gauss-Seidel method. The authors indicate that many it-
erations are needed before the events are resolved and an ad-hoc
approach that relies on ordered graphs to correct for body inter-
penetration is proposed. Nonconvex objects are handled using a
mixed representation of the geometry that combines triangulated
surfaces with signed distance functions defined on grids. The ma-
jor difference between the methodology embraced here and the one
in [Guendelman et al. 2003] goes back to the global nature of the
former approach. If in [Guendelman et al. 2003] the goal is to gen-
erate a visually pleasing evolution of stacked bodies fast, herein we
strive to maintain a predictive attribute of the overall method by
globally resolving at each time step all friction and contact forces
present in the system.

The relaxation of the complementarity condition in Eq. (9) has
two consequences. First, on the upside, the numerical solution
can leverage a wider spectrum of methods to handle the resulting
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quadratic program with conic constraints in Eq. (11). We took ad-
vantage of this by proposing the APGD algorithm to accelerate the
frictional contact force computation. Second, on the downside, the
relaxation embedded in the solution introduces artifacts that were
discussed in Section 2.3. It should be pointed out that there are
approaches that do not fall back on a relaxation, see for instance
[Bertails-Descoubes et al. 2011; Daviet et al. 2011; Acary et al.
2011]. In [Daviet et al. 2011], the problem is formulated as an NCP
which is solved using a Newton method and in [Bertails-Descoubes
et al. 2011] a nonsmooth Newton approach is utilized to solve a
fixed point problem.

Ultimately it comes down to either (i) embracing a relaxed ap-
proach that leads to a tame numerical problem, e.g., a CCP or LCP,
which has a global solution that might displays unphysical artifacts,
or (ii) staying faithful to the Coulomb dry friction model and deal-
ing with a numerical problem that in circumstances not known a
priori might not have a solution for large and/or complex systems.
This paper does not attempt to elucidate this conundrum. Instead, it
proposes an approach to solve the CCP that within the bounds of a
relaxed DVI formulation: (a) is faster than other first order methods
used today, e.g.: projected Jacobi, Gauss-Seidel, Krylov-subspace
or variants discussed in [Moreau and Jean 1996; Anitescu and Hart
2004; Glocker and Pfeiffer 2006; Tasora et al. 2008; Preclik et al.
2009; Shojaaee et al. 2012; Tonge et al. 2012; Heyn et al. 2013];
i.e., first order methods that do not rely on Jacobian/Hessian infor-
mation for convergence; (b) can resolve bilateral constraints; and
(c) can handle cohesion by a simple modification of the gap com-
plementarity condition. It should be pointed out that another issue
eschewed here that plagues both (i) and (ii) is the lack of unique-
ness in the solution.

6. CONCLUSIONS AND DIRECTIONS OF FUTURE
WORK

This contribution introduces an algorithm, called APGD, that is
used at each time step of a simulation to produce the friction and
normal forces acting at the contact points in a system of mutually
interacting rigid bodies. The APGD method has been implemented
into an open source parallel simulation framework and demon-
strated to scale to accommodate the analysis of systems with mil-
lions of rigid bodies. The benchmark pressure test results reported
in Table I suggest the method is numerically robust. Numerous tests
have indicated that almost invariably the APGD solver is one or-
der of magnitude faster than Chrono’s default Gauss-Seidel solver.
The ability to handle bilateral constraints, cohesion, and rolling and
spinning friction suggests that the method is versatile and can be
used to model physics that goes beyond the dry Coulomb slid-
ing/sticking friction model. The APGD method can be applied
in other complementarity-based approaches, such as [Smith et al.
2012], that address the limited support for impact phenomena in
Chrono.

Chrono is a matrix-free simulation framework, which prevents
the use of (i) optimized linear algebra kernels, and (ii) Interior
Point methods that might prove more apt at solving the discretized
DVI problem of interest. In terms of (i), a non-matrix free imple-
mentation, which is presently pursued, will allow the use of opti-
mized kernels for matrix-vector multiplication in APGD. Based on
results available in the literature [Su and Keutzer 2012; Intel 2013]
and APGD profiling, we anticipate an increase in performance by
better use of caches, better leverage of parallelism, from vectoriza-
tion, and use of larger virtual page sizes.
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SCHENK, O. AND GÄRTNER, K. 2004. Solving unsymmetric sparse sys-
tems of linear equations with pardiso. Future Generation Computer Sys-
tems 20, 3, 475–487.

SHOJAAEE, Z., SHAEBANI, M. R., BRENDEL, L., TOEROEK, J., AND

WOLF, D. E. 2012. An adaptive hierarchical domain decomposition
method for parallel contact dynamics simulations of granular materials.
Journal of Computational Physics 231, 2 (JAN 20), 612–628.

ACM Transactions on Graphics, Vol. , No. , Article , Publication date: .



Using Nesterov’s Method to Accelerate Multibody Dynamics with Friction and Contact • 15

SMITH, B., KAUFMAN, D. M., VOUGA, E., TAMSTORF, R., AND GRIN-
SPUN, E. 2012. Reflections on Simultaneous Impact. ACM Transactions
on Graphics 31, 4, 106:1–106:12.

STEWART, D. E. 2000. Rigid-body dynamics with friction and impact.
SIAM Review 42(1), 3–39.

STEWART, D. E. AND TRINKLE, J. C. 1996. An implicit time-stepping
scheme for rigid-body dynamics with inelastic collisions and Coulomb
friction. International Journal for Numerical Methods in Engineering 39,
2673–2691.

SU, B.-Y. AND KEUTZER, K. 2012. clSpMV: A cross-platform OpenCL
SpMV framework on GPUs. In Proceedings of the 26th ACM interna-
tional conference on Supercomputing. ACM, 353–364.

TASORA, A. AND ANITESCU, M. 2013. A complementarity-based rolling
friction model for rigid contacts. Meccanica 48, 7, 1643–1659.

TASORA, A., ANITESCU, M., NEGRINI, S., AND NEGRUT, D. 2013. A
compliant visco-plastic particle contact model based on differential varia-
tional inequalities. International Journal of Non-Linear Mechanics 53, SI
(Jul), 2–12.

TASORA, A., NEGRUT, D., AND ANITESCU, M. 2008. Large-scale parallel
multi-body dynamics with frictional contact on the Graphical Processing
Unit. Journal of Multi-body Dynamics 222, 4, 315–326.

TONGE, R., BENEVOLENSKI, F., AND VOROSHILOV, A. 2012. Mass split-
ting for jitter-free parallel rigid body simulation. ACM Transactions on
Graphics (TOG) 31, 4, 105.

TRINKLE, J. C. 2003. Formulation of multibody dynamics as complemen-
tarity problems. In Volume 5: 19th Biennial Conference on Mechanical
Vibration and Noise, Parts A, B, and C. ASME.

UEHARA, J. S., AMBROSO, M. A., OJHA, R. P., AND DURIAN, D. J.
2003. Low-speed impact craters in loose granular media. Phys. Rev.
Lett. 90, 194301.

VU-QUOC, L., LESBURG, L., AND ZHANG, X. 2004. An accurate tangen-
tial force–displacement model for granular-flow simulations: Contacting
spheres with plastic deformation, force-driven formulation. Journal of
Computational Physics 196, 1, 298–326.

VU-QUOC, L. AND ZHANG, X. 1999. An elastoplastic contact force–
displacement model in the normal direction: displacement–driven ver-
sion. Proceedings of the Royal Society of London. Series A: Mathemati-
cal, Physical and Engineering Sciences 455, 1991, 4013–4044.

Received Sep 2014; accepted Feb 2015

ACM Transactions on Graphics, Vol. , No. , Article , Publication date: .


